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HIGHLIGHTS 

 

- Advances in genomics of Pneumocystis species unlocked new areas of research 

 

- Slow genome decay and limited expansions of specific gene families and introns  

 

- Adaptation influenced by self-fertility, host specificity, and transmission mode 

 

- Establishment of culture in vitro needed to unravel the forces driving evolution 

*Highlights (for review)
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ABSTRACT  1 

The genus Pneumocystis comprises highly diversified fungal species that cause severe 2 

pneumonia in individuals with a deficient immune system. These fungi infect exclusively 3 

mammals and present a strict host species specificity. These species have co-diverged with their 4 

hosts for long periods of time (> 100 MYA). Details of their biology and evolution are 5 

fragmentary mainly because of a lack of an established long-term culture system. Recent 6 

genomic advances have unlocked new areas of research and allow new hypotheses to be tested. 7 

We review here new findings of the genomic studies in relation with the evolutionary trajectory 8 

of these fungi and discuss the impact of genomic data analysis in the context of the population 9 

genetics. The combination of slow genome decay and limited expansion of specific gene families 10 

and introns reflect intimate interactions of these species with their hosts. The evolutionary 11 

adaptation of these organisms is profoundly influenced by their population structure, which in 12 

turn is determined by intrinsic features such as their self-fertilizing mating system, high host 13 

specificity, long generation times, and transmission mode. Essential key questions concerning 14 

their adaptation and speciation remain to be answered. The next cornerstone will consist in the 15 

establishment of a long-term culture system and genetic manipulation that should allow 16 

unravelling the driving forces of Pneumocystis species evolution.  17 
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Main text : 7482 words  1 

 2 

BACKGROUND  3 

History 4 

Pneumocystis species form a group of opportunistic fungi that cause severe pulmonary infections 5 

in mammals with a deficient immune system. These organisms infect exclusively mammals. 6 

They were first described by Chagas (Chagas, 1909), and wrongly classified as special forms of 7 

trypanosomes. They were later identified as a bona fide separate species by the Delanoë couple 8 

at the Pasteur Institute in Paris (Delanoë and Delanoë, 1912). Their taxonomic classification 9 

remained then elusive because of a phenotypic resemblance with the protists. The issue was 10 

resolved using molecular phylogeny based on sequencing ribosomal DNA, which clearly 11 

indicated their fungal nature (Edman et al., 1988).  12 

 13 

Phylogeny and taxonomy 14 

Pneumocystis species belong to the subphylum of Taphrinomycotina within the Ascomycota 15 

(Eriksson, 1997; Sugiyama et al., 2006). The Taphrinomycotina subphylum is monophyletic and 16 

encompasses mostly plant-associated or soil-dwelling fungi (Liu et al., 2009). Pneumocystis 17 

closest relatives are Schizosaccharomyces pombe and Taphrina deformans, their common 18 

ancestor having diverged from the other Taphrinomycota members ca. 467 million years ago 19 

(MYA) (Beimforde et al., 2014).  20 

Although all Pneumocystis species are ubiquitous, each mammal species can be infected 21 

with only one or two of them. Five species have been formally described so far based on the 22 

requirements of the International Code of Botanical Nomenclature (ICBN): Pneumocystis 23 
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jirovecii in Homo sapiens (Frenkel, 1999), Pneumocystis carinii in Rattus norvegicus (Frenkel, 1 

1999), Pneumocystis wakefieldiae also in Rattus norvegicus (Cushion et al., 1993; Cushion et al., 2 

2004), Pneumocystis murina in Mus musculus (Keely et al., 2004a), and Pneumocystis oryctologi 3 

in Old World rabbits (Oryctolagus cuniculus; Dei-cas et al., 2006). Antigenic and DNA based 4 

studies suggest the presence of distinct species also in macaques, ferrets, bats, shrews, horses, 5 

pigs, and dogs (Banerji et al., 1994; Peters et al., 1994; Christensen et al., 1996; English et al., 6 

2001; Guillot et al., 2004).  7 

P. jirovecii is the only species known to infect humans and has never been detected in 8 

any other animals. P. carinii is the best studied species because of the availability of protocols 9 

for experimental or natural infections in laboratory rats. P. wakefieldiae was reported either 10 

mixed with P. carinii (Cushion et al., 1993; Cushion, 1998; Cushion et al., 2004; Chabé et al., 11 

2010), or alone (Palmer et al., 2000). The two latter species are different in terms of 12 

electrophoretic karyotypes, gene localization on the chromosomes, sequence identity (4-7% 13 

nucleotide divergence in seven orthologs; Cushion, 1998; Cushion et al., 2004), antigenic 14 

profiles (Vasquez et al., 1996), and major surface glycoproteins (MSG) expression (Schaffzin 15 

and Stringer, 2000). They might be competing against each other for resources when present 16 

together within the same rat (Icenhour et al., 2006a).  17 

 18 

Species divergence  19 

According to the evolutionary rates of several genomic loci, the radiation of the Pneumocystis 20 

genus occurred ca.100 MYA (Keely et al., 2003a; Keely et al., 2004a), which roughly overlaps 21 

with the radiation of the mammalian species (Holmes, 1991; dos Reis et al., 2015). P. murina 22 

would have diverged from P. carinii between 51 and 71 MYA (Keely et al., 2003a), while P. 23 
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carinii and P. wakefieldiae diverged between 15 and 22 MYA (Cushion et al., 2004; Fischer et 1 

al., 2006). The neat superposition of multiple Pneumocystis species phylogenetic trees with those 2 

of their respective hosts supports a co-evolution of these organisms (Guillot et al., 2001). 3 

Therefore, a plausible co-speciation scenario is that each species became physically separated 4 

from the other species, the hosts acting as barriers that led to the accumulation of genetic 5 

differences and the gradual reproductive isolation over time. The absence of gene flow or mating 6 

among the different species has been inferred based on linkage disequilibrium analysis consistent 7 

with an ancient reproductive isolation (Mazars et al., 1997; Keely et al., 2004a; Keely and 8 

Stringer, 2009). Furthermore, no evidence of hybridization was detected between P. carinii and 9 

P. wakefieldiae, even during co-infection of the same rat (Cushion, 1998; Cushion et al., 2004). 10 

However, caution is warranted because the absence of gene flow was inferred from a small set of 11 

conserved markers, which may have not allowed detecting all genetic events. Consequently, 12 

whole genome sequencing studies are necessary to validate these findings.  13 

 14 

Life cycle 15 

The life cycle of Pneumocystis organisms is still hypothetical and mostly derived from 16 

microscopic and molecular studies on P. carinii (Figure 1). As fungal organisms with an obligate 17 

parasitic behavior, the cycle would occur only inside host’s lungs, and begin with the inhalation 18 

of infectious asci. Once inhaled, each ascus would release first eight ascospores which will 19 

evolve to what is known as trophic forms that bind to the type I pneumocytes of the alveolar 20 

epithelium. The cycle would then alternate between asexual multiplication of metabolically 21 

active trophic cells by binary fission, and sexual reproduction upon mating of two trophic cells 22 

that would culminate by the production of asci containing eight ascospores (Figure 2). Trophic 23 
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cells are amoeboid in shape and represent generally 90-98% of the populations in the infected 1 

lungs (Aliouat-Denis et al., 2009). These forms are mononuclear, 2-8 m in diameter (Dei-Cas et 2 

al., 2004), and mostly haploid (Stringer and Cushion, 1998; Wyder et al., 1998; Martinez et al., 3 

2011). Multiploid forms are rare and possibly caused by asymmetrical or post-mating divisions 4 

(Martinez et al., 2011). Trophic cell surface is composed of a single layer of electron dense 5 

material containing glycoproteins, but possibly no β-glucans. Indeed, the enzymes responsible 6 

for the synthesis of β-glucans and the associated endo-1,3-glucanase are expressed almost 7 

exclusively in asci (Nollstadt et al., 1994; Kottom and Limper, 2000; Kutty et al., 2015). The 8 

presence of structural carbohydrate polymers of glucans in asci increases the physical strength of 9 

the cell wall, which might facilitate the survival outside the host. The doubling times are 10 

relatively long compared to free-living yeasts (~2 hours) and range from 1.5 to 10.5 days 11 

depending on the species (Aliouat et al., 1999; Keely et al., 2003b). The presence of a sexual 12 

cycle was initially supported by the ultrastructural observations of synaptonemal complexes 13 

(Matsumoto and Yoshida, 1984) and the expression of one pheromone receptor at the surface of 14 

P. carinii trophic cells (Vohra et al., 2004). Recent comparative genomic studies suggest that 15 

Pneumocystis species use primary homothallism (self-fertility) based on the genes number and 16 

arrangement on the chromosomes as a fusion of Plus and Minus mating type loci (Almeida et al., 17 

2015). Thus, each strain would be able to produce asci on its own, without the need to find a 18 

compatible partner. Asci would be expelled by infected hosts and be the infectious stages 19 

because their specific inactivation or removal blocks the transmission chain (Cushion et al., 20 

2010; Martinez et al., 2013). Consistently, recent analyses suggested that Pneumocystis sexuality 21 

is obligatory within host’s lungs in order to complete the cell cycle and produce asci that are 22 

necessary for airborne transmission to new hosts (Richard et al., 2018). Furthermore, the 23 
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necessity of asci for transmission has been demonstrated by inhibition of the sexual cycle using 1 

echinocandins (Cushion et al., 2010), and by the fact that only purified asci could transmit the 2 

disease (Martinez et al., 2013). Recently, activation of sex-related genes upon treatment with 3 

echinocandins in RNA-seq analyses also suggested that sexuality is obligate (Cushion et al., 4 

2018).  5 
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Transmission  1 

Pneumocystis jirovecii pneumonia is a major public health problem with >400,000 cases per year 2 

worldwide and a mortality rate possibly as high as 80% if untreated (Brown et al., 2012). 3 

Epidemiological data for Pneumocystis species in animal populations are scarce, but 4 

investigations in shrews and rats suggest a pervasive low level of infections (Laakkonen, 1998; 5 

Chabé et al., 2010).  6 

Pneumocystis organisms are transmitted via the air from infected individuals to new hosts 7 

(Hughes, 1982), including between individuals within hospitals (de Boer et al., 2011), but also 8 

possibly via the transplacental route (Ceré et al., 1997; Sanchez et al., 2007; Montes-Cano et al., 9 

2009). The current hypothesis is that infections occur over short distance among infected and 10 

susceptible individuals (Chabé et al., 2011). The transfer of parasites from animals to humans is 11 

no longer considered as a valid hypothesis based on the strict host species specificity (Chabé et 12 

al., 2011). Consistently, no convincing evidence of an environmental source of Pneumocystis has 13 

been found so far, which strongly suggests that mammals constitute the only reservoir of these 14 

fungi. Furthermore, the erosion of metabolic capabilities evidenced by the genome sequencing 15 

studies suggests that these organisms are unable to live outside their hosts (see below, losses of 16 

metabolic machinery section). Finally, they apparently complete their whole cell cycle within 17 

host’s lungs since sexuality occurs therein. Healthy infected hosts colonized by the organism are 18 

believed to contribute greatly to the transmission and circulation process (Chabé et al., 2004; 19 

Peterson and Cushion, 2005; Le Gal et al., 2012; Alanio and Bretagne, 2017).  20 

  21 
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Host specificity and biotrophy  1 

The strict host species specificity of the Pneumocystis species means that the fungal cells can 2 

only infect or survive in the host in which they were isolated in the first place. This view is 3 

mainly supported by the systematic failure of cross-infection experiments involving severely 4 

combined immuno-deficient animals and nude rats (Aliouat et al., 1993; Furuta et al., 1993; 5 

Gigliotti et al., 1993; Aliouat et al., 1994; Atzori et al., 1999; Durand-Joly et al., 2002). The 6 

selective activation of trophic cells by their host seems to trigger the formation of cytoplasmic 7 

projections by Pneumocystis cells, the filopodia (Aliouat-Denis et al., 2008). Accordingly, P. 8 

carinii, the species naturally infecting rats, is unable to form filopodia and infect when 9 

inoculated in mice, whereas P. murina, the natural parasite of mice, produce filopodia and high 10 

parasite loads under the same conditions (Aliouat-Denis et al., 2008). The function of the 11 

filopodia remains elusive but these structures display ultrastructural differences that are species 12 

specific, and that might account for some aspects of the host specificity.  13 

Another aspect of this host specificity is that Pneumocystis species are most probably 14 

obligate biotrophs (Cushion et al., 2007; Cushion and Stringer, 2010; Hauser, 2014; Ma et al., 15 

2016a). The way fungal parasites scavenge nutrients from their host is an active research field 16 

and three modes are broadly recognized: (i) biotrophy, where the parasite acquires nutrients from 17 

a living cell, (ii) necrotrophy, where host cells are killed to release nutrients, and (iii) 18 

saprotrophy, where the organism feeds on dead or decaying organic material. Biotrophs do little 19 

damage to host cells and lack virulence factors (van der Does and Rep, 2007). Pneumocystis 20 

perfectly fits to the biotrophy definition because they cause no apparent cell death and lack any 21 

experimentally verified fungal virulence factors such as glyoxylate cycle, secondary metabolism, 22 

and secreted effectors (Cushion et al., 2007; Cissé et al., 2012; Cissé et al., 2014; Ma et al., 23 
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2016a). This implies that they rely entirely on their host for their survival and thus have evolved 1 

close relationships that rendered them host species specific. 2 

The physiological characteristics of the hosts are key determinants of parasite adaptation 3 

(Poulin et al., 2006). For example, micromammals are small bodied with short lifespans, high 4 

reproduction rates, and high population densities, whereas these distinctive features are reversed 5 

in large mammals such as humans. The co-evolution theory predicts that parasitic species 6 

infecting micromammals exhibit a weaker host specificity compared those adapted to long-lived 7 

hosts with more stable population densities (Poulin et al., 2006). This prediction has been 8 

validated in fish parasites, among which strong host specificity is favored in stable resources 9 

found in hosts with a large body size (Sasal et al., 1999; Desdevises et al., 2002). As far as 10 

Pneumocystis is concerned, humans are infected by only one species whereas rats can be co-11 

infected by two (Cushion et al., 1993 and 2004; Icenhour et al., 2006a; Golab, 2009). The 12 

number of Pneumocystis species able to infect rodents might even be more important, as shown 13 

by the recent discovery of multiple lineages shared among species and genera of the Southeast 14 

Asian murid species (Latinne et al., 2017). These findings might indicate a relaxation of the strict 15 

host specificity in small mammals harboring Pneumocystis, although additional supporting data 16 

are needed to fully challenge the concept of widespread strict host specificity.  17 

Co-phylogenetic studies of Pneumocystis species and their hosts suggest that the host 18 

specificity evolved as a continuous trait resulting from a long-lasting co-evolution (Demanche et 19 

al. 2001; Guillot et al., 2001; Hugot et al., 2003). Strict host specificity is rare in animal 20 

pathogens but widespread in plant fungal pathogens (Parker and Gilbert, 2004; Restrepo et al., 21 

