18 research outputs found

    Computability in constructive type theory

    Get PDF
    We give a formalised and machine-checked account of computability theory in the Calculus of Inductive Constructions (CIC), the constructive type theory underlying the Coq proof assistant. We first develop synthetic computability theory, pioneered by Richman, Bridges, and Bauer, where one treats all functions as computable, eliminating the need for a model of computation. We assume a novel parametric axiom for synthetic computability and give proofs of results like Rice’s theorem, the Myhill isomorphism theorem, and the existence of Post’s simple and hypersimple predicates relying on no other axioms such as Markov’s principle or choice axioms. As a second step, we introduce models of computation. We give a concise overview of definitions of various standard models and contribute machine-checked simulation proofs, posing a non-trivial engineering effort. We identify a notion of synthetic undecidability relative to a fixed halting problem, allowing axiom-free machine-checked proofs of undecidability. We contribute such undecidability proofs for the historical foundational problems of computability theory which require the identification of invariants left out in the literature and now form the basis of the Coq Library of Undecidability Proofs. We then identify the weak call-by-value λ-calculus L as sweet spot for programming in a model of computation. We introduce a certifying extraction framework and analyse an axiom stating that every function of type ℕ → ℕ is L-computable.Wir behandeln eine formalisierte und maschinengeprüfte Betrachtung von Berechenbarkeitstheorie im Calculus of Inductive Constructions (CIC), der konstruktiven Typtheorie die dem Beweisassistenten Coq zugrunde liegt. Wir entwickeln erst synthetische Berechenbarkeitstheorie, vorbereitet durch die Arbeit von Richman, Bridges und Bauer, wobei alle Funktionen als berechenbar behandelt werden, ohne Notwendigkeit eines Berechnungsmodells. Wir nehmen ein neues, parametrisches Axiom für synthetische Berechenbarkeit an und beweisen Resultate wie das Theorem von Rice, das Isomorphismus Theorem von Myhill und die Existenz von Post’s simplen und hypersimplen Prädikaten ohne Annahme von anderen Axiomen wie Markov’s Prinzip oder Auswahlaxiomen. Als zweiten Schritt führen wir Berechnungsmodelle ein. Wir geben einen kompakten Überblick über die Definition von verschiedenen Berechnungsmodellen und erklären maschinengeprüfte Simulationsbeweise zwischen diesen Modellen, welche einen hohen Konstruktionsaufwand beinhalten. Wir identifizieren einen Begriff von synthetischer Unentscheidbarkeit relativ zu einem fixierten Halteproblem welcher axiomenfreie maschinengeprüfte Unentscheidbarkeitsbeweise erlaubt. Wir erklären solche Beweise für die historisch grundlegenden Probleme der Berechenbarkeitstheorie, die das Identifizieren von Invarianten die normalerweise in der Literatur ausgelassen werden benötigen und nun die Basis der Coq Library of Undecidability Proofs bilden. Wir identifizieren dann den call-by-value λ-Kalkül L als sweet spot für die Programmierung in einem Berechnungsmodell. Wir führen ein zertifizierendes Extraktionsframework ein und analysieren ein Axiom welches postuliert dass jede Funktion vom Typ N→N L-berechenbar ist

    Self-referential theories

    Get PDF
    We study the structure of families of theories in the language of arithmetic extended to allow these families to refer to one another and to themselves. If a theory contains schemata expressing its own truth and expressing a specific Turing index for itself, and contains some other mild axioms, then that theory is untrue. We exhibit some families of true self-referential theories that barely avoid this forbidden pattern

    Mechanised metamathematics : an investigation of first-order logic and set theory in constructive type theory

