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ABSTRACT

I present and discuss four classes of algorithm 
designed as solutions to the problem of generating matrix 
representations of model structures for some non-classical 
propositional logics. I then go on to survey the output 
from implementations of these algorithms and finally exhibit 
some logical investigations suggested by that output.

All four algorithms traverse a search tree depth- 
first. In the case of the first and fourth methods the 
tree is fixed by imposing a lexicographic order on possible 
matrices, while the second and third create their search tree 
dynamically as the job progresses. The first algorithm is a 
simple "backtrack" with some pruning of the tree in response 
to refutations of possible matrices. The fourth, the most 
efficient we have for time, maximises the amount of pruning 
while keeping the same basic form. The second, which uses 
a large number of special properties of the logics in question, 
and so requires some logical and algebraic knowledge on the 
part of the programmer, finds the matrices at the tips of 
branches only, while the third, due to P.A. Pritchard, is far 
easier to program and tests a matrix at every node of the search 
tree.

The logics with which I am concerned are in the "relevant" 
group first seriously investigated by A.R. Anderson and N.D. 
Belnap (see their Entailment: the logic of relevance and 
necessity, 1975). The most surprising observation in my 
preliminary survey of the numbers of matrices validating such 
systems is that the typical models are not much like the models 
normally taken as canonical for the logics. In particular the
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proportion of inconsistent models (validating some cases of the 
scheme 'A & ~A') is much higher than might have been expected. 
Among the logical investigations already suggested by the 
quasi-empirical data now available in the form of matrices are 
some work on the system R-W, including my theorem, proved in 
chapter 2.3, that with the law of excluded middle it suffices 
to trivialise naive set theory, and the little-noticed subject 
of Ackermann constants (sentential constants) in these logics. 
The formula which collapses naive set theory in R-W plus 

A v ~A
is the most damaging set-theoretic antinomy known. The theorem 
that there are at least 3088 Ackermann constants in the logic R 
(chapter 2.4) could not reasonably have been proved without the 
aid of a computer.

My major conclusion is that this work on applications of 
computers in logical research has reached a point where we are 
able not only to relieve logicians of some drudgery, but to 
suggest theorems and insights of new and possibly important
kinds.
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INTRODUCTION

This is an investigation in two fields. Part 1 
deals with the development of algorithms for the solution 
of the problem of computer generation of matrix model 
structures for some sentential logics, and is thus 
principally an essay in computing science. The project 
grew out of work in mathematical and philosophical logic, 
which subjects remain my primary interests. Part 2 of the 
present thesis is accordingly concerned with sentential 
logic, comprising an analysis of the crude output from 
the programs described in Part 1 and a report of some 
investigations suggested by that output. The two aspects 
of the work are by no means disjoint. The development of 
the algorithms was conditioned at several points by features 
of the logics for which matrices were required, and 
conversely some of the investigations reported in Part 2 
were made with the aid of a computer.

Much of the ground covered here has been very little 
trodden. As I report in chapter 1.1 workers in computing 
science have generally neglected the kind of enumeration 
problem I consider. Moreover the logics with which I am 
concerned are almost unknown to most logicians, lying well 
out of the mainstream of modern logic. Even relevant 
logicians, concerned with logics of this class, have done 
little work on the system R-W which is central to my 
projects, and the subject of Ackermann constants has, 
except for one paper which I quote, barely been noted.
There has been a curious reluctance on the part of 
logicians to harness the resources of computers. The flow
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of ideas, indeed, has been in the opposite direction, 
computing scientists of a theoretical bent having helped 
themselves to some of the deep results of recursive 
function theory and the like. The lack of use of computers 
by logicians has, I think, at least two major causes: 
the problems actually occupying workers in modern logic, 
in the aforementioned recursive function theory for 
example, are not, given the current state of the art, 
helpfully programable; and the parts of logic which are 
accessible to computers - elementary propositional calculus, 
for instance - are widely regarded as trivial and so 
beneath the regard of fully qualified logicians.