2014). In the latter, the ecological adaptation often results in a pronounced specialization to 22 

particular hosts (Clay and Kover, 1996). In these systems, host specificity acts as a reproductive 23 
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isolating mechanism because it favors higher rate of mating between individuals on the same 1 

host and reduced gene flow among populations from different hosts (Giraud, 2006). A rapid 2 

divergence of the virulence factors, the pathogen “effector repertoire”, is often associated with 3 

the emergence of host specificity (Schulze-Lefert and Panstruga, 2011). The hypothesis of the 4 

latter authors states that changes in pathogen host range is driven by variation in the pathogen 5 

effector repertoire. This description fits the lineage specific expansion of the MSG superfamily 6 

in Pneumocystis species (Ma et al., 2016a; Ma et al., 2016b; Schmid-Siegert et al., 2017), which 7 

suggests that these proteins might account for some aspects of the host specificity.  8 

 9 

  10 
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GENOME ORGANIZATION 1 

Genomic data acquisition 2 

The quest for genome sequence data began with the successful cloning of P. carinii genomic 3 

fragments (Tanabe et al., 1988). Pulse field gradient gel electrophoreses have been then 4 

instrumental for karyotypic characterization of Pneumocystis genomes and evidenced 12 to 20 5 

chromosomes according to the species totaling ca. 8 Mb (Hong et al., 1990; Yoganathan et al., 6 

1989; Stringer and Cushion, 1998). Differences in karyotype profiles determined that the species 7 

infecting humans and rats are genetically distinct (Stringer et al., 1993). Significant genome size 8 

variations among species have been reported, e.g. that of ferret Pneumocystis would be ca. 1.7 9 

times bigger than that of P. carinii (Stringer and Cushion, 1998). A draft of P. carinii genome 10 

covering ca. 70% of genome was generated in 2006 using a clone-based Sanger sequencing 11 

approach from infected laboratory rats (Slaven et al., 2006). In 2012, the first draft of P. jirovecii 12 

genome was obtained from a single bronchoalveolar lavage of a patient with pneumonia (Cissé et 13 

al., 2012). This assembly encompasses 358 contigs capturing 90 to 95% of the genome, but the 14 

repetitive subtelomeric and centromeric regions could not be resolved. The centromeres have not 15 

been discovered yet in Pneumocystis, whereas the subtelomeric regions were resolved using 16 

Sanger sequencing of cosmids (Keely et al. 2005), and more recently assembled using 17 

sequencing generating long reads (Ma et al., 2016a; Ma et al., 2016b; Schmid-Siegert et al., 18 

2017) (see below, chromosomal ends section). Chromosomal level assemblies of P. jirovecii, P. 19 

carinii, and P. murina were recently published revealing genome sizes ranging from 7.4 to 8.3 20 

Mb (Table 1; Ma et al., 2016a). It became evident that the genomes of Pneumocystis species had 21 

undergone an important reduction relative to S. pombe (7.5 to 8.3 Mb versus 12.5 Mb).  22 

 23 
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Nuclear Genome content 1 

The analysis of the Pneumocystis genome assemblies validated the presence of single copy 2 

ribosomal DNA reported previously for P. jirovecii (Giuntoli et al. 1994; Stringer, 1996; Tang et 3 

al., 1998; Nahimana et al., 2000a). This is similar to Taphrina deformans (Cissé et al., 2013), but 4 

contrasts with most fungi which harbors commonly tens or hundreds of copies of the locus. 5 

Figure 3 shows the genome compositions of Pneumocystis species compared to related fungi. 6 

These data highlight the contraction of the protein coding regions as compared to free-living 7 

yeasts, which reflect massive gene losses. Figure 3 also evidences the expansions of the MSG 8 

superfamily, of introns, as well as of the cumulative length of the intergenic regions (IGR). We 9 

previously reported that IGR in P. jirovecii occupy a larger genome fraction as compared to free 10 

living yeasts Saccharomyces cerevisiae and S. pombe despite a significantly smaller genome 11 

(Cissé et al., 2014). This observation holds when we re-evaluate here IGRs in the newly 12 

published full-length genomes of P. jirovecii, P. carinii, and P. murina (Ma et al. 2016a). This 13 

strongly suggests that genome streamlining in Pneumocystis species is driven by gene deletions 14 

rather than reduction of IGRs. This observation seems counterintuitive because genome 15 

reduction is almost always associated to a reduction of introns and IGRs in parasites (Keeling 16 

and Slamovits, 2005). Alternatively, large IGRs might favor chromosomal re-arrangements by 17 

increasing the number of possible breakpoints, as hypothesized in fungal microsporidian 18 

parasites (Slamovits et al., 2004; Keeling and Slamovits, 2005). The other characteristics of these 19 

genomes are discussed in the following sections.  20 

 21 
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Chromosomal ends  1 

Subtelomeres in microbial parasites are often enriched with multi-copy surface glycoprotein 2 

gene families (Deitsch et al. 2009). These genomic regions are prone to (i) gene silencing that 3 

can be used for mutually exclusive expression, (ii) enhanced mutagenesis, and (iii) ectopic 4 

recombinations facilitated by the formation of clusters of telomeres at the nuclear periphery 5 

(Barry et al., 2003). These regions correspond to an important proportion of the Pneumocystis 6 

genomes (ca. 5%), and harbor a superfamily including five to six families of highly polymorphic 7 

multi-copy proteins called major surface glycoproteins (MSG) that are believed to be crucial for 8 

the fungus’ lifestyle (Ma et al., 2016a; Schmid-Siegert et al., 2017). These msg genes exist only 9 

in Pneumocystis species and all species of Pneumocystis have their own repertoire, which 10 

suggest they have been acquired in a common ancestor, although their origin is not known. The 11 

absence of homology of these MSGs outside Pneumocystis lineages might indicate a transfer 12 

from an unknown species or a gene co-option. msg families have been first described and studied 13 

in P. carinii (Kovacs et al., 1993; Sunkin et al., 1994; Sunkin et al., 1996; Keely et al., 2005; 14 

Keely and Stringer, 2009), and subsequently analyzed in P. jirovecii and P. murina (Haidaris et 15 

al., 1998; Kutty et al., 2008; Ma et al., 2016a; Schmid-Siegert et al., 2017). Important differences 16 

exist among Pneumocystis species in terms of msg gene copy numbers, 60 to 140 copies per cell, 17 

and protein divergence (Ma et al., 2016a).Moreover, one MSG family is present only in P. 18 

jirovecii (msg-IV or -B), whereas another one is present only in P. carinii and P. murina (MSR 19 

family, i.e. MSG-related). MSGs are believed to be involved in antigenic variation (Stringer, 20 

2007). MSGs would also mask glucans at the asci surface from the immune recognition (Kutty et 21 

al., 2016). The antigenic diversity seems to be created via intra-family recombination of msg 22 

genes encoding different isoforms, creating mosaic genes, as well as through increased 23 
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mutagenesis (Kutty et al., 2008; Keely and Stringer, 2009; Schmid-Siegert et al., 2017). The 1 

expression of the most abundant MSG family (msg-I or –A1) that is present in all species is 2 

subject to mutually exclusive expression of a single isoform in each cell by using a single copy 3 

transcription promoter (the upstream conserved sequence, UCS) (Edman et al., 1996; Kutty et 4 

al., 2001; Sunkin et al., 1996; Wada et al., 1995). The UCS ends by the conserved recombination 5 

joint element (CRJE) which is also present at the beginning of each msg-I gene and may serve as 6 

recombination breakpoint (Stringer, 2007). The CRJE would be larger in P. wakefieldiae (ca. 7 

330 bps) than in P. murina (132), which in turn is larger than in P. carinii and P. jirovecii (28 8 

and 33, respectively) (Keely et al., 2007). On the other hand, at least in P. jirovecii, members of 9 

the other five families possess each their own promoter (Schmid-Siegert et al., 2017), but their 10 

expression patterns remain to be characterized. Recently, one family has been shown in P. 11 

murina to be expressed only in ascospores within asci and young trophic forms (Bishop et al., 12 

2018).  13 

 14 

Introns  15 

Introns are extremely abundant in Pneumocystis genes and are as many as several tens per gene 16 

with a mean of five, and more than 40% of genes are interrupted by at least four introns (Stringer 17 

and Cushion, 1998; Ma et al., 2016a). Their presence can be equally explained by massive gains 18 

in Pneumocystis most recent common ancestry, or retention of ancestral elements that would 19 

have been lost in some Taphrinomycotina lineages such as Schizosaccharomyces. The introns are 20 

short (average length of 48 nucleotides), have a strong adenine and thymine bias, and present 21 

typical donor, acceptor and branch site patterns (Slaven et al., 2006). Pneumocystis introns 22 

cannot be processed by S. pombe and S. cerevisiae spliceosomes because of the divergence in 23 

intron-exon boundaries and branching sites within the introns (Thomas et al., 1999). RNA-seq 24 
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data indicate that intron retention affects ca. 45% of all introns (Ma et al., 2016a). Pneumocystis 1 

species contain self-splicing group I introns that are absent in higher eukaryotes such as humans 2 

(Liu et al., 1994), which renders them a prime target for the development of new drugs. These 3 

latter introns catalyze their own excision from RNA transcripts, a reaction that is inhibited by the 4 

drug pentamidine that is used against Pneumocystis (Liu and Leibowitz, 1993). 5 

Given the important genome reduction at the Pneumocystis genus level, the presence of a 6 

high intron density per gene suggests a selective constraint to conserve them. Intron loss is 7 

dominant in fungi (Stajich et al., 2007), and this tendency is even more pronounced in some 8 

parasites such as microsporidia (Keeling et al., 2010). The intron history is highly flexible within 9 

the Taphrinomycota, with the plant-associated Neolecta having a high intron density similar to 10 

Pneumocystis (Nguyen et al., 2017), and the intron-poor free-living yeast S. pombe (Wood et al., 11 

2002). The non-sense-mediated mRNA decay machinery is conserved in Pneumocystis species 12 

(Ma et al., 2016a). Under neutral scenario (no advantage) and widespread intron retention, most 13 

of the introns would produce non-functional transcripts tagged for destruction. This would be an 14 

incredible waste of resources in absence of another function. The latter could consist in 15 

alternative splicing increasing transcript diversity and regulating gene transcription or mRNA 16 

stability. Consistently, the P. carinii inosine 5’-monophosphate dehydrogenase pre-mRNA is 17 

differentially spliced, which was suggested to reflect changes in environmental stresses (Ye et 18 

al., 2001). These considerations suggest that introns might be neutral elements involved in many 19 

cellular processes via a greater proteome diversity, possibly including acting as a favorable 20 

substrate to facilitate shifts in lifestyle (i.e. parasite transition from one host species to another, or 21 

from plant to animal).  22 

 23 
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Mitogenomes 1 

The mitochondrial genomes of P. carinii (Sesterhenn et al., 2010; Ma et al., 2013), P. jirovecii 2 

(Cissé et al., 2012; Ma et al., 2013), and P. murina (Ma et al., 2013) have been sequenced. The 3 

mitogenome sizes range from 24 to 35-kb with a substantial size variability among isolates in all 4 

species. P. carinii and P. murina mitogenomes end with single-stranded loop sequences that 5 

would allow forming linear concatemers and protecting the ends of the molecule. The presence 6 

of these repeats might account for the variable size of P. carinii mitogenomes. P. jirovecii 7 

mitochondrial genome is circular since it lacks inverted terminal repeat allowing circulation. The 8 

significance of circularity versus linearity is unknown. Related Taphrinomycota of the genera 9 

Schizosaccharomyces, Taphrina, and Neolecta have circular genomes (Bullerwell et al., 2003; 10 

Cissé et al., 2013; Tsai et al., 2014; Nguyen et al., 2017), which might indicate that the circular 11 

form is ancestral. Interestingly, P. carinii and P. murina mitogenomes are highly co-linear 12 

whereas P. jirovecii mitogenome presents some re-arrangements, similarly to the nuclear 13 

genomes (see below Chromosomal re-arrangement section). The gene content is highly 14 

conserved among the three Pneumocystis species, although there is a substantial nucleotide 15 

divergence among species (27 to 31%) (Ma et al., 2013). These mitogenomes encode ca. 17 16 

genes commonly found in mitochondrial fungal genomes such as ATP synthases, cytochrome c 17 

oxidases, NADH dehydrogenases, and the full repertoire of at least 20 transfer RNAs.  18 

Reports investigating the dynamics of the mitochondrial genes during infection have revealed 19 

that mitogenomes would be very plastic in terms of copy number variations (Valero et al., 2016), 20 

and of genetic diversity including heteroplasmy (Alanio et al., 2016). The subsequent sections of 21 

this review focus on nuclear genomes. 22 

 23 
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EVOLUTION  1 

Comparison of the gene families and pathways present in Pneumocystis genomes to those in 2 

selected fungi has revealed numerous losses / contractions and relatively few expansions (Table 3 

2). The hypothetical evolutionary history of Pneumocystis species derived from these 4 

observations is represented in Figure 4 and discussed in the following sections.  5 

 6 

Losses in the metabolic and cellular machineries  7 

Massive gene losses suggest that Pneumocystis species are auxotroph for essential nutrients, 8 

which might explain the recurrent failures of in vitro culturing attempts. The lost pathways 9 

include basic components of metabolic machinery such as the synthesis of amino acids or 10 

carbohydrates (Table 2). The loss of purines catabolism seems unique to Pneumocystis (Chitty 11 

and Fraser, 2017). Pneumocystis species are able to synthesize fecosterol and episterol but lack 12 

enzymes to convert them into ergosterol. Consequently, their membranes contain cholesterol 13 

instead of ergosterol, which probably explains their resilience to azole treatment. Pneumocystis 14 

organisms are also able to synthetize a unique class of sterols, the “pneumocysterols” (Kaneshiro 15 

et al. 1994; Kaneshiro et al. 1999; Florin-Christensen et al. 1994; Giner et al., 2002). It 16 

interesting to note the early steps of the sterol biosynthetic pathway leading to the formation of 17 

pneumocysterol and episterol are conserved in Pneumocystis species, and only the final steps 18 

toward ergosterol/cholesterol production are missing (Joffrion et al., 2010). This is exemplified 19 

by the fact that key enzymes for the formation of ergosterol (i.e. erg3, erg4 and erg5) are not 20 

identifiable within the genomes. Analysis of the sterol biosynthesis machinery suggest that these 21 

species may be able to synthetize ergosterol/cholesterol precursors such as zymosterol, fecosterol 22 
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and episterol. Thus, the sterol pathway may have been re-routed and branch to form unique 1 

sterols, the pneumocystisterols.  2 

Overall, these observations are consistent with the idea that losses of metabolic genes correlate 3 

with an increased dependency of the parasite on its host. Therefore, nutrients need to be 4 

scavenged from the host, which often mechanistically involves large batteries expanded 5 

transporters (e.g. as observed in microsporidia [Cuomo et al., 2012]). This is not the case in 6 

