3 research outputs found

    Taphrina as model phytopathogenic yeasts infecting the model plant Arabidopsis and woody plant Betula pendula

    Get PDF
    Plants constantly interact with microorganisms, including bacteria, and fungi, including yeasts. Plant-associated yeasts have not been studied as much as plant-associated fungi and bacteria. Yeast-like fungi that interact with plants can be pathogenic, neutral residents, or plant growth promoting. Yeast-like fungi can be found in or on all parts of the plant, and their role in the phyllosphere is currently receiving more attention. The plant-associated yeast species studied in this thesis are Taphrina, a genus of dimorphic yeast-like fungi, which are able to switch lifestyle from yeast to filamentous fungi when their environment is favourable. In this thesis Taphrina species were investigated as model phytopathogenic yeast-like fungi by observing the interaction of T. betulina with Betula pendula (European silver birch) and developing a Taphrina infection system with the genetic model plant, Arabidopsis thaliana (hereafter referred to as Arabidopsis). This thesis shows that T. betulina, which causes witches’ broom disease in birch, was the predominant yeast in the phylloplane of both symptomatic and asymptomatic B. pendula. Fifty-seven strains of T. betulina with seven different genotypes were found. One of the seven genotypes was found to be dominant and was common in infected trees, but was also found at lower levels in samples from healthier trees. Moreover, since T. betulina causes witches' broom disease in B. pendula, the tumour morphology in birch infected by T. betulina was characterized in this thesis. Further, the distribution of susceptible and resistant birch trees provided evidence that suggests there may be genetic resistance against T. betulina in the birch population. To develop the infection system of Taphrina in the model plant Arabidopsis, Taphrina strain M11, previously isolated from wild Arabidopsis, was used. The M11 strain caused symptoms of disease in Arabidopsis, including leaf deformations in the form of leaf bending and leaf curling. In addition, this result was supported by several tests that showed activation of auxin- and cytokinin-signalling during infection, which may be part of the pathogenic yeast invasion strategy against its host. A high-quality draft genome assembly for Taphrina strain M11 was obtained. In addition, as candidate effector proteins, 767 short secreted proteins (SSPs) were found in the M11 genome. No LysM domain containing SSPs were found, suggesting that chitin has a minor role in Taphrina-host interactions. Furthermore, infections with plant hormone signalling mutants showed that jasmonic acid and ethylene are major hormones in plant defence against Taphrina M11. In growth tests, M11 became more abundant on Arabidopsis leaves compared to related Taphrina strains and was able to form biofilms. Furthermore, M11 has been identified as a strain of T. tormentillae. Thus, this thesis shows that Taphrina has potential as a model of phytopathogenic yeasts infecting the model plant Arabidopsis and the woody plant B. pendula.Muihin kasvien kanssa tavattaviin mikrobeihin verrattuna hiivat ovat hyvin vĂ€hĂ€n tutkittuja. Hiivan tapaiset sienet vuorovaikuttavat kasvien kanssa joko patogeeneinĂ€, pöytĂ€vierassuhteessa tai hyödyllisinĂ€ symbiontteina. VĂ€itöskirjani kasvien kanssa vuorovaikuttavat hiivalajit kuuluvat sukuun Taphrina, jonka sienet kykenevĂ€t muuttamaan elintapansa hiivamaisesta rihmamaiseksi. Taphrina betulina aiheuttaa koivulla tuulenpesiĂ€. TĂ€hĂ€n tautiin keskittynyttĂ€ tutkimusta on rajallisesti, mutta saatavilla olevat harvat tutkimukset esittĂ€vĂ€t, ettĂ€ taudin aiheuttamaa negatiivista vaikutusta on mahdollisesti aliarvioitu. VĂ€itöskirjallani oli kolme tavoitetta: 1) Saavuttaa kĂ€sitys tuulenpesĂ€-sienitaudista Betula pendula -koivuissa löytĂ€mĂ€llĂ€ kasvaimen kasvun lĂ€htöpisteenĂ€ toimiva puukudos. 2) YmmĂ€rtÀÀ paikallista T. betulina infektioekologiaa tarkkailemalla terveessĂ€ koivussa olevia Taphrina-sieniĂ€ ja muita hiivasieniĂ€ ja vertailemalla niitĂ€ T. betulina-infektion oireita ilmentĂ€vÀÀn koivuun. 3) MÀÀritellĂ€ molekulaariset puolustusmekanismit hiivapatogeeniĂ€ vastaan kĂ€yttĂ€mĂ€llĂ€ Arabidopsis-mallijĂ€rjestelmÀÀ, jolla selvitettiin T. betulina-patogeenin vastaisen puolustusreaktion signalointireittejĂ€. TĂ€ssĂ€ vĂ€itöskirjassa tutkittiin T. betulina-kasvaimia ja mÀÀritettiin oireiden kehittymisen kudosspesifisyys infektioiden aikana. T. betulina-kannat on eristetty yksinomaan sairaista koivuista ja vĂ€itöskirjassa nĂ€ytetÀÀn, ettĂ€ T. betulina-sientĂ€ löytyy myös terveistĂ€ koivuista. T. betulina oli hallitseva hiiva kasvin lehdistön pinnalla sekĂ€ sairaissa ettĂ€ silmĂ€mÀÀrĂ€isesti terveissĂ€ B. pendula-koivuissa. Taphrina-infektiojĂ€rjestelmĂ€n kehittĂ€miseksi Arabidopsis-mallikasvilla kĂ€ytettiin aiemmin villiltĂ€ Arabidopsis-kasvilta eristettyĂ€ M11 Taphrina-kantaa. M11 aiheutti Arabidopsis-kasvissa taudinoireita, kuten lehtien epĂ€muodostumia, osoittaen jossain mÀÀrin samankaltaisuutta muiden Taphrina-lajien lehtioireisiin niiden isĂ€ntĂ€kasveissa. VĂ€itöskirja sisĂ€ltÀÀ myös M11-infektoituneen Arabidopsis-kasvin infektiofenotyyppien ja hormonivasteiden karakterisoinnin. NĂ€in ollen tĂ€mĂ€ vĂ€itöskirjatyö osoittaa, ettĂ€ Taphrina-suvun lajeilla on potentiaalia malliksi fytopatogeenisista hiivoista, jotka voivat infektoida Arabidopsis-mallikasvin ja puuvartisen kasvin B. pendula