Part of my claim is that the approach to computers 
in logic through the notion of recursive enumerability is 
a mistake. Computers are not good at proving theorems.
They can be useful in producing crude disproofs, for 
instance by generating countermodels, but their better 
use lies in their ability to provide us for the first time 
in the history of logic with large amounts of quasi-empirical 
input data. It is for human logicians to make intelligent 
use of the shower of facts from the machine, whether by 
Baconian induction, informed conjecture or interpretation 
of the statistics. At the least, we have facts of a new 
kind demanding explanation. Why are most De Morgan monoids 
inconsistent (see chapters 2.1 and 2.2 below)? Why is the 
typical De Morgan monoid based on a lattice with few 
join-reducible elements? Such questions I cannot yet 
answer. They may not even be posed correctly, for the 
biggest task in this area is to develop the concepts and
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perhaps vocabulary for a fresh approach to elementary logic.
In the course of the thesis I use several notations 

and refer to numerous logical systems and algebraic 
structures which are not generally well-known. Some 
definitions and conventions are now in order. Names of 
programming languages are given in upper case, while names 
of programs, procedures and algorithms are underscored.
In writing out algorithms I use a version of the "Pidgin 
ALGOL" described by Aho, Hopcroft and Ullman in [74].
Since I do not regard "go to" as, in the pejorative sense, 
a four-letter word, I use it to transfer control in some 
places where more orthodox style would prefer more elaborate 
devices. My aim is always that the algorithm should be 
readable.

My language for writing logical formulae has
propositional variables p,q,r,p',...... unary connectives
~ and! , binary connectives &, v, and definitions:

ADB =df. ~AvB

A=B =df. (ADB) & (BdA)

A^B =df. (A+B) & (B >A) .

In addition I use A,B,C as variables over sentences of this 
language. Where I use quantifiers I take x,y,z,x', etc. 
as individual variables and write (v) and (3v) in the 
standard way to represent universal and particular 
quantification on variable v. As may be seen in this 
paragraph, I generally omit quotation marks where the 
context makes the meaning plain. I also adopt the 
following devices for simplifying formulae:
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(i) extreme outside parentheses are omitted;

(ii) & and v bind more tightly than d and = , and these 

more tightly than -* and +>;

(iii) unless otherwise determined, association is to 

the left;

(iv) a dot after a connective may replace a left 

parenthesis whose mate is to be imagined immediately 

before the first following right parenthesis 

unmatched by an intervening left parenthesis.

Thus:

for A-*A->B->B read ( ( (A->A)->B)+B)

for A A-*B-*B read (A-> ( (A->B) -*B) )

for (A-*B) & (A->C) ->. A-*B&C read ( C (A+B) & (A->C) ) -> (A-> (B&C) ) )

etc.

Metalogical principles such as "rules of inference" are

written A, A => B1 n
and read

if A x is a theorem and .... A^ is a theorem then B 

is a theorem.

Schematic rules and theorem schemes, of course, are to 

be closed under uniform substitution.

My notation for abstract algebras is that of the 

classical first-order predicate calculus with relation and 

operation constants defined as required. I use x,y,z,x' etc. 

for bound variables and a,b,c,d,a', etc. for free variables. 

The universal closures of postulates should be assumed to 

hold. Because the connective D may be confused with 

object-level operation symbols, I here use =* for material
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implication and Vx and 3x as quantifiers.

The logics with which I am concerned are in the 

"relevant" group first systematically investigated by 

Anderson and Belnap (see their [75] for the history and 

more details) . The basic system T-W has the pure -> part:

axioms: A->A

A+B 3->C A->C

A+B O A C+B

rule: A+B, A => B.

The stronger systems investigated here add in the pure -*• 

vocabulary:

E-W = T-W with the assertion rule 

A => A+B+B.

R-W = T-W with the assertion axiom
-> -y

A A->-B->B.

T = T-W with the axiom

(A + . A+B) A-*B

E-> = T^ plus the assertion rule.

R
->

= T^ plus the assertion axiom.

In all systems conjunction and disjunction are governed by 

the axioms

A&B-^A

A&B-^B

(A+B) & (A+C) A+BSC

A+AvB

B+AvB

(A-*C) & (B+C) AvB C 

A& (BvC) -> (A&3) vC . 

and the rule A,B =► A&B.
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Where negation is present its postulates are:

A — A 
A+B ~3->~A,

and in the systems T, E and R:

A+~A + ~A.