Pneumocystis since transporters families are also greatly reduced (Cissé et al., 2014; Ma et al., 7 

2016a). For instance, the amino acid permeases and transporters that can respectively carry 8 

amino acids and oligopeptides are greatly reduced relatively to other Taphrinomycota (one copy 9 

of general amino acid permease versus 21 copies in S. pombe). Transmembrane proteins such as 10 

those of the major facilitator superfamily, sugar transporters, or more specific transporters (e.g. 11 

efflux pumps) are significantly reduced in Pneumocystis. The reduction of the transporters 12 

battery might be compensated by the use of highly selective transporters for critical compounds. 13 

The recent discovery of the import of myo-inositol in Pneumocystis cells via a low affinity but 14 

highly selective system supports this idea (Cushion et al., 2016). Unfortunately, high affinity 15 

transporters cannot be identified solely by computational means. Alternatively, simple diffusion 16 

across the membrane may occur, as evidenced in P. carinii for amino acids uptake using in vitro 17 

experiments (Basselin et al, 2001a; Basselin et al, 2001b). Basic cellular machinery is also 18 

affected by the loss of several fungal specific transcription factor families and the RNA 19 

interference machinery (Table 2).  20 

 21 
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Evolutionary basis of gene loss 1 

Gene loss is a common trend in parasitic and symbiotic species, which often harbor a small sized 2 

genome (Keeling and Slamovits, 2005; Wolf and  Koonin, 2013). The driving factors are often 3 

unknown or specific to the lifestyle of the species under study. A central question in evolutionary 4 

biology is whether gene loss is neutral or adaptive. In Pneumocystis species, there are footprints 5 

of both processes and we discuss here a few examples.  6 

The neutral theory is usually sufficient to explain gene loss in parasites (O’Malley et al., 7 

2016). Organisms with narrow host niche such as Pneumocystis are predicted to have small sized 8 

populations with increased genetic drift (bold: see glossary) (Papkou et al., 2016). The main 9 

mechanisms for gene loss are pseudogenization and sudden DNA deletions. Pseudogenization 10 

consists in the accumulation of deleterious mutations in non-essential genes ultimately leading to 11 

the loss (Kuo and Ochman, 2009; Wernegreen, 2015). The proportion of pseudogenes in P. 12 

jirovecii is low and equivalent to that present in free-living yeasts (0.02 pseudogene per protein-13 

coding gene [Cissé et al., 2014]). This observation might indicate that pseudogenization is not 14 

the main driver of gene loss in this species. The following considerations do not undermine this 15 

observation but suggest that caution must be exercised: (i) this rate of pseudogenization is valid 16 

only for P. jirovecii and for the single isolate which genome was sequenced (Cissé et al., 2012), 17 

and (ii) only genes including stop codons were considered, that is, other types of gene 18 

inactivation were not considered (e.g. untranslated RNA genes or unfixed mutations). Gene loss 19 

can also be result of deletions independent of selection such as the movement of transposable or 20 

integrated viruses (reviewed by Albalat and Canestro, 2016).  21 

The adaptive theory of gene loss implies a selective advantage and has been 22 

demonstrated to have occurred in many pathogenic lineages, for example for the Allergen 1 in 23 
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Cryptococcus neoformans (Jain et al., 2009), and for the de novo biosynthesis of nicotinic acid 1 

genes in Candida glabrata (Domergue et al., 2005). In Pneumocystis, the loss of chitin might 2 

have been lost to allow avoiding recognition from the host immune system (Ma et al., 2016a). 3 

The gene families and pathways cited in Table 2 are missing in the three Pneumocystis genomes 4 

available (Ma et al 2016a), which suggests that these losses occurred before the radiation of the 5 

genus. An unexpected consequence is that the observed gene losses might not reflect the current 6 

selective forces, and therefore might not be relevant for the host specificity.  7 

 8 

Chromosomal re-arrangement 9 

The chromosome level assemblies revealed that an important chromosomal re-arrangement 10 

occurred among Pneumocystis species (Ma et al., 2016a). The re-arrangement, however, 11 

followed the species tree, that is, the macrosynteny is broken between rodents infecting 12 

Pneumocystis (P. carinii and P. murina) and the humans infecting species (P. jirovecii), whereas 13 

P. carinii and P. murina genomes are highly collinear. Nevertheless, the gene order is conserved 14 

in syntenic regions among the three species (>92% of the genes), and ca. 83% of gene families 15 

are orthologous, with 4 to 30% of divergence at the nucleotide sequence level. The high gene 16 

conservation among the three species suggest that re-arrangements occurred mostly in the 17 

intergenic regions (IGR). In fungi, IGRs are often enriched in regulatory functions such as signal 18 

transduction or binding sites of transcription factors (Noble and Andrianopoulos, 2013). 19 

Chromosomal translocations impact gene expression as well as long-distance gene-to-gene 20 

contact via chromatin interactions, and thus might be involved in speciation (Rieseberg, 2001; 21 

Bakloushinskaya, 2016). Protein evolution is also faster in re-arranged chromosomes than 22 

collinear chromosomes because re-arrangements reduce homologous recombination and 23 
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facilitate positive selection (Rieseberg, 2001). A key question here is whether chromosomal re-1 

arrangements are involved in the adaptation of each Pneumocystis species to its host. Future 2 

studies are required to probe an eventual role of these re-arrangements in Pneumocystis 3 

evolution. 4 

 5 

Loss of complex multicellularity 6 

The recent sequencing of the Neolecta irregularis genome revealed that the Taphrinomycotina 7 

last common ancestor was probably multicellular (Nguyen et al., 2017). These findings suggest 8 

that Pneumocystis organisms evolved from a plant-associated or soil-adapted multicellular 9 

organism. The shift in cell morphology to single celled organisms is associated with the deletion 10 

of an ancestral morphogenic kit that included many cell differentiation and cell-to-cell signaling 11 

genes. These losses are not specific to Pneumocystis and were observed in a wide range of 12 

unrelated yeasts (Nguyen et al., 2017; Nagy et al., 2014; Nagy, 2017), which suggests a 13 

convergent evolution. The transition from a hyphal to yeast form takes place in many fungal 14 

lineages and is often triggered by a thermal stimulus (Köhler et al., 2017), CO2 levels (Hall et al., 15 

2010), or pH (Davis, 2009), and is directly linked to the ability to invade hosts. Notable 16 

examples include the dimorphic human pathogenic fungi Histoplasma, Blastomyces, 17 

Coccidioides, and Paracoccidioides (Beaman et al., 1981; Medoff et al., 1987; Inglis et al., 18 

2013).  19 

The ancestral morphogenic kit for complex multicellularity (fruiting bodies) is lost in 20 

Pneumocystis. However, Pneumocystis species are able to produce biofilms (Cushion et al., 21 

2009), which is an undifferentiated form of aggregative multicellularity often seen in bacteria 22 

(Claessen et al., 2014). Inversely, the yeast Saitoella complicata grows primarily by budding 23 
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(Goto et al., 1987), despite having the cellular machinery for the production of fruiting bodies 1 

(Nguyen et al., 2017). Comparative genomics and epigenomics would be extremely valuable to 2 

explore the molecular process underlying the loss of the multicellular phenotype. These 3 

considerations highlight the fact that phenotypes cannot be explained solely by gene loss and 4 

gain balance, and that other subtle mechanisms need to be considered.  5 

  6 
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POPULATION GENETICS 1 

Strain typing  2 

Given the high homogeneity of genomic sequences at the nucleotide sequence level among P. 3 

carinii isolates, strain typing for this species relied on chromosomes’ size analyses which 4 

allowed identifying numerous different karyotypic forms (Lundgren et al., 1990; Cushion, 1998; 5 

Wakefield, 1998a; Nahimana et al., 2001). On the other hand, the low but significant 6 

heterogeneity in many genomic loci among P. jirovecii isolates allowed using multilocus 7 

sequence typing (Wakefield, 1998b). The latter method represents nowadays the most used 8 

technique for P. jirovecii strains identification. The discrimination power of eight distinct loci 9 

has been validated and extensively used for epidemiological studies of P. jirovecii pneumonia 10 

(Maitte et al., 2013). Genotypes identification is performed by PCR of multiple loci followed by 11 

direct DNA sequencing (Sanger), restriction fragment length polymorphism, single-strand 12 

conformation polymorphism, type-specific oligonucleotide hybridization, tandem repeats 13 

number analysis, or high-throughput amplicon sequencing (Hauser et al., 1997; Hauser et al., 14 

1998; Lee et al, 1993; Lu et al., 1995; Ma et al., 2002; Alanio et al., 2016; Esteves et al., 2016). 15 

  16 

Genetic diversity 17 

The conclusions drawn from the studies concerning Pneumocystis genetic diversity were often 18 

contradictory. Low levels of genetic diversity as defined by Shannon diversity and Simpson 19 

indexes (Shannon, 1948; Simpson 1949) have been reported at the P. jirovecii and P. carinii 20 

internal transcribed spacers of the nuclear rDNA operon using PCR-based Sanger sequencing 21 

(Palmer et al., 2000; Beser et al., 2011). On the other hand, moderate to important levels of 22 

diversity measured in term of DNA polymorphisms in P. jirovecii using multilocus sequence 23 
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typing have been reported (Matos and Esteves, 2010; Jarboui et al., 2013; Sun et al., 2015; 1 

Alanio et al., 2017). The lack of whole genome sequence data, differences in sampling strategies, 2 

differences in interpretation, as well as the likely frequent in vitro formation of PCR chimeras 3 

(Beser et al., 2007), make difficult the reconciliation of these conclusions.  4 

Moreover, sexual recombination could explain partly these conflicting conclusions. 5 

Indeed, sexual reproduction is one of the main mechanisms to generate genetic diversity in fungi. 6 

It is believed to favor adaptation in fluctuating conditions while purging deleterious alleles 7 

(Heitman, 2010). Pneumocystis are probably homothallic species (Almeida et al., 2015; see life 8 

cycle section), and self-fertilization favors mating by avoiding the search of a compatible 9 

partner, a strategy thought to be favorable to and adopted by several human pathogens such as 10 

Cryptococcus and Candida species (Heitman, 2010). Sexual reproduction is based on classical 11 

Mendelian segregation, which supports both cross- and self-fertilization (Buscaglia et al., 2015). 12 

Pneumocystis would be able to perform both clonal and sexual propagation with various degrees 13 

of inbreeding or outcrossing. These variations in the multiplication process could explain the 14 

conflicting patterns of genetic diversity reported. 15 

Polymorphism rates change substantially across loci and chromosomes in various 16 

species, including fungi, plants, and animals (Ellegren and Galtier, 2016). Genetic diversity is 17 

influenced by three main forces: mutation, demography (migration and bottlenecks), and 18 

selection (selective sweeps or clonal interference). Demography and selection create 19 

differences in the effective population size, whilst variations in mutation rate may create 20 

differences in the level of genetic diversity according to the geographical location. Neutral 21 

mutation rates in eurotiomycetes are typically between 1 x 10
-8

 and 1 x 10
-9

 substitutions per site 22 

per year (Kasuga et al., 2002), and a rate of 1.2 x 10
-10 

for the 18S rDNA has been used to 23 
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estimate Pneumocystis species divergence (Keely et al., 2003a). However, the genome-wide 1 

mutation rates for these species are unknown and expected to fluctuate greatly among genomic 2 

regions. For example, subtelomeric regions harboring MSGs have high substitution rates (Keely 3 

and Stringer, 2009; Schmid-Siegert et al., 2017), whereas ribosomal regions display a normal 4 

rate (Fischer et al., 2006). Moreover, given their likely variations according to the host, the 5 

mutation rates for each species must be determined independently. Care must be taken inferring 6 

these rates because recombination can be mutagenic and its impact as well as other confounder 7 

effects need to be addressed.  8 

The size of the populations of Pneumocystis species are not known, but they are expected 9 

to be small because of their narrow host ranges. P. jirovecii would have a small population size 10 

relative to the species infecting micro-mammals, thus reflecting the small size of human 11 

populations relative to those of rodents. Variations in population size over time affect the genetic 12 

diversity, e.g. a strong population bottleneck creates a loss of allele diversity due to increased 13 

genetic drift. Using non-recombining neutral loci, realistic mutation rates, and appropriate 14 

molecular clock models, past population history can be traced back using coalescent theory 15 

based applications such as skyline plot methods (Drummond et al., 2005; Heled and Drummond, 16 

2008). These demographic reconstructions would provide key metrics such as ancestral 17 

population sizes and evolutionary rates.  18 

Interestingly, the strongest prediction of genetic diversity in many species is the life 19 

history, not the population history (Ellegren and Galtier, 2016). This means that there is a strong 20 

correlation between phenotypic traits (e.g. mating system, generation times) and the genetic 21 

diversity. For example, homothallism is expected to have long term evolutionary cost fitness 22 

because selfing populations experience reduced recombination rates and size, which ultimately 23 
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reduce the strength of purifying selection and increase genetic drift (Charlesworth and Wright, 1 

2001; Hill and Robertson, 1966; Otto and Lenormand, 2002; Pollak, 1987). The homothallism 2 

used by Pneumocystis species is also often associated to higher probability to experience 3 

population bottlenecks via founder effects and linked selection (Jarne, 1995; Charlesworth and 4 

Wright, 2001). There is a complex interplay between demographic, selective factors, and genetic 5 

diversity. Alternative scenarios, such as purifying selection purging deleterious alleles, which is 6 

known as “background selection” (Charlesworth, 1994), need also to be considered. In 7 

conclusion, many factors may have influenced genetic diversity of Pneumocystis species, which 8 

remains unclear.  9 

 10 

Population structure 11 

The population structure of Pneumocystis species is also controversial. Indeed, data support an 12 

absence of strong subdivision in P. jirovecii (Parobek et al., 2014) and P. carinii (Palmer et al., 13 

2000), whereas other data support possible geographical clusters in P. jirovecii (Esteves et al., 14 

2016; Alanio et al., 2017). Importantly, Matos and Esteves (2010) noted that the infections are 15 

not necessarily clonal and recombination between multi-locus genotypes is possible. All these 16 

inferences are based on a relatively small number of markers (e.g. ITS, mitochondrial large 17 

subunit rDNA), and need to be validated at the genome scale using appropriate Bayesian 18 

methods based on unlinked multi-allelic genotypes, such as STRUCTURE (Pritchard et al., 19 

2000). In the meantime, interesting clues can be extracted from the biological cycle. The 20 

question is whether the fluctuation of the population structure is caused by variations in spore 21 

dispersal or in sexual recombination. The asci are 4-6 μm in size, which is small enough to be 22 

airborne dispersed efficiently over long distances. The asci cell wall is enriched with 23 
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glycoproteins, melanin, β-glucans, and mannans without outer chain (Kottom and Limper, 2000; 1 