    Effect of fungus Taphrina infection on birch (Betula pendula) xylem morphology and hydraulic conduction

    Get PDF
    Magistritöö Vee ja maismaa ökosĂŒsteemide rakendusbioloogia Ă”ppekavalKĂ€esoleva magistritöö eesmĂ€rgiks on uurida Taphrina seene avaldatavat mĂ”ju kase ksĂŒleemi morfoloogiale ja hĂŒdraulilisele juhtivusele. Taphrina seen on kottseente hĂ”imkonda kuuluv parasiitseen, hĂ”imkonna tuntuim seen on Taphrina deformans – virsikupuu lehti deformeeriv parasiitseen, mida on kĂ”ige rohkem uuritud, kuna see tekitab majanduslikku kahju. Antud töös keskendutakse kaske kahjustavale parasiitseene liigile Taphrina betula (kaseluudik), mis tekitab puuokstele visuaalselt nĂ€htavaid kahjustusi – tuulepesi. EesmĂ€rgi saavutamiseks koguti proove kahest kohast: TĂ€htvere pargist Tartu linnas ja linna kĂŒlje all Ihastes asuvalt Anne looduskaitsealalt. Töö kĂ€igus uuriti ksĂŒleemitorude suurust ja tihedust, erinevusi mÔÔdeti fotodelt mikroskoobi all. Selgus, et kontrollproovidel oli ksĂŒleemitorude diameeter suurem kui nakatunud proovidel, seda 9/13, ka oli nakatunud proovidel ksĂŒleemitorude tihedus suurem kui nakatumata proovidel. Töö tulemustes jĂ”uame jĂ€reldusele, et Taphrina seenparasiit avaldab mĂ”ju kase puidule, mĂ”jutades selle ksĂŒleemitorude suurust ja tihedust. Sellest tulenevalt vĂ”ib jĂ€reldada, et taime hĂŒdrauliline juhtivus on samuti mĂ”jutatud, kuna see sĂ”ltub ksĂŒleemitorudest ning nende morfoloogiast, siiski hĂŒdraulilise juhtivuse aspekt vajab tulevikus tĂ€iendavat uurimist.The aim of this Master’s thesis was to research the influance of the Taphrina fungi on the morphology and hydraulic conductivity of European white birch (Betula pendula). The Taphrina is a fungal genus within the Ascomycota phylum, the most famous species of the division is Taphrina deformans which is infamous of infecting peach trees and is most studied because of economic damage it causes. This thesis focuses on the species Taphrina betulina, which causes visible deformity in a woody plant known as Witch’s brooms. To achieve the goal, samples were collected from two places: TĂ€htvere Park in Tartu and the Anne Nature Reserv located in Ihaste near the City Tartu. During the study, the size and density of xylem were examined. Differences were measured from photos made by microscope. It turned out that the control samples had a larger xylem diameeter, 9 of 13 samples had larger diameeter, also infected samples had higher xylem density than noninfected samples. In the result of this thesis, we concluded that Taphrina betulina fungus affects the birch wood, affecting the size and density of its xylem. Consequently, it can be concluded that the hydraulic conductivity of the plant is also affected, since it depends on the xylem morphology, however, the aspect of hydraulic conductivity needs further investigation

    Genomics and evolution of Pneumocystis species.

    Get PDF
    The genus Pneumocystis comprises highly diversified fungal species that cause severe pneumonia in individuals with a deficient immune system. These fungi infect exclusively mammals and present a strict host species specificity. These species have co-diverged with their hosts for long periods of time (> 100 MYA). Details of their biology and evolution are fragmentary mainly because of a lack of an established long-term culture system. Recent genomic advances have unlocked new areas of research and allow new hypotheses to be tested. We review here new findings of the genomic studies in relation with the evolutionary trajectory of these fungi and discuss the impact of genomic data analysis in the context of the population genetics. The combination of slow genome decay and limited expansion of specific gene families and introns reflect intimate interactions of these species with their hosts. The evolutionary adaptation of these organisms is profoundly influenced by their population structure, which in turn is determined by intrinsic features such as their self-fertilizing mating system, high host specificity, long generation times, and transmission mode. Essential key questions concerning their adaptation and speciation remain to be answered. The next cornerstone will consist in the establishment of a long-term culture system and genetic manipulation that should allow unravelling the driving forces of Pneumocystis species evolution
    corecore