TWX, EWX and RWX are defined as T~W, E-W and R-W respectively 
with the addition of "excluded middle":

Av~A.

Where L is any of the six systems, "L" without a subscript 
has -*■, &, v and "L, " has & and v; "L " has -> as its

T ->

sole connective.
The fundamental algebraic structure to model logics 

of this kind is the Ackermann groupoid, a quintuple 
< S, < , o , t> where :

S is a set, < is a partial order of S, ° and + are dyadic 
operations on S, teS, and:

t°a = a (left identity)

a < b ^ c»a < c<>b Cmonotonicity)

aob  ̂c ° a < b+c (residuation) .

A model of logic L is a homomorphism from the sentence 
algebra of L into an Ackermann groupoid, the operation 
modelling the connective -*. Formula A holds in model 

m iff t  ̂m(A). A class of Ackermann groupoids 
characteristic for T-W^ is obtained by adding to the 
basic definition the postulates:
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(a°b)°c < a«(boc)

(a°b)°c < b°(aoc).

For T add to these 

a°b < (a°b)°b.

For E-W add the postulates for T-W^ and a < a°t,
For E add all four of these. For R-W add to the basic
structure a°(b°c) = bo(aoc) and
a°b = b°a,
and for additionally
a < a°a.
The positive logics have models obtained by making < in 
Ackermann groupoids a distributive lattice order and also 
replacing the second (monotonicity) postulate by 
a« (bvc) < (aoc) v (b<>c) 
which gives
a°(bvc) = (a°c) v (boc) 
and
(avb)oc = (a°c) v (b°c).
The extra postulates corresponding to particular systems 
are unaffected. For negation introduce a complement 
operation, , subject to the postulates 
a = a

a°b < c =* a°c < b.

The underlying structure is now a De Morgan lattice, which 
can be regarded as a structure < S, > where S is a set,
< is a binary relation on S, is a unary operation on Sf
and:
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3x V y (y  ̂x y £ a & y < b) 

aAb =df. lx Vy (y  ̂x ° y < a & y < b) 

similarly avb =df. ix Vy (x < y ° a < y & b < y) 

aA(bvc) = (aAb)v(aAc) 

a = a

a £ b => b < a.

The quadruple ( S, < , , t > I call an ex tensiona1 setup,
and a De Morgan groupoid resulting from it by the addition 
of ° and -> with their postulates is said to be based on 
the extensional setup. A De morgan groupoid satisfying 
all the postulates corresponding to the system R is called 
a De Morgan monoid in the standard literature on relevant 
logic. The terminology is taken from various sources 
including Belnap, Dunn, Meyer and Routley,

The concept of a matrix model structure for a 
propositional logic is at least as old as truth tables, 
and has been fostered in its modern form mainly by many­
valued logicians following the pioneering work of 
Lukasiewicz and Post. It is now standard to regard such a 
structure as a triple <M,0,D> where M is a set, 0 a set 
of operations on M and D £ M. The operations in 0 are 
correlated 1-1 with the connectives of a language L and 
a model of L in the structure is a homomorphism with 
respect to this correlation from L into <M,0>. A sentence 
holds in a model iff it is mapped to a member of D by that 
model and is valid on the matrix iff it holds in all 
models. A matrix is sometimes said to satisfy a logic
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iff all theorems of that logic are valid in the matrix, and 
to be characteristic for the logic iff exactly the theorems 
are valid. For present purposes, however, a stronger notion 
is required, since we must be able to recognise matrices 
which satisfy a given logic. I therefore require the set 
D of designated values to be closed under my canonical rules 
of inference adjunction and detachment. That is to say I 
am only concerned with finite strong models in the sense 
of Harrop (see [65]). Harrop's finite weak models, in 
which the rules of inference preserve validity but not 
designation are of less interest, if only because they are 
not in general recursively enumerable. Matrix models have 
a variety of uses, in disproving nontheorems, in showing 
independence of axioms, in demonstrating the non-equivalence 
of formulae (as in the chapter on Ackermann constants 
below) and in proving consistency, for example. They have 
also been used to establish syntactic properties of 
theorems, as in Belnap's proof in [75] that E and R-valid 
entailments satisfy variable-sharing conditions.
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Chapter 1.1 A problem

In many cases problem-solving algorithms are 
required to return a single answer to each problem: there
is generally a unique shortest route for a travelling 
salesman, for instance, and the next move in a board game, 
though not uniquely determined by the rules, is uniquely 
selected. Sometimes, however, a problem has many solutions, 
all equally wanted. If, for example, we want to know what 
words can be constructed from a given set of letters it 
will not do for an algorithm to stop short of generating 
them all; if the problem is to find all the mappings of a 
given set onto itself which are isomorphisms with respect 
to some imposed structure then there is no preferred one 
which counts as the "best" solution. The present thesis 
is concerned with a problem in the latter category.