Icenhour et al., 2003; Icenhour et al., 2006b; Ma et al., 2016a), which might allow them to resist 2 

desiccation and UV irradiation usually fatal to many fungal spores (Golan and Pringle, 2017; 3 

Latgé, 2007). The viability of spores for extended periods of time is supported by the detection 4 

of P. jirovecii mRNA in hospital air samples (Latouche et al., 2001; Maher et al., 2001). Their 5 

resistance to physical assaults is suggested by their detection in air spora trapped in rural 6 

locations (Wakefield, 1996). 7 

Dispersal of fungi can occur in two modes: (i) multiple sequential short-distance 8 

dispersal, and (ii) a single successful long-distance move of spores ultimately coinciding with 9 

optimal conditions for the growth of the fungus (Golan and Pringle, 2017). The former option 10 

produces a strong population subdivision, while the latter ends up with no or weak population 11 

structure because the same genotype(s) will be spread over large geographical distance. If long 12 

distance dispersal occurs on a global scale, it will result in a global population structure (Pringle 13 

et al., 2005). Rare long-distance dispersal would involve stochastic founding events, which can 14 

be revealed by population structures with an excess of rare alleles. Future studies combining 15 

genetic and geography are needed to fully access the population structures of Pneumocystis 16 

species. 17 

 18 

Clonal evolution or predominant sex/recombination? 19 

P. jirovecii infections are most often caused by multiple populations co-infecting the same 20 

individual (Hauser et al., 1997; Nahimana et al., 2000b; Palmer et al., 2000; Ma et al., 2002; 21 

Alanio et al., 2016). Multilocus genotypes (MLGs), which refer to a unique combination of 22 

alleles, can persist over long periods of time (4 to 9 years), and be observed across different 23 
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countries (Wakefield et al., 1994; Esteves et al., 2010). Recombination was also detected among 1 

MLGs (Esteves et al., 2010), which would explain the reported lack of strong population 2 

subdivision, at least in P. jirovecii (Parobek et al., 2014). Under panmictic population 3 

conditions, MLGs should not persist in the population because they will be disturbed consistently 4 

by recombination.  5 

Buscaglia et al. (2015) proposed that “a highly structured (i.e. clonal) population 6 

indicates that the main mode of reproduction for such a species lacks genetic exchange (i.e. is 7 

primarily asexual) or sex occurs only rarely”. In Pneumocystis, MLGs do recombine which 8 

would indicate a limited global population structure (Esteves et al., 2010; Parobek et al., 2014). 9 

Thus, the definition proposed by Buscaglia et al. would suggest a widespread sexual 10 

reproduction in Pneumocystis species. However, some MLGs persist over time, which suggests 11 

that these species might be mostly clonal and only rarely engage to sexual events. This latter 12 

scenario would be consistent with the theory of predominant clonal evolution (Tibayrenc and 13 

Ayala, 2012; Tibayrenc and Ayala, 2014), which proposes that restrained recombination is not 14 

strong enough to disturb the pattern of clonal structure. The frequency of recombination events at 15 

the genome level is unknown in Pneumocystis, which currently prevents reaching definitive 16 

conclusions.  17 

 18 

Intra individual short-term evolution 19 

Infections are usually caused by multiple P. jirovecii strains acquired from different origins 20 

(infections de novo but also possibly re-activation of organisms). The balance between different 21 

strains will likely change over the course of the disease because of either drug treatment, 22 

pressures from the host immune system, and/or varying metabolism and fitness among the strains 23 
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present. Other pathogens such as Candida and Cryptococcus species evolve rapidly within their 1 

hosts by acquiring new mutations or changes in genomic heterozygosity associated with drug 2 

resistance (Ford et al., 2015; Chen et al., 2017). It is unclear if theses mutations result from 3 

positive selection or DNA repair errors in Cryptococcus (Rhodes et al., 2017), although it is also 4 

possible that DNA repair errors are selected by positive selection. Competition among 5 

multiclonal parasite populations within the same host can, in theory, promotes parasite diversity 6 

(Bashey, 2015). The full extent of Pneumocystis short-term evolution within their host is 7 

unknown. Interestingly, Alanio and colleagues used a set of markers to evidence changes in 8 

population composition during P. jirovecii infections (Alanio et al. 2016). Multiple strains 9 

infections are frequently found in pathogens and may have clinically relevant consequences 10 

(Balmer and Tanner, 2011). Different strains might have different susceptibility to treatment or 11 

evolve differently so that they may escape detection by the immune system or diagnostics tools. 12 

We anticipate that the characterization of multiclonal infections will have serious implications 13 

for the treatment and the management of P. jirovecii pneumonia. Experimental setups will 14 

become realistic when long-term in vitro culture method will become widely reproducible. 15 

  16 
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PERSPECTIVES AND CONCLUSIONS 1 

The research on Pneumocystis is still in its infancy mainly because of the lack of culture in vitro, 2 

but the availability of genomic data will help exploring the mysteries of their evolution. The next 3 

cornerstone will be the establishment of a long-term culture system and genetic manipulation. 4 

The upcoming expectation goes far beyond the Pneumocystis research community and will allow 5 

exploring key questions in evolutionary cell biology such as the evolution of parasitism and 6 

multicellularity. The study of Pneumocystis organisms has the unique interest that they are the 7 

only strictly mammalian-adapted fungal pathogens. Thus, determining the molecular basis of 8 

their adaptation and speciation are of uttermost importance. The key questions are: what are the 9 

determinants of the genome reduction? What are the molecular determinants of the host 10 

specificity and speciation? Why introns are so abundant and what are their function(s)? What are 11 

the impact of multiclonal infections and short-term evolution within host in the context of drug 12 

resistance and development of vaccines? How do natural populations of Pneumocystis evolve in 13 

different hosts?  14 

  15 
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GLOSSARY 1 

 2 

Background selection  3 

Reduction of genetic diversity at linked loci owing to selection against deleterious mutations. 4 

 5 

Bottleneck  6 

A sharp and rapid reduction in the size of a population. 7 

 8 

Clonal interference 9 

Phenomenon in population genetics of organisms with significant linkage disequilibrium (i.e. 10 

absence of recombination), especially in asexual organisms. It occurs when two (or more) 11 

different beneficial mutations arise independently in different individuals.  12 

 13 

Effective population size  14 

The size that a theoretical population evolving under a Wright-Fisher model would need to be in 15 

order to match aspects of the observed genetic data.  16 

 17 

Genetic drift  18 

Fluctuation of allele frequency among generations in a population owing to the randomness of 19 

survival and reproduction of individuals, irrespective of selective pressures. 20 

 21 

Haploid selfing  22 

Refers to true homothallic species. A species able to accomplish their entire sexual reproduction 23 

without the need of a partner. 24 

 25 

Heterozygosity  26 

Measure of the genetic diversity, which represents the presence of different alleles at one or more 27 

loci on homologous chromosomes. Often presented as a probability that two randomly sampled 28 

gene copies in a population carry distinct alleles.  29 

 30 
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Linkage disequilibrium  1 

Nonrandom association of alleles at two loci often but not always due physical linkage. Such 2 

association is broken over time by recombination. 3 

Panmictic population  4 

Random mating among individuals in an idealized population.  5 

 6 

Selective sweep  7 

Elimination or reduction of genetic diversity in the neighborhood of a beneficial allele that 8 

increases in frequency in the population, typically after an environmental change. 9 

 10 

Selective sweeps 11 

Elimination or reduction of genetic diversity in the neighborhood of a beneficial allele that 12 

increases in frequency in the population, typically after an environmental change. 13 

 14 

  15 
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LEGENDS FIGURES 1 

Figure 1 | Cell cycle  2 

The whole cell cycle of Pneumocystis species would take place within the host’s lungs, airborne 3 

asci ensuring transmission to new hosts. The cycle is thought to include two phases: sexual and 4 

asexual. The trophic forms tightly adhere to the host’s alveolar epithelial pneumocytes type I, 5 

whereas asci are generally localized within the alveolar lumen. The ring shown in green might 6 

allow the formation of a rent upon contact with humidity and so the release of the ascospores. 7 

This ring may correspond to the parentheses-like structure visible on Figure 2. This Figure does 8 

not include new features relatively to models previously proposed. 9 

 10 

Figure 2 | Cluster of P. jirovecii asci  11 

Cluster of P. jirovecii asci stained with Grocott’s Methenamine silver (Churukian and Schenk, 12 

1977) within a patient’s bronchoalveolar lavage. The structures darker than the rest of the wall 13 

on each ascus are the parentheses-like structure (picture from the Institute of Microbiology, 14 

Lausanne University Hospital).  15 

 16 

Figure 3 | Genome composition of Pneumocystis and related fungi  17 

Protein coding genes, intergenic spaces, and intron positions were obtained from NCBI 18 

(https://www.ncbi.nlm.nih.gov/, last accessed 2018-03-20). Curated Schizosaccharomyces 19 

pombe and Saccharomyces cerevisiae intron data were extracted respectively from Pombase 20 

database (Wood et al., 2002; https://www.pombase.org/downloads/intron-data, last accessed 21 

2018-03-20) and Saccharomyces Genome database (Cherry et al., 1998; 22 

https://www.yeastgenome.org, last accessed 2018-03-20). Repeats include DNA transposons, 23 

retrotransposons, and simple low complexity repeats proportions as roughly estimated using 24 

https://www.ncbi.nlm.nih.gov/
https://www.pombase.org/downloads/intron-data,%20last%20accessed%202018-03-20)
https://www.pombase.org/downloads/intron-data,%20last%20accessed%202018-03-20)
https://www.yeastgenome.org/
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RepeatMasker (Smit et al., 2013) and RepBase database (Bao et al., 2015). The proportions of 1 

MSGs were calculated based on data from Ma et al. (2016a). Ribosomal DNA cassettes include 2 

each three genes (rDNA) and two internal transcribed spacers (ITS): 18S rDNA-ITS1-5.8 rDNA-3 

ITS2-26S rDNA. S. pombe genome encodes roughly 140 copies of a cassette of a size of 5.8 kb. 4 

In S. cerevisiae, ca. 150 tandem copies of a 9.1 kb cassette are present (Venema and Tollervey, 5 

1999). In contrast, Pneumocystis species harbor each a single rDNA cassette of 11 kb. 6 

 7 

Figure 4 | Graphical overview of the hypothetical evolutionary history of Pneumocystis species  8 

Pneumocystis species divergence timing has been determined elsewhere (Keely et al., 2003a; 9 

2004a; Beimforde et al., 2014). Losses of multiple metabolic pathways, as well as contraction 10 

and expansion of specific gene families are presented (Table 2). Note that the timing and order of 11 

losses is unknown. The gain and loss of specific functions for Pneumocystis is inferred here to 12 

have occurred in the last most recent ancestor common of Pneumocystis species (MRCA) 13 

because the underlying genes are absent in the genomes of all Pneumocystis sequenced to date. 14 

The MSG superfamily emerged in Pneumocystis ancestry and displays a substantial level of 15 

lineage specific divergence (represented by blue triangles). Intron loads are similar among 16 

Pneumocystis species, which might suggest a common origin. The fission yeast clade diverged 17 

~250 MYA ago (Rhind et al. 2011) and has lost most of the introns acquired from an intron rich 18 

ancestor (Roy et al., 2005; Stajich et al. 2007; Rhind et al., 2011). Although there is no dating 19 

estimates for the intron loss in fission clade, the absence of recent intron gains and the low rates 20 

of intron loss (Zhu and Niu, 2013) suggest that the majority of introns were lost before the 21 

diversification of the fission yeast clade. The colors of the lines representing the evolving species 22 

signify different nutritional modes (dark green, saprophytism; light green, gradual shift from 23 

saprophytism to the parasitism; yellow, animal parasitism). We assume that the MRCA of 24 
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Taphrinomycota subphylum was a multicellular or dimorphic saprotroph based on ancestral traits 1 

reconstruction (Schoch et al., 2009; Nguyen et al., 2017). The phylogenetic relationship 2 

presented here is consistent with published phylogenies (Liu et al., 2009; Sugiyama et al., 2006). 3 

RRM correspond to RNA binding proteins harboring an RNA recognition motif.  4 

  5 
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Table 1. Features of Pneumocystis genomes
 a
.  

 

Species Genome size 

Mb 

%GC Chromosomes no. Protein coding 

genes no. 

P. jirovecii 8.4 28.4 20 3,761 

P. carinii 7.7 27.8 17 3,623 

P. murina 7.5 27.0 17 3,646 

 

a
 Genome data are from Ma et al. (2016a). 

Table(s)



Table 2. Gene families expanded, contracted, and lost in the cellular and metabolic machineries of Pneumocystis species. 

 

Event Gene family / Pathway Reference 

Expansion   

 Major surface glycoproteins Ma et al. 2016a; Schmid-Siegert et al. 2017 

 S8 and M16 peptidases Cissé et al., 2014 ; Ma et al. 2016a 

 Proprotein convertase Ma et al. 2016a 

 Cystein rich CFEM_proteins Ma et al. 2016a 

 Kexin 
a
 Ma et al. 2016a 

Contraction   

 Transcription factors Ma et al. 2016a  

 Transporters Cissé et al., 2012; Ma et al., 2016a  

Loss   

 Co-factors coenzyme A, thiamine, biotin biosyntheses Cissé et al., 2014; Ma et al., 2016a 

 RNAi machinery 
b
 Cissé et al., 2014 

 Amino acids biosyntheses Hauser et al., 2010; Cissé et al., 2012; Ma et al., 2016a 

Table(s)



 Steroids and myo-inositol biosyntheses Porollo et al., 2014; Ma et al., 2016a 

 Inorganic sulfur and nitrogen assimilation Cissé et al., 2014 

 Purines catabolism Cissé et al., 2014 

 Nucleotide salvage pathways Cushion et al., 2007; Cissé et al., 2012 

 Carbohydrate metabolism 
c
, lipids 

d
, and co-factors 

e
 Kaneshiro et al., 1999; Vestereng and Kovacs, 2004; 

Cushion et al., 2007; Ma et al., 2016a 

 

a
  Kexin protease family are only expanded in P. carinii. It might be involved in the processing of MSGs at the cell surface (Lugli et al., 1999). 

b
  The RNA interference machinery includes the Dicer and Argonaute proteins. 

c
  The lost carbohydrate pathways are those of gluconeogenesis, glyoxylate cycle, chitin, and hyper-mannose glycosylation (outer chain N-

mannans).  

d
  The lost lipids pathways are those of ergosterol, cholesterol, choline, ether lipids, sphingolipids, glycerol, and phosphatidylcholine. 

e
  Co-factors includes co enzyme A, and vitamins H and B1.  