    Get PDF
    In this thesis, we investigate several key results in the canon of metamathematics, applying the contemporary perspective of formalisation in constructive type theory and mechanisation in the Coq proof assistant. Concretely, we consider the central completeness, undecidability, and incompleteness theorems of first-order logic as well as properties of the axiom of choice and the continuum hypothesis in axiomatic set theory. Due to their fundamental role in the foundations of mathematics and their technical intricacies, these results have a long tradition in the codification as standard literature and, in more recent investigations, increasingly serve as a benchmark for computer mechanisation. With the present thesis, we continue this tradition by uniformly analysing the aforementioned cornerstones of metamathematics in the formal framework of constructive type theory. This programme offers novel insights into the constructive content of completeness, a synthetic approach to undecidability and incompleteness that largely eliminates the notorious tedium obscuring the essence of their proofs, as well as natural representations of set theory in the form of a second-order axiomatisation and of a fully type-theoretic account. The mechanisation concerning first-order logic is organised as a comprehensive Coq library open to usage and contribution by external users.In dieser Doktorarbeit werden einige Schlüsselergebnisse aus dem Kanon der Metamathematik untersucht, unter Verwendung der zeitgenössischen Perspektive von Formalisierung in konstruktiver Typtheorie und Mechanisierung mit Hilfe des Beweisassistenten Coq. Konkret werden die zentralen Vollständigkeits-, Unentscheidbarkeits- und Unvollständigkeitsergebnisse der Logik erster Ordnung sowie Eigenschaften des Auswahlaxioms und der Kontinuumshypothese in axiomatischer Mengenlehre betrachtet. Aufgrund ihrer fundamentalen Rolle in der Fundierung der Mathematik und ihrer technischen Schwierigkeiten, besitzen diese Ergebnisse eine lange Tradition der Kodifizierung als Standardliteratur und, besonders in jüngeren Untersuchungen, eine zunehmende Bedeutung als Maßstab für Mechanisierung mit Computern. Mit der vorliegenden Doktorarbeit wird diese Tradition fortgeführt, indem die zuvorgenannten Grundpfeiler der Methamatematik uniform im formalen Rahmen der konstruktiven Typtheorie analysiert werden. Dieses Programm ermöglicht neue Einsichten in den konstruktiven Gehalt von Vollständigkeit, einen synthetischen Ansatz für Unentscheidbarkeit und Unvollständigkeit, der großteils den berüchtigten, die Essenz der Beweise verdeckenden, technischen Aufwand eliminiert, sowie natürliche Repräsentationen von Mengentheorie in Form einer Axiomatisierung zweiter Ordnung und einer vollkommen typtheoretischen Darstellung. Die Mechanisierung zur Logik erster Ordnung ist als eine umfassende Coq-Bibliothek organisiert, die offen für Nutzung und Beiträge externer Anwender ist

    Inferential Quantification and the ω-rule

    Get PDF
    Logical inferentialism maintains that the formal rules of inference fix the meanings of the logical terms. The categoricity problem points out to the fact that the standard formalizations of classical logic do not uniquely determine the intended meanings of its logical terms, i.e., these formalizations are not categorical. This means that there are different interpretations of the logical terms that are consistent with the relation of logical derivability in a logical calculus. In the case of the quantificational logic, the categoricity problem is generated by the finite nature of the standard calculi and one direction in which it can be solved is to strengthen the deductive systems by adding infinite rules (such as the ω-rule), i.e., to construct a full formalization. Another main direction is to provide a natural semantics for the standard rules of inference, i.e., a semantics for which these rules are categorical. My aim in this paper is to analyze some recent approaches for solving the categoricity problem and to argue that a logical inferentialist should accept the infinite rules of inference for the first order quantifiers, since our use of the expressions “all” and “there is” leads us beyond the concrete and finite reasoning, and human beings do sometimes employ infinite rules of inference in their reasoning

    Complete Axiomatizations of Fragments of Monadic Second-Order Logic on Finite Trees

    Full text link
    We consider a specific class of tree structures that can represent basic structures in linguistics and computer science such as XML documents, parse trees, and treebanks, namely, finite node-labeled sibling-ordered trees. We present axiomatizations of the monadic second-order logic (MSO), monadic transitive closure logic (FO(TC1)) and monadic least fixed-point logic (FO(LFP1)) theories of this class of structures. These logics can express important properties such as reachability. Using model-theoretic techniques, we show by a uniform argument that these axiomatizations are complete, i.e., each formula that is valid on all finite trees is provable using our axioms. As a backdrop to our positive results, on arbitrary structures, the logics that we study are known to be non-recursively axiomatizable

    Computers and relevant logic : a project in computing matrix model structures for propositional logics