The general description of the multiple solution 
exhaustive search problem is:

given: a finite set {a ....a };i n
a set S of finite sets;

a function V: {a ....a } --*■ S;i n
an open sentence (or "postulate") P(xi....x^); 

define: a setup is a function f with domain {a^^.a }

such that for 1 < i < n, f(a^)e V(a^);
the search space is the set of setups;
a setup f is good iff P(f(ax)....f(a ));
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problem: to find and accept all and only the good
setups from the search space.

In actual cases the problem can be made more tractable by 
lettinq a ...,a be the variables x ..,,x which occur in 

P and letting V assign to each variable a set of possible 
values. Then a setup is simply an assignment of possible 
values to the specified variables, and P can be regarded as 
a closed sentence. If each member of S is of cardinality 
k then there are kn setups in the search space, so in 
general exponential bounds on time complexity should be 
expected.

The reference points ax....a may be organised in
such a way as to simplify P, of course. Where they are
variables they might well be structured in arrays for easy
reference, and this device underlies the special type of
multiple solution exhaustive search considered here. I
take the variables a,....a to have canonical structuresi n
based on the first M+l natural numbers, 0....M. There may 
be integer variables, taking particular numbers as values; 
there may be Boolean arrays of the form [0:M,....,0:M] 
which take as values arrays of members of {True,False}; 
there may be integer arrays of the form [0:M,....,0:M] 
taking as values arrays of members of Intuitively
the Boolean arrays represent relations defined on {0....M} 
and the integer arrays represent operations on the same set. 
Such setups are recognisable as matrix representations of 
abstract algebras of small sizes.

The algorithms described below are all fairly 
clearly adaptable to the general problem of searching for
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such algebras, though the adaptation is easier in some 
cases, such as that of Pritchard's SCD (chapter 1.5), 
than in others, such as that of the Cut and Guess of 
chapter 4. They were designed, however, to solve a more 
specific problem, described in more detail in the 
appropriate places below. This concerned matrix model 
structures for sentential logics, and particularly for 
logics of the "relevant" group. The choice of logics was 
a result of historical accident, but turns out quite 
felicitous, since these logics have the right numbers of 
matrices of small sizes to be reasonably investigable 
(see chapter 2.1) and have postulates of sufficient 
complexity to make recognition of a good setup a nontrivial 
matter. The fundamental connective of the logics specified 
in the Introduction above is the implication and the 
hard problem is to find matrices for it. Under the 
influence of Polish notation Meyer (see chapter 1.2) dubbed 
the integer array representing the connective 'C' and this 
convention has stuck. No easy way is known of looking 
for satisfaction of the prefixing and suffixing axioms -

C[C[x,y], C[C[w,x], C[w,y]]]

C[C[x,y], C[C[y,z], C[x,z]]]

- which makes the problem interesting.

Combinatorial analysts, who own the subject of 
enumeration algorithms, of which my multiple solution 
exhaustive search is another description, have generally 
been reluctant to apply their methods to structures as 
complex as the logics in this thesis. They have
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concentrated on enumerating some permutations of a
sequence or certain integers (such as primes) for example,
rather than on rich algebraic structures. There is
occasional mention in the literature of problems
encountered in enumerating semigroups, which is getting
near home, and I have found one paper (Plemmons [67]) on
generating finite algebras in general. I cannot imagine
that techniques for enumerating latin squares are going
to be directly useful here, but one area in which some
intellectual capital has been invested is the investigation
of ways of finding - or avoiding - isomorphisms on a given
structure and this may indeed provide my research programme
with some input. True, the going results are given in