1 
 

 

Revised version: modified or new text is underlined.  1 

 2 

 3 

Genomics and evolution of Pneumocystis species  4 

 5 

Ousmane H. Cissé
 1

 and Philippe M. Hauser 
2 

6 

 7 

Correspondence: ousmane.cisse@nih.gov and Philippe.Hauser@chuv.ch  8 

 9 

1
  Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, 10 

Bethesda, Maryland 20892, USA  11 

2
  Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland 12 

  13 

*Manuscript -tracked changes

mailto:ousmane.cisse@nih.gov
mailto:Philippe.Hauser@chuv.ch


2 
 

 

TABLE OF CONTENTS 1 

 2 

TABLE OF CONTENTS ....................................................................................................................... 2 3 
ABSTRACT ............................................................................................................................................ 3 4 
BACKGROUND ..................................................................................................................................... 4 5 

History .................................................................................................................................................. 4 6 
Phylogeny and taxonomy ..................................................................................................................... 4 7 
Species divergence ............................................................................................................................... 5 8 
Life cycle .............................................................................................................................................. 6 9 
Transmission ........................................................................................................................................ 9 10 
Host specificity and biotrophy ........................................................................................................... 10 11 

GENOME ORGANIZATION ............................................................................................................. 13 12 
Genomic data acquisition ................................................................................................................... 13 13 
Nuclear Genome content .................................................................................................................... 14 14 
Chromosomal ends ............................................................................................................................. 15 15 
Introns ................................................................................................................................................ 16 16 
Mitogenomes ...................................................................................................................................... 18 17 

EVOLUTION ........................................................................................................................................ 19 18 
Losses in the metabolic and cellular machineries .............................................................................. 19 19 
Evolutionary basis of gene loss .......................................................................................................... 21 20 
Chromosomal re-arrangement ............................................................................................................ 22 21 
Loss of complex multicellularity ........................................................................................................ 23 22 

POPULATION GENETICS ................................................................................................................ 25 23 
Strain typing ....................................................................................................................................... 25 24 
Genetic diversity ................................................................................................................................ 25 25 
Population structure............................................................................................................................ 28 26 
Clonal evolution or predominant sex/recombination? ....................................................................... 29 27 
Intra individual short-term evolution ................................................................................................. 30 28 

PERSPECTIVES AND CONCLUSIONS .......................................................................................... 32 29 
ACKNOWLEDGMENTS .................................................................................................................... 33 30 
GLOSSARY .......................................................................................................................................... 34 31 
REFERENCES ..................................................................................................................................... 36 32 
LEGENDS FIGURES .......................................................................................................................... 55 33 
Figure 1 | Cell cycle ............................................................................................................................... 55 34 
Figure 2 | Cluster of P. jirovecii asci ..................................................................................................... 55 35 
Figure 3 | Genome composition of Pneumocystis and related fungi...................................................... 55 36 
Figure 4 | Graphical overview of the hypothetical evolutionary history of Pneumocystis species ........ 56 37 

  38 



3 
 

 

ABSTRACT  1 

The genus Pneumocystis comprises highly diversified fungal species that cause severe 2 

pneumonia in individuals with a deficient immune system. These fungi infect exclusively 3 

mammals and present a strict host species specificity. These species have co-diverged with their 4 

hosts for long periods of time (> 100 MYA). Details of their biology and evolution are 5 

fragmentary mainly because of a lack of an established long-term culture system. Recent 6 

genomic advances have unlocked new areas of research and allow new hypotheses to be tested. 7 

We review here new findings of the genomic studies in relation with the evolutionary trajectory 8 

of these fungi and discuss the impact of genomic data analysis in the context of the population 9 

genetics. The combination of slow genome decay and limited expansion of specific gene families 10 

and introns reflect intimate interactions of these species with their hosts. The evolutionary 11 

adaptation of these organisms is profoundly influenced by their population structure, which in 12 

turn is determined by intrinsic features such as their self-fertilizing mating system, high host 13 

specificity, long generation times, and transmission mode. Essential key questions concerning 14 

their adaptation and speciation remain to be answered. The next cornerstone will consist in the 15 

establishment of a long-term culture system and genetic manipulation that should allow 16 

unravelling the driving forces of Pneumocystis species evolution.  17 
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Main text : 7482 words  1 

 2 

BACKGROUND  3 

History 4 

Pneumocystis species form a group of opportunistic fungi that cause severe pulmonary infections 5 

in mammals with a deficient immune system. These organisms infect exclusively mammals. 6 

They were first described by Chagas (Chagas, 1909), and wrongly classified as special forms of 7 

trypanosomes. They were later identified as a bona fide separate species by the Delanoë couple 8 

at the Pasteur Institute in Paris (Delanoë and Delanoë, 1912). Their taxonomic classification 9 

remained then elusive because of a phenotypic resemblance with the protists. The issue was 10 

resolved using molecular phylogeny based on sequencing ribosomal DNA, which clearly 11 

indicated their fungal nature (Edman et al., 1988).  12 

 13 

Phylogeny and taxonomy 14 

Pneumocystis species belong to the subphylum of Taphrinomycotina within the Ascomycota 15 

(Eriksson, 1997; Sugiyama et al., 2006). The Taphrinomycotina subphylum is monophyletic and 16 

encompasses mostly plant-associated or soil-dwelling fungi (Liu et al., 2009). Pneumocystis 17 

closest relatives are Schizosaccharomyces pombe and Taphrina deformans, their common 18 

ancestor having diverged from the other Taphrinomycota members ca. 467 million years ago 19 

(MYA) (Beimforde et al., 2014).  20 

Although all Pneumocystis species are ubiquitous, each mammal species can be infected 21 

with only one or two of them. Five species have been formally described so far based on the 22 

requirements of the International Code of Botanical Nomenclature (ICBN): Pneumocystis 23 
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jirovecii in Homo sapiens (Frenkel, 1999), Pneumocystis carinii in Rattus norvegicus (Frenkel, 1 

1999), Pneumocystis wakefieldiae also in Rattus norvegicus (Cushion et al., 1993; Cushion et al., 2 

2004), Pneumocystis murina in Mus musculus (Keely et al., 2004a), and Pneumocystis oryctologi 3 

in Old World rabbits (Oryctolagus cuniculus; Dei-cas et al., 2006). Antigenic and DNA based 4 

studies suggest the presence of distinct species also in macaques, ferrets, bats, shrews, horses, 5 

pigs, and dogs (Banerji et al., 1994; Peters et al., 1994; Christensen et al., 1996; English et al., 6 

2001; Guillot et al., 2004).  7 

P. jirovecii is the only species known to infect humans and has never been detected in 8 

any other animals. P. carinii is the best studied species because of the availability of protocols 9 

for experimental or natural infections in laboratory rats. P. wakefieldiae was reported either 10 

mixed with P. carinii (Cushion et al., 1993; Cushion, 1998; Cushion et al., 2004; Chabé et al., 11 

2010), or alone (Palmer et al., 2000). The two latter species are different in terms of 12 

electrophoretic karyotypes, gene localization on the chromosomes, sequence identity (4-7% 13 

nucleotide divergence in seven orthologs; Cushion, 1998; Cushion et al., 2004), antigenic 14 

profiles (Vasquez et al., 1996), and major surface glycoproteins (MSG) expression (Schaffzin 15 

and Stringer, 2000). They might be competing against each other for resources when present 16 

together within the same rat (Icenhour et al., 2006a).  17 

 18 

Species divergence  19 

According to the evolutionary rates of several genomic loci, the radiation of the Pneumocystis 20 

genus occurred ca.100 MYA (Keely et al., 2003a; Keely et al., 2004a), which roughly overlaps 21 

with the radiation of the mammalian species (Holmes, 1991; dos Reis et al., 2015). P. murina 22 

would have diverged from P. carinii between 51 and 71 MYA (Keely et al., 2003a), while P. 23 
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carinii and P. wakefieldiae diverged between 15 and 22 MYA (Cushion et al., 2004; Fischer et 1 

al., 2006). The neat superposition of multiple Pneumocystis species phylogenetic trees with those 2 

of their respective hosts supports a co-evolution of these organisms (Guillot et al., 2001). 3 

Therefore, a plausible co-speciation scenario is that each species became physically separated 4 

from the other species, the hosts acting as barriers that led to the accumulation of genetic 5 

differences and the gradual reproductive isolation over time. The absence of gene flow or mating 6 

among the different species has been inferred based on linkage disequilibrium analysis consistent 7 

with an ancient reproductive isolation (Mazars et al., 1997; Keely et al., 2004a; Keely and 8 

Stringer, 2009). Furthermore, no evidence of hybridization was detected between P. carinii and 9 

P. wakefieldiae, even during co-infection of the same rat (Cushion, 1998; Cushion et al., 2004). 10 

However, caution is warranted because the absence of gene flow was inferred from a small set of 11 

conserved markers, which may have not allowed detecting all genetic events. Consequently, 12 

whole genome sequencing studies are necessary to validate these findings.  13 

 14 

Life cycle 15 

The life cycle of Pneumocystis organisms is still hypothetical and mostly derived from 16 

microscopic and molecular studies on P. carinii (Figure 1). As fungal organisms with an obligate 17 

parasitic behavior, the cycle would occur only inside host’s lungs, and begin with the inhalation 18 

of infectious asci. Once inhaled, each ascus would release first eight ascospores which will 19 

evolve to what is known as trophic forms that bind to the type I pneumocytes of the alveolar 20 

epithelium. The cycle would then alternate between asexual multiplication of metabolically 21 

active trophic cells by binary fission, and sexual reproduction upon mating of two trophic cells 22 

that would culminate by the production of asci containing eight ascospores (Figure 2). Trophic 23 
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cells are amoeboid in shape and represent generally 90-98% of the populations in the infected 1 

lungs (Aliouat-Denis et al., 2009). These forms are mononuclear, 2-8 m in diameter (Dei-Cas et 2 

al., 2004), and mostly haploid (Stringer and Cushion, 1998; Wyder et al., 1998; Martinez et al., 3 

2011). Multiploid forms are rare and possibly caused by asymmetrical or post-mating divisions 4 

(Martinez et al., 2011). Trophic cell surface is composed of a single layer of electron dense 5 

material containing glycoproteins, but possibly no β-glucans. Indeed, the enzymes responsible 6 

for the synthesis of β-glucans and the associated endo-1,3-glucanase are expressed almost 7 

exclusively in asci (Nollstadt et al., 1994; Kottom and Limper, 2000; Kutty et al., 2015). The 8 

presence of structural carbohydrate polymers of glucans in asci increases the physical strength of 9 

the cell wall, which might facilitate the survival outside the host. The doubling times are 10 

relatively long compared to free-living yeasts (~2 hours) and range from 1.5 to 10.5 days 11 

depending on the species (Aliouat et al., 1999; Keely et al., 2003b). The presence of a sexual 12 

cycle was initially supported by the ultrastructural observations of synaptonemal complexes 13 

(Matsumoto and Yoshida, 1984) and the expression of one pheromone receptor at the surface of 14 

P. carinii trophic cells (Vohra et al., 2004). Recent comparative genomic studies suggest that 15 

Pneumocystis species use primary homothallism (self-fertility) based on the genes number and 16 

arrangement on the chromosomes as a fusion of Plus and Minus mating type loci (Almeida et al., 17 

2015). Thus, each strain would be able to produce asci on its own, without the need to find a 18 

compatible partner. Asci would be expelled by infected hosts and be the infectious stages 19 

because their specific inactivation or removal blocks the transmission chain (Cushion et al., 20 

2010; Martinez et al., 2013). Consistently, recent analyses suggested that Pneumocystis sexuality 21 

is obligatory within host’s lungs in order to complete the cell cycle and produce asci that are 22 

necessary for airborne transmission to new hosts (Richard et al., 2018). Furthermore, the 23 
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necessity of asci for transmission has been demonstrated by inhibition of the sexual cycle using 1 

echinocandins (Cushion et al., 2010), and by the fact that only purified asci could transmit the 2 

disease (Martinez et al., 2013). Recently, activation of sex-related genes upon treatment with 3 

echinocandins in RNA-seq analyses also suggested that sexuality is obligate (Cushion et al., 4 

2018).  5 
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Transmission  1 

Pneumocystis jirovecii pneumonia is a major public health problem with >400,000 cases per year 2 

worldwide and a mortality rate possibly as high as 80% if untreated (Brown et al., 2012). 3 

Epidemiological data for Pneumocystis species in animal populations are scarce, but 4 

investigations in shrews and rats suggest a pervasive low level of infections (Laakkonen, 1998; 5 

Chabé et al., 2010).  6 

Pneumocystis organisms are transmitted via the air from infected individuals to new hosts 7 

(Hughes, 1982), including between individuals within hospitals (de Boer et al., 2011), but also 8 

possibly via the transplacental route (Ceré et al., 1997; Sanchez et al., 2007; Montes-Cano et al., 9 

2009). The current hypothesis is that infections occur over short distance among infected and 10 

susceptible individuals (Chabé et al., 2011). The transfer of parasites from animals to humans is 11 

no longer considered as a valid hypothesis based on the strict host species specificity (Chabé et 12 

al., 2011). Consistently, no convincing evidence of an environmental source of Pneumocystis has 13 

been found so far, which strongly suggests that mammals constitute the only reservoir of these 14 

fungi. Furthermore, the erosion of metabolic capabilities evidenced by the genome sequencing 15 

studies suggests that these organisms are unable to live outside their hosts (see below, losses of 16 

metabolic machinery section). Finally, they apparently complete their whole cell cycle within 17 

host’s lungs since sexuality occurs therein. Healthy infected hosts colonized by the organism are 18 

believed to contribute greatly to the transmission and circulation process (Chabé et al., 2004; 19 

Peterson and Cushion, 2005; Le Gal et al., 2012; Alanio and Bretagne, 2017).  20 

  21 
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Host specificity and biotrophy  1 

The strict host species specificity of the Pneumocystis species means that the fungal cells can 2 

only infect or survive in the host in which they were isolated in the first place. This view is 3 

mainly supported by the systematic failure of cross-infection experiments involving severely 4 

combined immuno-deficient animals and nude rats (Aliouat et al., 1993; Furuta et al., 1993; 5 

Gigliotti et al., 1993; Aliouat et al., 1994; Atzori et al., 1999; Durand-Joly et al., 2002). The 6 

selective activation of trophic cells by their host seems to trigger the formation of cytoplasmic 7 

projections by Pneumocystis cells, the filopodia (Aliouat-Denis et al., 2008). Accordingly, P. 8 

carinii, the species naturally infecting rats, is unable to form filopodia and infect when 9 

inoculated in mice, whereas P. murina, the natural parasite of mice, produce filopodia and high 10 

parasite loads under the same conditions (Aliouat-Denis et al., 2008). The function of the 11 

filopodia remains elusive but these structures display ultrastructural differences that are species 12 

specific, and that might account for some aspects of the host specificity.  13 

Another aspect of this host specificity is that Pneumocystis species are most probably 14 

obligate biotrophs (Cushion et al., 2007; Cushion and Stringer, 2010; Hauser, 2014; Ma et al., 15 