    Get PDF
    I present and discuss four classes of algorithm designed as solutions to the problem of generating matrix representations of model structures for some non-classical propositional logics. I then go on to survey the output from implementations of these algorithms and finally exhibit some logical investigations suggested by that output. All four algorithms traverse a search tree depthfirst. In the case of the first and fourth methods the tree is fixed by imposing a lexicographic order on possible matrices, while the second and third create their search tree dynamically as the job progresses. The first algorithm is a simple "backtrack" with some pruning of the tree in response to refutations of possible matrices. The fourth, the most efficient we have for time, maximises the amount of pruning while keeping the same basic form. The second, which uses a large number of special properties of the logics in question, and so requires some logical and algebraic knowledge on the part of the programmer, finds the matrices at the tips of branches only, while the third, due to P.A. Pritchard, is far easier to program and tests a matrix at every node of the search tree. The logics with which I am concerned are in the "relevant" group first seriously investigated by A.R. Anderson and N.D. Belnap (see their Entailment: the logic of relevance and necessity, 1975). The most surprising observation in my preliminary survey of the numbers of matrices validating such systems is that the typical models are not much like the models normally taken as canonical for the logics. In particular the proportion of inconsistent models (validating some cases of the scheme 'A & ~A') is much higher than might have been expected. Among the logical investigations already suggested by the quasi-empirical data now available in the form of matrices are some work on the system R-W, including my theorem, proved in chapter 2.3, that with the law of excluded middle it suffices to trivialise naive set theory, and the little-noticed subject of Ackermann constants (sentential constants) in these logics. The formula which collapses naive set theory in R-W plus A v ~A is the most damaging set-theoretic antinomy known. The theorem that there are at least 3088 Ackermann constants in the logic R (chapter 2.4) could not reasonably have been proved without the aid of a computer. My major conclusion is that this work on applications of computers in logical research has reached a point where we are able not only to relieve logicians of some drudgery, but to suggest theorems and insights of new and possibly important kinds