*terms mainly of the queens problem , rotations of the 
n-cube and the like, but there is growing interest in 
applying them to generating semigroups, partial orders and 
so on, and once abstract structural similarities between 
the problem classes become evident there may be something 
of value to the enumeration problem for families of 
Ackermann groupoid.

the queens problem: how many configurations of n queens
can be placed on a nxn chessboard without any queen 
attacking another?
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Chapter 1.2 The basic solution: Test and Change

In November 1976 Meyer began looking for all the 
small matrix models of the system E_̂ . His idea was to 
have a file of such matrices for the systems in which he 
was interested, partly for sundry purposes such as 
disproving the occasional nontheorem or distinguishing 
between non-equivalent formulae and partly for perusal, 
to help in gaining a "feel" for this or that system. In 
the three years since then we have indeed begun to make 
use of these matrices, as reported in part 2 of the present 
work. The problem of efficient generation of the matrices, 
however, has become interesting in its own right and has 
been pursued for its own sake and for the insight it gives 
into computing methods.

The algorithm Meyer proposed for generating good 
setups from the search space as defined in chapter 1.1 
requires that the elements a1....a be placed in a linear 
order, which can be represented by the numerical order of 
their subscripts, and that the possible values of each a^ 
be ordered too: I shall write v^(a^) for the j-th member
of V(a^). The basic algorithm runs:

for i 1 until n do f (â ) «- v1 (â ) ;

! This is the initial setup, 

f is a function variable ;

Test: if P(f(ax)....f(a )) then accept f ;

Change: for i «- 1 until n do

where f(a^) = v^(a^)
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if V(A^) is of cardinality j then

else

f (ai) v2 (â J

begin

f(ai> " vj+i(ai> * 
go to Test

end

In the special case considered by Meyer the array to be 
filled with values is a 3x3 matrix. The outline of his 
algorithm is:

Declare: integer array C[0:2,0:2];

Initialise: for i 0,1,2 do for j «- 0,1,2 do

C [ i , j ] +■ 0 ;

Test: if C validates then accept (C);

Change: for i 0,1,2 do for j +- 0,1,2 do

if C[i,j] = 2 then C[i,j] 0

else begin

CCi,j ] + C[i,j] + 1;
go to Test
end

This original Test and Change routine, which
examines all setups in a lexicographic order determined by 
an order imposed on the matrix cells, remains fundamental 
and informs some of the latest, most sophisticated algorithms 
for the job. As it stands it is very inefficient. Meyer's 
implementation of it, in what he cheerfully calls "High
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School FORTRAN", produced 147 matrices for in a little 
over 6 seconds of runtime. Having disposed of the 3x3 problem 
Meyer, under the impression that he had banished hard work 
from logic for ever, revised his program to search the 4x4 
space. The new program ran for some minutes without 
producing anything at all, so he did some elementary 
arithmetic. Calculating that about 4.5 times as many steps 
are involved in generating and testing a 4x4 matrix as are 
involved at 3x3 and multiplying 4.5 by 6 seconds by 416 
divided by 39 he concluded that the new job should take 
approximately 69 days'*". Accordingly he set out to improve 
the algorithm.

Meyer's technical contribution was to note that 
the search space can be defined much more efficiently than 
in the naive way. All familiar logics with an implication 
connective, , have some useful properties. Define a < b 
in the algebra represented by a matrix m as m(a-*b)eD where 
D is the set of designated values. Now < is a weak partial 
order -

a < a

a < b ,  b ^ c ^ a ^ c

- and only in matrices with utterly superfluous values is 
it not the case that

a < b ,  b ^ a ^ a ^ b .

Any partial order can be embedded in a total order, so we 
may take the ordering of the elements represented by 
0....M to be embedded in the numerical order. Thus the
initially possible values for the 4x4 search space are:
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0
1
2
3

0
D
u
u
u

1
S
D
u
u

2

S
S
D
u

3
S
S
S
D

S - {0,1,2,3}
D = designated values 
u = undesignated values.

Nothing is lost by assuming all designated values to be 
higher numbers than all undesignated ones, since clearly 
every matrix is isomorphic to one of this kind. With the 
designated values closed numerically upward there is no need 
ever to test the rule of detachment, since if A -*■ B takes 
a designated value then A takes a value not numerically 
greater than that of B, whence if A takes a designated 
value so does B.