2016a). The way fungal parasites scavenge nutrients from their host is an active research field 16 

and three modes are broadly recognized: (i) biotrophy, where the parasite acquires nutrients from 17 

a living cell, (ii) necrotrophy, where host cells are killed to release nutrients, and (iii) 18 

saprotrophy, where the organism feeds on dead or decaying organic material. Biotrophs do little 19 

damage to host cells and lack virulence factors (van der Does and Rep, 2007). Pneumocystis 20 

perfectly fits to the biotrophy definition because they cause no apparent cell death and lack any 21 

experimentally verified fungal virulence factors such as glyoxylate cycle, secondary metabolism, 22 

and secreted effectors (Cushion et al., 2007; Cissé et al., 2012; Cissé et al., 2014; Ma et al., 23 
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2016a). This implies that they rely entirely on their host for their survival and thus have evolved 1 

close relationships that rendered them host species specific. 2 

The physiological characteristics of the hosts are key determinants of parasite adaptation 3 

(Poulin et al., 2006). For example, micromammals are small bodied with short lifespans, high 4 

reproduction rates, and high population densities, whereas these distinctive features are reversed 5 

in large mammals such as humans. The co-evolution theory predicts that parasitic species 6 

infecting micromammals exhibit a weaker host specificity compared those adapted to long-lived 7 

hosts with more stable population densities (Poulin et al., 2006). This prediction has been 8 

validated in fish parasites, among which strong host specificity is favored in stable resources 9 

found in hosts with a large body size (Sasal et al., 1999; Desdevises et al., 2002). As far as 10 

Pneumocystis is concerned, humans are infected by only one species whereas rats can be co-11 

infected by two (Cushion et al., 1993 and 2004; Icenhour et al., 2006a; Golab, 2009). The 12 

number of Pneumocystis species able to infect rodents might even be more important, as shown 13 

by the recent discovery of multiple lineages shared among species and genera of the Southeast 14 

Asian murid species (Latinne et al., 2017). These findings might indicate a relaxation of the strict 15 

host specificity in small mammals harboring Pneumocystis, although additional supporting data 16 

are needed to fully challenge the concept of widespread strict host specificity.  17 

Co-phylogenetic studies of Pneumocystis species and their hosts suggest that the host 18 

specificity evolved as a continuous trait resulting from a long-lasting co-evolution (Demanche et 19 

al. 2001; Guillot et al., 2001; Hugot et al., 2003). Strict host specificity is rare in animal 20 

pathogens but widespread in plant fungal pathogens (Parker and Gilbert, 2004; Restrepo et al., 21 

2014). In the latter, the ecological adaptation often results in a pronounced specialization to 22 

particular hosts (Clay and Kover, 1996). In these systems, host specificity acts as a reproductive 23 
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isolating mechanism because it favors higher rate of mating between individuals on the same 1 

host and reduced gene flow among populations from different hosts (Giraud, 2006). A rapid 2 

divergence of the virulence factors, the pathogen “effector repertoire”, is often associated with 3 

the emergence of host specificity (Schulze-Lefert and Panstruga, 2011). The hypothesis of the 4 

latter authors states that changes in pathogen host range is driven by variation in the pathogen 5 

effector repertoire. This description fits the lineage specific expansion of the MSG superfamily 6 

in Pneumocystis species (Ma et al., 2016a; Ma et al., 2016b; Schmid-Siegert et al., 2017), which 7 

suggests that these proteins might account for some aspects of the host specificity.  8 

 9 

  10 
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GENOME ORGANIZATION 1 

Genomic data acquisition 2 

The quest for genome sequence data began with the successful cloning of P. carinii genomic 3 

fragments (Tanabe et al., 1988). Pulse field gradient gel electrophoreses have been then 4 

instrumental for karyotypic characterization of Pneumocystis genomes and evidenced 12 to 20 5 

chromosomes according to the species totaling ca. 8 Mb (Hong et al., 1990; Yoganathan et al., 6 

1989; Stringer and Cushion, 1998). Differences in karyotype profiles determined that the species 7 

infecting humans and rats are genetically distinct (Stringer et al., 1993). Significant genome size 8 

variations among species have been reported, e.g. that of ferret Pneumocystis would be ca. 1.7 9 

times bigger than that of P. carinii (Stringer and Cushion, 1998). A draft of P. carinii genome 10 

covering ca. 70% of genome was generated in 2006 using a clone-based Sanger sequencing 11 

approach from infected laboratory rats (Slaven et al., 2006). In 2012, the first draft of P. jirovecii 12 

genome was obtained from a single bronchoalveolar lavage of a patient with pneumonia (Cissé et 13 

al., 2012). This assembly encompasses 358 contigs capturing 90 to 95% of the genome, but the 14 

repetitive subtelomeric and centromeric regions could not be resolved. The centromeres have not 15 

been discovered yet in Pneumocystis, whereas the subtelomeric regions were resolved using 16 

Sanger sequencing of cosmids (Keely et al. 2005), and more recently assembled using 17 

sequencing generating long reads (Ma et al., 2016a; Ma et al., 2016b; Schmid-Siegert et al., 18 

2017) (see below, chromosomal ends section). Chromosomal level assemblies of P. jirovecii, P. 19 

carinii, and P. murina were recently published revealing genome sizes ranging from 7.4 to 8.3 20 

Mb (Table 1; Ma et al., 2016a). It became evident that the genomes of Pneumocystis species had 21 

undergone an important reduction relative to S. pombe (7.5 to 8.3 Mb versus 12.5 Mb).  22 

 23 
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Nuclear Genome content 1 

The analysis of the Pneumocystis genome assemblies validated the presence of single copy 2 

ribosomal DNA reported previously for P. jirovecii (Giuntoli et al. 1994; Stringer, 1996; Tang et 3 

al., 1998; Nahimana et al., 2000a). This is similar to Taphrina deformans (Cissé et al., 2013), but 4 

contrasts with most fungi which harbors commonly tens or hundreds of copies of the locus. 5 

Figure 3 shows the genome compositions of Pneumocystis species compared to related fungi. 6 

These data highlight the contraction of the protein coding regions as compared to free-living 7 

yeasts, which reflect massive gene losses. Figure 3 also evidences the expansions of the MSG 8 

superfamily, of introns, as well as of the cumulative length of the intergenic regions (IGR). We 9 

previously reported that IGR in P. jirovecii occupy a larger genome fraction as compared to free 10 

living yeasts Saccharomyces cerevisiae and S. pombe despite a significantly smaller genome 11 

(Cissé et al., 2014). This observation holds when we re-evaluate here IGRs in the newly 12 

published full-length genomes of P. jirovecii, P. carinii, and P. murina (Ma et al. 2016a). This 13 

strongly suggests that genome streamlining in Pneumocystis species is driven by gene deletions 14 

rather than reduction of IGRs. This observation seems counterintuitive because genome 15 

reduction is almost always associated to a reduction of introns and IGRs in parasites (Keeling 16 

and Slamovits, 2005). Alternatively, large IGRs might favor chromosomal re-arrangements by 17 

increasing the number of possible breakpoints, as hypothesized in fungal microsporidian 18 

parasites (Slamovits et al., 2004; Keeling and Slamovits, 2005). The other characteristics of these 19 

genomes are discussed in the following sections.  20 

 21 
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Chromosomal ends  1 

Subtelomeres in microbial parasites are often enriched with multi-copy surface glycoprotein 2 

gene families (Deitsch et al. 2009). These genomic regions are prone to (i) gene silencing that 3 

can be used for mutually exclusive expression, (ii) enhanced mutagenesis, and (iii) ectopic 4 

recombinations facilitated by the formation of clusters of telomeres at the nuclear periphery 5 

(Barry et al., 2003). These regions correspond to an important proportion of the Pneumocystis 6 

genomes (ca. 5%), and harbor a superfamily including five to six families of highly polymorphic 7 

multi-copy proteins called major surface glycoproteins (MSG) that are believed to be crucial for 8 

the fungus’ lifestyle (Ma et al., 2016a; Schmid-Siegert et al., 2017). These msg genes exist only 9 

in Pneumocystis species and all species of Pneumocystis have their own repertoire, which 10 

suggest they have been acquired in a common ancestor, although their origin is not known. The 11 

absence of homology of these MSGs outside Pneumocystis lineages might indicate a transfer 12 

from an unknown species or a gene co-option. msg families have been first described and studied 13 

in P. carinii (Kovacs et al., 1993; Sunkin et al., 1994; Sunkin et al., 1996; Keely et al., 2005; 14 

Keely and Stringer, 2009), and subsequently analyzed in P. jirovecii and P. murina (Haidaris et 15 

al., 1998; Kutty et al., 2008; Ma et al., 2016a; Schmid-Siegert et al., 2017). Important differences 16 

exist among Pneumocystis species in terms of msg gene copy numbers, 60 to 140 copies per cell, 17 

and protein divergence (Ma et al., 2016a).Moreover, one MSG family is present only in P. 18 

jirovecii (msg-IV or -B), whereas another one is present only in P. carinii and P. murina (MSR 19 

family, i.e. MSG-related). MSGs are believed to be involved in antigenic variation (Stringer, 20 

2007). MSGs would also mask glucans at the asci surface from the immune recognition (Kutty et 21 

al., 2016). The antigenic diversity seems to be created via intra-family recombination of msg 22 

genes encoding different isoforms, creating mosaic genes, as well as through increased 23 
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mutagenesis (Kutty et al., 2008; Keely and Stringer, 2009; Schmid-Siegert et al., 2017). The 1 

expression of the most abundant MSG family (msg-I or –A1) that is present in all species is 2 

subject to mutually exclusive expression of a single isoform in each cell by using a single copy 3 

transcription promoter (the upstream conserved sequence, UCS) (Edman et al., 1996; Kutty et 4 

al., 2001; Sunkin et al., 1996; Wada et al., 1995). The UCS ends by the conserved recombination 5 

joint element (CRJE) which is also present at the beginning of each msg-I gene and may serve as 6 

recombination breakpoint (Stringer, 2007). The CRJE would be larger in P. wakefieldiae (ca. 7 

330 bps) than in P. murina (132), which in turn is larger than in P. carinii and P. jirovecii (28 8 

and 33, respectively) (Keely et al., 2007). On the other hand, at least in P. jirovecii, members of 9 

the other five families possess each their own promoter (Schmid-Siegert et al., 2017), but their 10 

expression patterns remain to be characterized. Recently, one family has been shown in P. 11 

murina to be expressed only in ascospores within asci and young trophic forms (Bishop et al., 12 

2018).  13 

 14 

Introns  15 

Introns are extremely abundant in Pneumocystis genes and are as many as several tens per gene 16 

with a mean of five, and more than 40% of genes are interrupted by at least four introns (Stringer 17 

and Cushion, 1998; Ma et al., 2016a). Their presence can be equally explained by massive gains 18 

in Pneumocystis most recent common ancestry, or retention of ancestral elements that would 19 

have been lost in some Taphrinomycotina lineages such as Schizosaccharomyces. The introns are 20 

short (average length of 48 nucleotides), have a strong adenine and thymine bias, and present 21 

typical donor, acceptor and branch site patterns (Slaven et al., 2006). Pneumocystis introns 22 

cannot be processed by S. pombe and S. cerevisiae spliceosomes because of the divergence in 23 

intron-exon boundaries and branching sites within the introns (Thomas et al., 1999). RNA-seq 24 
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data indicate that intron retention affects ca. 45% of all introns (Ma et al., 2016a). Pneumocystis 1 

species contain self-splicing group I introns that are absent in higher eukaryotes such as humans 2 

(Liu et al., 1994), which renders them a prime target for the development of new drugs. These 3 

latter introns catalyze their own excision from RNA transcripts, a reaction that is inhibited by the 4 

drug pentamidine that is used against Pneumocystis (Liu and Leibowitz, 1993). 5 

Given the important genome reduction at the Pneumocystis genus level, the presence of a 6 

high intron density per gene suggests a selective constraint to conserve them. Intron loss is 7 

dominant in fungi (Stajich et al., 2007), and this tendency is even more pronounced in some 8 

parasites such as microsporidia (Keeling et al., 2010). The intron history is highly flexible within 9 

the Taphrinomycota, with the plant-associated Neolecta having a high intron density similar to 10 

Pneumocystis (Nguyen et al., 2017), and the intron-poor free-living yeast S. pombe (Wood et al., 11 

2002). The non-sense-mediated mRNA decay machinery is conserved in Pneumocystis species 12 

(Ma et al., 2016a). Under neutral scenario (no advantage) and widespread intron retention, most 13 

of the introns would produce non-functional transcripts tagged for destruction. This would be an 14 

incredible waste of resources in absence of another function. The latter could consist in 15 

alternative splicing increasing transcript diversity and regulating gene transcription or mRNA 16 

stability. Consistently, the P. carinii inosine 5’-monophosphate dehydrogenase pre-mRNA is 17 

differentially spliced, which was suggested to reflect changes in environmental stresses (Ye et 18 

al., 2001). These considerations suggest that introns might be neutral elements involved in many 19 

cellular processes via a greater proteome diversity, possibly including acting as a favorable 20 

substrate to facilitate shifts in lifestyle (i.e. parasite transition from one host species to another, or 21 

from plant to animal).  22 

 23 
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Mitogenomes 1 

The mitochondrial genomes of P. carinii (Sesterhenn et al., 2010; Ma et al., 2013), P. jirovecii 2 

(Cissé et al., 2012; Ma et al., 2013), and P. murina (Ma et al., 2013) have been sequenced. The 3 

mitogenome sizes range from 24 to 35-kb with a substantial size variability among isolates in all 4 

species. P. carinii and P. murina mitogenomes end with single-stranded loop sequences that 5 

would allow forming linear concatemers and protecting the ends of the molecule. The presence 6 

of these repeats might account for the variable size of P. carinii mitogenomes. P. jirovecii 7 

mitochondrial genome is circular since it lacks inverted terminal repeat allowing circulation. The 8 

significance of circularity versus linearity is unknown. Related Taphrinomycota of the genera 9 

Schizosaccharomyces, Taphrina, and Neolecta have circular genomes (Bullerwell et al., 2003; 10 

Cissé et al., 2013; Tsai et al., 2014; Nguyen et al., 2017), which might indicate that the circular 11 

form is ancestral. Interestingly, P. carinii and P. murina mitogenomes are highly co-linear 12 

whereas P. jirovecii mitogenome presents some re-arrangements, similarly to the nuclear 13 

genomes (see below Chromosomal re-arrangement section). The gene content is highly 14 

conserved among the three Pneumocystis species, although there is a substantial nucleotide 15 

divergence among species (27 to 31%) (Ma et al., 2013). These mitogenomes encode ca. 17 16 

genes commonly found in mitochondrial fungal genomes such as ATP synthases, cytochrome c 17 

oxidases, NADH dehydrogenases, and the full repertoire of at least 20 transfer RNAs.  18 