    Epistemic Modality and Hyperintensionality in Mathematics

    Get PDF

    The Efficient Discovery of Interesting Closed Pattern Collections

    Get PDF
    Enumerating closed sets that are frequent in a given database is a fundamental data mining technique that is used, e.g., in the context of market basket analysis, fraud detection, or Web personalization. There are two complementing reasons for the importance of closed sets---one semantical and one algorithmic: closed sets provide a condensed basis for non-redundant collections of interesting local patterns, and they can be enumerated efficiently. For many databases, however, even the closed set collection can be way too large for further usage and correspondingly its computation time can be infeasibly long. In such cases, it is inevitable to focus on smaller collections of closed sets, and it is essential that these collections retain both: controlled semantics reflecting some notion of interestingness as well as efficient enumerability. This thesis discusses three different approaches to achieve this: constraint-based closed set extraction, pruning by quantifying the degree or strength of closedness, and controlled random generation of closed sets instead of exhaustive enumeration. For the original closed set family, efficient enumerability results from the fact that there is an inducing efficiently computable closure operator and that its fixpoints can be enumerated by an amortized polynomial number of closure computations. Perhaps surprisingly, it turns out that this connection does not generally hold for other constraint combinations, as the restricted domains induced by additional constraints can cause two things to happen: the fixpoints of the closure operator cannot be enumerated efficiently or an inducing closure operator does not even exist. This thesis gives, for the first time, a formal axiomatic characterization of constraint classes that allow to efficiently enumerate fixpoints of arbitrary closure operators as well as of constraint classes that guarantee the existence of a closure operator inducing the closed sets. As a complementary approach, the thesis generalizes the notion of closedness by quantifying its strength, i.e., the difference in supporting database records between a closed set and all its supersets. This gives rise to a measure of interestingness that is able to select long and thus particularly informative closed sets that are robust against noise and dynamic changes. Moreover, this measure is algorithmically sound because all closed sets with a minimum strength again form a closure system that can be enumerated efficiently and that directly ties into the results on constraint-based closed sets. In fact both approaches can easily be combined. In some applications, however, the resulting set of constrained closed sets is still intractably large or it is too difficult to find meaningful hard constraints at all (including values for their parameters). Therefore, the last part of this thesis presents an alternative algorithmic paradigm to the extraction of closed sets: instead of exhaustively listing a potentially exponential number of sets, randomly generate exactly the desired amount of them. By using the Markov chain Monte Carlo method, this generation can be performed according to any desired probability distribution that favors interesting patterns. This novel randomized approach complements traditional enumeration techniques (including those mentioned above): On the one hand, it is only applicable in scenarios that do not require deterministic guarantees for the output such as exploratory data analysis or global model construction. On the other hand, random closed set generation provides complete control over the number as well as the distribution of the produced sets.Das Aufzählen abgeschlossener Mengen (closed sets), die häufig in einer gegebenen Datenbank vorkommen, ist eine algorithmische Grundaufgabe im Data Mining, die z.B. in Warenkorbanalyse, Betrugserkennung oder Web-Personalisierung auftritt. Die Wichtigkeit abgeschlossener Mengen ist semantisch als auch algorithmisch begründet: Sie bilden eine nicht-redundante Basis zur Erzeugung von lokalen Mustern und können gleichzeitig effizient aufgezählt werden. Allerdings kann die Anzahl aller abgeschlossenen Mengen, und damit ihre Auflistungszeit, das Maß des effektiv handhabbaren oft deutlich übersteigen. In diesem Fall ist es unvermeidlich, kleinere Ausgabefamilien zu betrachten, und es ist essenziell, dass dabei beide o.g. Eigenschaften erhalten bleiben: eine kontrollierte Semantik im Sinne eines passenden Interessantheitsbegriffes sowie effiziente Aufzählbarkeit. Diese Arbeit stellt dazu drei Ansätze vor: das Einführen zusätzlicher Constraints, die Quantifizierung der Abgeschlossenheit und die kontrollierte zufällige Erzeugung einzelner Mengen anstelle von vollständiger Aufzählung. Die effiziente Aufzählbarkeit der ursprünglichen Familie abgeschlossener Mengen rührt daher, dass sie durch einen effizient berechenbaren Abschlussoperator erzeugt wird und dass desweiteren dessen Fixpunkte durch eine amortisiert polynomiell beschränkte Anzahl von Abschlussberechnungen aufgezählt werden können. Wie sich herausstellt ist dieser Zusammenhang im Allgemeinen nicht mehr gegeben, wenn die Funktionsdomäne durch Constraints einschränkt wird, d.h., dass die effiziente Aufzählung der Fixpunkte nicht mehr möglich ist oder ein erzeugender Abschlussoperator unter Umständen gar nicht existiert. Diese Arbeit gibt erstmalig eine axiomatische Charakterisierung von Constraint-Klassen, die die effiziente Fixpunktaufzählung von beliebigen Abschlussoperatoren erlauben, sowie von Constraint-Klassen, die die Existenz eines erzeugenden Abschlussoperators garantieren. Als ergänzenden Ansatz stellt die Dissertation eine Generalisierung bzw. Quantifizierung des Abgeschlossenheitsbegriffs vor, der auf der Differenz zwischen den Datenbankvorkommen einer Menge zu den Vorkommen all seiner Obermengen basiert. Mengen, die bezüglich dieses Begriffes stark abgeschlossen sind, weisen eine bestimmte Robustheit gegen Veränderungen der Eingabedaten auf. Desweiteren wird die gewünschte effiziente Aufzählbarkeit wiederum durch die Existenz eines effizient berechenbaren erzeugenden Abschlussoperators sichergestellt. Zusätzlich zu dieser algorithmischen Parallele zum Constraint-basierten Vorgehen, können beide Ansätze auch inhaltlich kombiniert werden. In manchen Anwendungen ist die Familie der abgeschlossenen Mengen, zu denen die beiden oben genannten Ansätze führen, allerdings immer noch zu groß bzw. ist es nicht möglich, sinnvolle harte Constraints und zugehörige Parameterwerte zu finden. Daher diskutiert diese Arbeit schließlich noch ein völlig anderes Paradigma zur Erzeugung abgeschlossener Mengen als vollständige Auflistung, nämlich die randomisierte Generierung einer Anzahl von Mengen, die exakt den gewünschten Vorgaben entspricht. Durch den Einsatz der Markov-Ketten-Monte-Carlo-Methode ist es möglich die Verteilung dieser Zufallserzeugung so zu steuern, dass das Ziehen interessanter Mengen begünstigt wird. Dieser neue Ansatz bildet eine sinnvolle Ergänzung zu herkömmlichen Techniken (einschließlich der oben genannten): Er ist zwar nur anwendbar, wenn keine deterministischen Garantien erforderlich sind, erlaubt aber andererseits eine vollständige Kontrolle über Anzahl und Verteilung der produzierten Mengen
    corecore