Reports investigating the dynamics of the mitochondrial genes during infection have revealed 19 

that mitogenomes would be very plastic in terms of copy number variations (Valero et al., 2016), 20 

and of genetic diversity including heteroplasmy (Alanio et al., 2016). The subsequent sections of 21 

this review focus on nuclear genomes. 22 

 23 
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EVOLUTION  1 

Comparison of the gene families and pathways present in Pneumocystis genomes to those in 2 

selected fungi has revealed numerous losses / contractions and relatively few expansions (Table 3 

2). The hypothetical evolutionary history of Pneumocystis species derived from these 4 

observations is represented in Figure 4 and discussed in the following sections.  5 

 6 

Losses in the metabolic and cellular machineries  7 

Massive gene losses suggest that Pneumocystis species are auxotroph for essential nutrients, 8 

which might explain the recurrent failures of in vitro culturing attempts. The lost pathways 9 

include basic components of metabolic machinery such as the synthesis of amino acids or 10 

carbohydrates (Table 2). The loss of purines catabolism seems unique to Pneumocystis (Chitty 11 

and Fraser, 2017). Pneumocystis species are able to synthesize fecosterol and episterol but lack 12 

enzymes to convert them into ergosterol. Consequently, their membranes contain cholesterol 13 

instead of ergosterol, which probably explains their resilience to azole treatment. Pneumocystis 14 

organisms are also able to synthetize a unique class of sterols, the “pneumocysterols” (Kaneshiro 15 

et al. 1994; Kaneshiro et al. 1999; Florin-Christensen et al. 1994; Giner et al., 2002). It 16 

interesting to note the early steps of the sterol biosynthetic pathway leading to the formation of 17 

pneumocysterol and episterol are conserved in Pneumocystis species, and only the final steps 18 

toward ergosterol/cholesterol production are missing (Joffrion et al., 2010). This is exemplified 19 

by the fact that key enzymes for the formation of ergosterol (i.e. erg3, erg4 and erg5) are not 20 

identifiable within the genomes. Analysis of the sterol biosynthesis machinery suggest that these 21 

species may be able to synthetize ergosterol/cholesterol precursors such as zymosterol, fecosterol 22 
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and episterol. Thus, the sterol pathway may have been re-routed and branch to form unique 1 

sterols, the pneumocystisterols.  2 

Overall, these observations are consistent with the idea that losses of metabolic genes correlate 3 

with an increased dependency of the parasite on its host. Therefore, nutrients need to be 4 

scavenged from the host, which often mechanistically involves large batteries expanded 5 

transporters (e.g. as observed in microsporidia [Cuomo et al., 2012]). This is not the case in 6 

Pneumocystis since transporters families are also greatly reduced (Cissé et al., 2014; Ma et al., 7 

2016a). For instance, the amino acid permeases and transporters that can respectively carry 8 

amino acids and oligopeptides are greatly reduced relatively to other Taphrinomycota (one copy 9 

of general amino acid permease versus 21 copies in S. pombe). Transmembrane proteins such as 10 

those of the major facilitator superfamily, sugar transporters, or more specific transporters (e.g. 11 

efflux pumps) are significantly reduced in Pneumocystis. The reduction of the transporters 12 

battery might be compensated by the use of highly selective transporters for critical compounds. 13 

The recent discovery of the import of myo-inositol in Pneumocystis cells via a low affinity but 14 

highly selective system supports this idea (Cushion et al., 2016). Unfortunately, high affinity 15 

transporters cannot be identified solely by computational means. Alternatively, simple diffusion 16 

across the membrane may occur, as evidenced in P. carinii for amino acids uptake using in vitro 17 

experiments (Basselin et al, 2001a; Basselin et al, 2001b). Basic cellular machinery is also 18 

affected by the loss of several fungal specific transcription factor families and the RNA 19 

interference machinery (Table 2).  20 

 21 
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Evolutionary basis of gene loss 1 

Gene loss is a common trend in parasitic and symbiotic species, which often harbor a small sized 2 

genome (Keeling and Slamovits, 2005; Wolf and  Koonin, 2013). The driving factors are often 3 

unknown or specific to the lifestyle of the species under study. A central question in evolutionary 4 

biology is whether gene loss is neutral or adaptive. In Pneumocystis species, there are footprints 5 

of both processes and we discuss here a few examples.  6 

The neutral theory is usually sufficient to explain gene loss in parasites (O’Malley et al., 7 

2016). Organisms with narrow host niche such as Pneumocystis are predicted to have small sized 8 

populations with increased genetic drift (bold: see glossary) (Papkou et al., 2016). The main 9 

mechanisms for gene loss are pseudogenization and sudden DNA deletions. Pseudogenization 10 

consists in the accumulation of deleterious mutations in non-essential genes ultimately leading to 11 

the loss (Kuo and Ochman, 2009; Wernegreen, 2015). The proportion of pseudogenes in P. 12 

jirovecii is low and equivalent to that present in free-living yeasts (0.02 pseudogene per protein-13 

coding gene [Cissé et al., 2014]). This observation might indicate that pseudogenization is not 14 

the main driver of gene loss in this species. The following considerations do not undermine this 15 

observation but suggest that caution must be exercised: (i) this rate of pseudogenization is valid 16 

only for P. jirovecii and for the single isolate which genome was sequenced (Cissé et al., 2012), 17 

and (ii) only genes including stop codons were considered, that is, other types of gene 18 

inactivation were not considered (e.g. untranslated RNA genes or unfixed mutations). Gene loss 19 

can also be result of deletions independent of selection such as the movement of transposable or 20 

integrated viruses (reviewed by Albalat and Canestro, 2016).  21 

The adaptive theory of gene loss implies a selective advantage and has been 22 

demonstrated to have occurred in many pathogenic lineages, for example for the Allergen 1 in 23 
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Cryptococcus neoformans (Jain et al., 2009), and for the de novo biosynthesis of nicotinic acid 1 

genes in Candida glabrata (Domergue et al., 2005). In Pneumocystis, the loss of chitin might 2 

have been lost to allow avoiding recognition from the host immune system (Ma et al., 2016a). 3 

The gene families and pathways cited in Table 2 are missing in the three Pneumocystis genomes 4 

available (Ma et al 2016a), which suggests that these losses occurred before the radiation of the 5 

genus. An unexpected consequence is that the observed gene losses might not reflect the current 6 

selective forces, and therefore might not be relevant for the host specificity.  7 

 8 

Chromosomal re-arrangement 9 

The chromosome level assemblies revealed that an important chromosomal re-arrangement 10 

occurred among Pneumocystis species (Ma et al., 2016a). The re-arrangement, however, 11 

followed the species tree, that is, the macrosynteny is broken between rodents infecting 12 

Pneumocystis (P. carinii and P. murina) and the humans infecting species (P. jirovecii), whereas 13 

P. carinii and P. murina genomes are highly collinear. Nevertheless, the gene order is conserved 14 

in syntenic regions among the three species (>92% of the genes), and ca. 83% of gene families 15 

are orthologous, with 4 to 30% of divergence at the nucleotide sequence level. The high gene 16 

conservation among the three species suggest that re-arrangements occurred mostly in the 17 

intergenic regions (IGR). In fungi, IGRs are often enriched in regulatory functions such as signal 18 

transduction or binding sites of transcription factors (Noble and Andrianopoulos, 2013). 19 

Chromosomal translocations impact gene expression as well as long-distance gene-to-gene 20 

contact via chromatin interactions, and thus might be involved in speciation (Rieseberg, 2001; 21 

Bakloushinskaya, 2016). Protein evolution is also faster in re-arranged chromosomes than 22 

collinear chromosomes because re-arrangements reduce homologous recombination and 23 
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facilitate positive selection (Rieseberg, 2001). A key question here is whether chromosomal re-1 

arrangements are involved in the adaptation of each Pneumocystis species to its host. Future 2 

studies are required to probe an eventual role of these re-arrangements in Pneumocystis 3 

evolution. 4 

 5 

Loss of complex multicellularity 6 

The recent sequencing of the Neolecta irregularis genome revealed that the Taphrinomycotina 7 

last common ancestor was probably multicellular (Nguyen et al., 2017). These findings suggest 8 

that Pneumocystis organisms evolved from a plant-associated or soil-adapted multicellular 9 

organism. The shift in cell morphology to single celled organisms is associated with the deletion 10 

of an ancestral morphogenic kit that included many cell differentiation and cell-to-cell signaling 11 

genes. These losses are not specific to Pneumocystis and were observed in a wide range of 12 

unrelated yeasts (Nguyen et al., 2017; Nagy et al., 2014; Nagy, 2017), which suggests a 13 

convergent evolution. The transition from a hyphal to yeast form takes place in many fungal 14 

lineages and is often triggered by a thermal stimulus (Köhler et al., 2017), CO2 levels (Hall et al., 15 

2010), or pH (Davis, 2009), and is directly linked to the ability to invade hosts. Notable 16 

examples include the dimorphic human pathogenic fungi Histoplasma, Blastomyces, 17 

Coccidioides, and Paracoccidioides (Beaman et al., 1981; Medoff et al., 1987; Inglis et al., 18 

2013).  19 

The ancestral morphogenic kit for complex multicellularity (fruiting bodies) is lost in 20 

Pneumocystis. However, Pneumocystis species are able to produce biofilms (Cushion et al., 21 

2009), which is an undifferentiated form of aggregative multicellularity often seen in bacteria 22 

(Claessen et al., 2014). Inversely, the yeast Saitoella complicata grows primarily by budding 23 
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(Goto et al., 1987), despite having the cellular machinery for the production of fruiting bodies 1 

(Nguyen et al., 2017). Comparative genomics and epigenomics would be extremely valuable to 2 

explore the molecular process underlying the loss of the multicellular phenotype. These 3 

considerations highlight the fact that phenotypes cannot be explained solely by gene loss and 4 

gain balance, and that other subtle mechanisms need to be considered.  5 

  6 
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POPULATION GENETICS 1 

Strain typing  2 

Given the high homogeneity of genomic sequences at the nucleotide sequence level among P. 3 

carinii isolates, strain typing for this species relied on chromosomes’ size analyses which 4 

allowed identifying numerous different karyotypic forms (Lundgren et al., 1990; Cushion, 1998; 5 

Wakefield, 1998a; Nahimana et al., 2001). On the other hand, the low but significant 6 

heterogeneity in many genomic loci among P. jirovecii isolates allowed using multilocus 7 

sequence typing (Wakefield, 1998b). The latter method represents nowadays the most used 8 

technique for P. jirovecii strains identification. The discrimination power of eight distinct loci 9 

has been validated and extensively used for epidemiological studies of P. jirovecii pneumonia 10 

(Maitte et al., 2013). Genotypes identification is performed by PCR of multiple loci followed by 11 

direct DNA sequencing (Sanger), restriction fragment length polymorphism, single-strand 12 

conformation polymorphism, type-specific oligonucleotide hybridization, tandem repeats 13 

number analysis, or high-throughput amplicon sequencing (Hauser et al., 1997; Hauser et al., 14 

1998; Lee et al, 1993; Lu et al., 1995; Ma et al., 2002; Alanio et al., 2016; Esteves et al., 2016). 15 

  16 

Genetic diversity 17 

The conclusions drawn from the studies concerning Pneumocystis genetic diversity were often 18 

contradictory. Low levels of genetic diversity as defined by Shannon diversity and Simpson 19 

indexes (Shannon, 1948; Simpson 1949) have been reported at the P. jirovecii and P. carinii 20 

internal transcribed spacers of the nuclear rDNA operon using PCR-based Sanger sequencing 21 

(Palmer et al., 2000; Beser et al., 2011). On the other hand, moderate to important levels of 22 

diversity measured in term of DNA polymorphisms in P. jirovecii using multilocus sequence 23 
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typing have been reported (Matos and Esteves, 2010; Jarboui et al., 2013; Sun et al., 2015; 1 

Alanio et al., 2017). The lack of whole genome sequence data, differences in sampling strategies, 2 

differences in interpretation, as well as the likely frequent in vitro formation of PCR chimeras 3 

(Beser et al., 2007), make difficult the reconciliation of these conclusions.  4 

Moreover, sexual recombination could explain partly these conflicting conclusions. 5 

Indeed, sexual reproduction is one of the main mechanisms to generate genetic diversity in fungi. 6 

It is believed to favor adaptation in fluctuating conditions while purging deleterious alleles 7 

(Heitman, 2010). Pneumocystis are probably homothallic species (Almeida et al., 2015; see life 8 

cycle section), and self-fertilization favors mating by avoiding the search of a compatible 9 

partner, a strategy thought to be favorable to and adopted by several human pathogens such as 10 

Cryptococcus and Candida species (Heitman, 2010). Sexual reproduction is based on classical 11 

Mendelian segregation, which supports both cross- and self-fertilization (Buscaglia et al., 2015). 12 

Pneumocystis would be able to perform both clonal and sexual propagation with various degrees 13 

of inbreeding or outcrossing. These variations in the multiplication process could explain the 14 

conflicting patterns of genetic diversity reported. 15 

Polymorphism rates change substantially across loci and chromosomes in various 16 

species, including fungi, plants, and animals (Ellegren and Galtier, 2016). Genetic diversity is 17 

influenced by three main forces: mutation, demography (migration and bottlenecks), and 18 

selection (selective sweeps or clonal interference). Demography and selection create 19 

differences in the effective population size, whilst variations in mutation rate may create 20 

differences in the level of genetic diversity according to the geographical location. Neutral 21 

mutation rates in eurotiomycetes are typically between 1 x 10
-8

 and 1 x 10
-9

 substitutions per site 22 

per year (Kasuga et al., 2002), and a rate of 1.2 x 10
-10 

for the 18S rDNA has been used to 23 
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estimate Pneumocystis species divergence (Keely et al., 2003a). However, the genome-wide 1 

mutation rates for these species are unknown and expected to fluctuate greatly among genomic 2 

regions. For example, subtelomeric regions harboring MSGs have high substitution rates (Keely 3 

and Stringer, 2009; Schmid-Siegert et al., 2017), whereas ribosomal regions display a normal 4 

rate (Fischer et al., 2006). Moreover, given their likely variations according to the host, the 5 

mutation rates for each species must be determined independently. Care must be taken inferring 6 

these rates because recombination can be mutagenic and its impact as well as other confounder 7 

effects need to be addressed.  8 

The size of the populations of Pneumocystis species are not known, but they are expected 9 

to be small because of their narrow host ranges. P. jirovecii would have a small population size 10 

relative to the species infecting micro-mammals, thus reflecting the small size of human 11 

populations relative to those of rodents. Variations in population size over time affect the genetic 12 

diversity, e.g. a strong population bottleneck creates a loss of allele diversity due to increased 13 

genetic drift. Using non-recombining neutral loci, realistic mutation rates, and appropriate 14 

molecular clock models, past population history can be traced back using coalescent theory 15 

based applications such as skyline plot methods (Drummond et al., 2005; Heled and Drummond, 16 

2008). These demographic reconstructions would provide key metrics such as ancestral 17 

population sizes and evolutionary rates.  18 

Interestingly, the strongest prediction of genetic diversity in many species is the life 19 

history, not the population history (Ellegren and Galtier, 2016). This means that there is a strong 20 

correlation between phenotypic traits (e.g. mating system, generation times) and the genetic 21 

diversity. For example, homothallism is expected to have long term evolutionary cost fitness 22 

because selfing populations experience reduced recombination rates and size, which ultimately 23 
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reduce the strength of purifying selection and increase genetic drift (Charlesworth and Wright, 1 

2001; Hill and Robertson, 1966; Otto and Lenormand, 2002; Pollak, 1987). The homothallism 2 

used by Pneumocystis species is also often associated to higher probability to experience 3 

population bottlenecks via founder effects and linked selection (Jarne, 1995; Charlesworth and 4 

Wright, 2001). There is a complex interplay between demographic, selective factors, and genetic 5 

diversity. Alternative scenarios, such as purifying selection purging deleterious alleles, which is 6 

known as “background selection” (Charlesworth, 1994), need also to be considered. In 7 

conclusion, many factors may have influenced genetic diversity of Pneumocystis species, which 8 

remains unclear.  9 

 10 

Population structure 11 

The population structure of Pneumocystis species is also controversial. Indeed, data support an 12 

absence of strong subdivision in P. jirovecii (Parobek et al., 2014) and P. carinii (Palmer et al., 13 

2000), whereas other data support possible geographical clusters in P. jirovecii (Esteves et al., 14 

2016; Alanio et al., 2017). Importantly, Matos and Esteves (2010) noted that the infections are 15 

not necessarily clonal and recombination between multi-locus genotypes is possible. All these 16 

inferences are based on a relatively small number of markers (e.g. ITS, mitochondrial large 17 

subunit rDNA), and need to be validated at the genome scale using appropriate Bayesian 18 

methods based on unlinked multi-allelic genotypes, such as STRUCTURE (Pritchard et al., 19 

2000). In the meantime, interesting clues can be extracted from the biological cycle. The 20 

question is whether the fluctuation of the population structure is caused by variations in spore 21 

dispersal or in sexual recombination. The asci are 4-6 μm in size, which is small enough to be 22 

airborne dispersed efficiently over long distances. The asci cell wall is enriched with 23 
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glycoproteins, melanin, β-glucans, and mannans without outer chain (Kottom and Limper, 2000; 1 

Icenhour et al., 2003; Icenhour et al., 2006b; Ma et al., 2016a), which might allow them to resist 2 

desiccation and UV irradiation usually fatal to many fungal spores (Golan and Pringle, 2017; 3 

Latgé, 2007). The viability of spores for extended periods of time is supported by the detection 4 

of P. jirovecii mRNA in hospital air samples (Latouche et al., 2001; Maher et al., 2001). Their 5 

resistance to physical assaults is suggested by their detection in air spora trapped in rural 6 

locations (Wakefield, 1996). 7 

Dispersal of fungi can occur in two modes: (i) multiple sequential short-distance 8 

dispersal, and (ii) a single successful long-distance move of spores ultimately coinciding with 9 

optimal conditions for the growth of the fungus (Golan and Pringle, 2017). The former option 10 

produces a strong population subdivision, while the latter ends up with no or weak population 11 

structure because the same genotype(s) will be spread over large geographical distance. If long 12 

distance dispersal occurs on a global scale, it will result in a global population structure (Pringle 13 

et al., 2005). Rare long-distance dispersal would involve stochastic founding events, which can 14 

be revealed by population structures with an excess of rare alleles. Future studies combining 15 

genetic and geography are needed to fully access the population structures of Pneumocystis 16 

species. 17 

 18 

Clonal evolution or predominant sex/recombination? 19 

P. jirovecii infections are most often caused by multiple populations co-infecting the same 20 

individual (Hauser et al., 1997; Nahimana et al., 2000b; Palmer et al., 2000; Ma et al., 2002; 21 

Alanio et al., 2016). Multilocus genotypes (MLGs), which refer to a unique combination of 22 

alleles, can persist over long periods of time (4 to 9 years), and be observed across different 23 



30 
 

 

countries (Wakefield et al., 1994; Esteves et al., 2010). Recombination was also detected among 1 

MLGs (Esteves et al., 2010), which would explain the reported lack of strong population 2 

subdivision, at least in P. jirovecii (Parobek et al., 2014). Under panmictic population 3 

conditions, MLGs should not persist in the population because they will be disturbed consistently 4 

by recombination.  5 

Buscaglia et al. (2015) proposed that “a highly structured (i.e. clonal) population 6 

indicates that the main mode of reproduction for such a species lacks genetic exchange (i.e. is 7 

primarily asexual) or sex occurs only rarely”. In Pneumocystis, MLGs do recombine which 8 

would indicate a limited global population structure (Esteves et al., 2010; Parobek et al., 2014). 9 

Thus, the definition proposed by Buscaglia et al. would suggest a widespread sexual 10 

reproduction in Pneumocystis species. However, some MLGs persist over time, which suggests 11 

that these species might be mostly clonal and only rarely engage to sexual events. This latter 12 

scenario would be consistent with the theory of predominant clonal evolution (Tibayrenc and 13 

Ayala, 2012; Tibayrenc and Ayala, 2014), which proposes that restrained recombination is not 14 

strong enough to disturb the pattern of clonal structure. The frequency of recombination events at 15 

the genome level is unknown in Pneumocystis, which currently prevents reaching definitive 16 

conclusions.  17 

 18 

Intra individual short-term evolution 19 

Infections are usually caused by multiple P. jirovecii strains acquired from different origins 20 

(infections de novo but also possibly re-activation of organisms). The balance between different 21 

strains will likely change over the course of the disease because of either drug treatment, 22 

pressures from the host immune system, and/or varying metabolism and fitness among the strains 23 
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present. Other pathogens such as Candida and Cryptococcus species evolve rapidly within their 1 

hosts by acquiring new mutations or changes in genomic heterozygosity associated with drug 2 

resistance (Ford et al., 2015; Chen et al., 2017). It is unclear if theses mutations result from 3 

positive selection or DNA repair errors in Cryptococcus (Rhodes et al., 2017), although it is also 4 

possible that DNA repair errors are selected by positive selection. Competition among 5 

multiclonal parasite populations within the same host can, in theory, promotes parasite diversity 6 

(Bashey, 2015). The full extent of Pneumocystis short-term evolution within their host is 7 

unknown. Interestingly, Alanio and colleagues used a set of markers to evidence changes in 8 

population composition during P. jirovecii infections (Alanio et al. 2016). Multiple strains 9 

infections are frequently found in pathogens and may have clinically relevant consequences 10 

(Balmer and Tanner, 2011). Different strains might have different susceptibility to treatment or 11 

evolve differently so that they may escape detection by the immune system or diagnostics tools. 12 

We anticipate that the characterization of multiclonal infections will have serious implications 13 

for the treatment and the management of P. jirovecii pneumonia. Experimental setups will 14 

become realistic when long-term in vitro culture method will become widely reproducible. 15 

  16 
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PERSPECTIVES AND CONCLUSIONS 1 

The research on Pneumocystis is still in its infancy mainly because of the lack of culture in vitro, 2 

but the availability of genomic data will help exploring the mysteries of their evolution. The next 3 

cornerstone will be the establishment of a long-term culture system and genetic manipulation. 4 

The upcoming expectation goes far beyond the Pneumocystis research community and will allow 5 

exploring key questions in evolutionary cell biology such as the evolution of parasitism and 6 

multicellularity. The study of Pneumocystis organisms has the unique interest that they are the 7 

only strictly mammalian-adapted fungal pathogens. Thus, determining the molecular basis of 8 

their adaptation and speciation are of uttermost importance. The key questions are: what are the 9 

determinants of the genome reduction? What are the molecular determinants of the host 10 

specificity and speciation? Why introns are so abundant and what are their function(s)? What are 11 

the impact of multiclonal infections and short-term evolution within host in the context of drug 12 

resistance and development of vaccines? How do natural populations of Pneumocystis evolve in 13 

different hosts?  14 

  15 
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GLOSSARY 1 

 2 

Background selection  3 

Reduction of genetic diversity at linked loci owing to selection against deleterious mutations. 4 

 5 

Bottleneck  6 

A sharp and rapid reduction in the size of a population. 7 

 8 

Clonal interference 9 

Phenomenon in population genetics of organisms with significant linkage disequilibrium (i.e. 10 

absence of recombination), especially in asexual organisms. It occurs when two (or more) 11 

different beneficial mutations arise independently in different individuals.  12 

 13 

Effective population size  14 

The size that a theoretical population evolving under a Wright-Fisher model would need to be in 15 

order to match aspects of the observed genetic data.  16 

 17 

Genetic drift  18 

Fluctuation of allele frequency among generations in a population owing to the randomness of 19 

survival and reproduction of individuals, irrespective of selective pressures. 20 

 21 

Haploid selfing  22 

Refers to true homothallic species. A species able to accomplish their entire sexual reproduction 23 

without the need of a partner. 24 

 25 

Heterozygosity  26 

Measure of the genetic diversity, which represents the presence of different alleles at one or more 27 

loci on homologous chromosomes. Often presented as a probability that two randomly sampled 28 

gene copies in a population carry distinct alleles.  29 

 30 

  31 
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Linkage disequilibrium  1 

Nonrandom association of alleles at two loci often but not always due physical linkage. Such 2 

association is broken over time by recombination. 3 

Panmictic population  4 

Random mating among individuals in an idealized population.  5 

 6 

Selective sweep  7 

Elimination or reduction of genetic diversity in the neighborhood of a beneficial allele that 8 

increases in frequency in the population, typically after an environmental change. 9 

 10 

Selective sweeps 11 

Elimination or reduction of genetic diversity in the neighborhood of a beneficial allele that 12 

increases in frequency in the population, typically after an environmental change. 13 

 14 

  15 
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LEGENDS FIGURES 1 

Figure 1 | Cell cycle  2 

The whole cell cycle of Pneumocystis species would take place within the host’s lungs, airborne 3 

asci ensuring transmission to new hosts. The cycle is thought to include two phases: sexual and 4 

asexual. The trophic forms tightly adhere to the host’s alveolar epithelial pneumocytes type I, 5 

whereas asci are generally localized within the alveolar lumen. The ring shown in green might 6 

allow the formation of a rent upon contact with humidity and so the release of the ascospores. 7 

This ring may correspond to the parentheses-like structure visible on Figure 2. This Figure does 8 

not include new features relatively to models previously proposed. 9 

 10 

Figure 2 | Cluster of P. jirovecii asci  11 

Cluster of P. jirovecii asci stained with Grocott’s Methenamine silver (Churukian and Schenk, 12 

1977) within a patient’s bronchoalveolar lavage. The structures darker than the rest of the wall 13 

on each ascus are the parentheses-like structure (picture from the Institute of Microbiology, 14 

Lausanne University Hospital).  15 

 16 

Figure 3 | Genome composition of Pneumocystis and related fungi  17 

Protein coding genes, intergenic spaces, and intron positions were obtained from NCBI 18 

(https://www.ncbi.nlm.nih.gov/, last accessed 2018-03-20). Curated Schizosaccharomyces 19 

pombe and Saccharomyces cerevisiae intron data were extracted respectively from Pombase 20 

database (Wood et al., 2002; https://www.pombase.org/downloads/intron-data, last accessed 21 

2018-03-20) and Saccharomyces Genome database (Cherry et al., 1998; 22 

https://www.yeastgenome.org, last accessed 2018-03-20). Repeats include DNA transposons, 23 

retrotransposons, and simple low complexity repeats proportions as roughly estimated using 24 

https://www.ncbi.nlm.nih.gov/
https://www.pombase.org/downloads/intron-data,%20last%20accessed%202018-03-20)
https://www.pombase.org/downloads/intron-data,%20last%20accessed%202018-03-20)
https://www.yeastgenome.org/
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RepeatMasker (Smit et al., 2013) and RepBase database (Bao et al., 2015). The proportions of 1 

MSGs were calculated based on data from Ma et al. (2016a). Ribosomal DNA cassettes include 2 

each three genes (rDNA) and two internal transcribed spacers (ITS): 18S rDNA-ITS1-5.8 rDNA-3 

ITS2-26S rDNA. S. pombe genome encodes roughly 140 copies of a cassette of a size of 5.8 kb. 4 

In S. cerevisiae, ca. 150 tandem copies of a 9.1 kb cassette are present (Venema and Tollervey, 5 

1999). In contrast, Pneumocystis species harbor each a single rDNA cassette of 11 kb. 6 

 7 

Figure 4 | Graphical overview of the hypothetical evolutionary history of Pneumocystis species  8 

Pneumocystis species divergence timing has been determined elsewhere (Keely et al., 2003a; 9 

2004a; Beimforde et al., 2014). Losses of multiple metabolic pathways, as well as contraction 10 

and expansion of specific gene families are presented (Table 2). Note that the timing and order of 11 

losses is unknown. The gain and loss of specific functions for Pneumocystis is inferred here to 12 

have occurred in the last most recent ancestor common of Pneumocystis species (MRCA) 13 

because the underlying genes are absent in the genomes of all Pneumocystis sequenced to date. 14 

The MSG superfamily emerged in Pneumocystis ancestry and displays a substantial level of 15 

lineage specific divergence (represented by blue triangles). Intron loads are similar among 16 

Pneumocystis species, which might suggest a common origin. The fission yeast clade diverged 17 

~250 MYA ago (Rhind et al. 2011) and has lost most of the introns acquired from an intron rich 18 

ancestor (Roy et al., 2005; Stajich et al. 2007; Rhind et al., 2011). Although there is no dating 19 

estimates for the intron loss in fission clade, the absence of recent intron gains and the low rates 20 

of intron loss (Zhu and Niu, 2013) suggest that the majority of introns were lost before the 21 

diversification of the fission yeast clade. The colors of the lines representing the evolving species 22 

signify different nutritional modes (dark green, saprophytism; light green, gradual shift from 23 

saprophytism to the parasitism; yellow, animal parasitism). We assume that the MRCA of 24 
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Taphrinomycota subphylum was a multicellular or dimorphic saprotroph based on ancestral traits 1 

reconstruction (Schoch et al., 2009; Nguyen et al., 2017). The phylogenetic relationship 2 

presented here is consistent with published phylogenies (Liu et al., 2009; Sugiyama et al., 2006). 3 

RRM correspond to RNA binding proteins harboring an RNA recognition motif.  4 

  5 
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Figure 1. 7 
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Figure 2.  4 
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Figure 3.  4 
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Figure 4. 2 
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