There are now three search spaces for the 4x4 
problem, determined by the three choices of D:

D # matrices
{3} 2,985,984
{2,3} 4,194,304
{1,2,3} 331,776
total 7,512,064

At the rate suggested by my earlier experiment (see note 1) 
this job should run in about 12% minutes, on the given 
hardware, which is quite acceptable. The time complexity 
of the algorithm, though, is still dictated by Test and 
Change to the extent that a similarly projected runtime for 
the 5x5 problem is in the region of 80 years!

It may be as well, before going on to examine later 
versions of the algorithm, to make a note of its immediate 
precursors. Meyer's interest in the application of
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computers to matrix model structures followed the development 
of a FORTRAN program Tester by N.D. Belnap and D. Inser.
Tester arrived in Canberra in 1976. It is a highly user- 
interactive program designed to test sets of postulates 
read in at runtime against matrix sets also entered at 
runtime. The details are of no importance for the present 
work but the program remains useful in everyday logical 
research after four years and Belnap is to be credited 
with having sparked interest in the nest of problems 
associated with computing and matrices. The only anticipation 
of their work known to Meyer and Pritchard (see chapter 1.3 
below) was a paper by R.T. Brady (Brady [76]) on the question 
of generation of matrices satisfying sets of postulates.
Brady describes some procedures for initialising the search 
space for designated and undesignated values which foreshadow 
the space-priming techniques of my later programs (see 
chapters 1.4 and 1.6 below). The type of job Brady considers 
is slightly different from that to which I have addressed 
myself, as he wants a program to accept, as Tester does, 
an arbitrary logic and search space read at runtime. This 
flexibility should be expected to come at the cost of some 
efficiency, for it is generally the case that the more 
problems an algorithm can tackle the less efficiently it 
tackles each one.

One unsettled debate raised by the Brady paper and 
continued in Meyer and Pritchard [77] is between the 
relative merits of high and low level languages for 
programming the jobs considered here. Brady states:
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Any language used for this progam should 
preferably be a machine language with mnemonics 
and indirect addressing. If a language such as 
FORTRAN is used, the program would be less 
efficient and hence the range of problems it 
could tackle would be smaller.

Brady [76] p.248
Pritchard replies:

Finally, we feel it necessary to take strong 
issue with Brady's claim that a matrix finding 
program should be written in an assembly (machine) 
language. Time is much better invested (we 
present our results as evidence!) in improving 
the efficiency of a matrix finding algorithm 
rather than that of a particular machine- 
implementation. A high-level language can then 
be used to quickly obtain a reliable, efficient 
and portable algorithm.

Meyer and Pritchard [77] p.10.
In evaluating these contrary claims it must be remembered
that the two authors are addressing rather different
problems. Brady is not much concerned with the details
of a matrix finding algorithm, but rather with those of
rendering an arbitrarily presented problem of the type
tractable. And it is true that a program which starts
by devising a piece of code to test the postulates and
loads this into the core first will run markedly faster
than one which, like Tester, represents each postulate
as a string of numbers and tests by manipulating the
subscripts. Pritchard is certainly correct, however, in
claiming that the algorithm is much more important than
the implementation. The naive search problem is dominated 

/ _  2 \
by the 0(nv ) imposed by the number of possible matrices, 
while the speed-up due to assembler implementation is 
little better than linear, and thus in the long run 
irrelevant. There are many jobs which a high-level program
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can do in a matter of minutes; there are many which a 
program ten times as fast could not do in a week; there 
are not many jobs between these two groups. Improved 
algorithm design must precede improved implementation, 
for only a better algorithm than the early ones can ever 
hope to take on the investigations at up to 30x30 considered 
in the sections on Ackermann constants below. A few pages 
back we met the jump between 12% minutes for the 4x4 
problem and 80 years for 5x5. Now consider a hundredfold 
increase in speed: 12% minutes is hardly less feasible than
7.8 seconds, and certainly 9% months is just as ludicrous as 
80 years, so the cutoff point for E_̂ is 4x4 regardless of 
such an improvement. Yet the later algorithms can run 
cheerfully on the 7x7 or even 8x8 search spaces, though 
there, of course, the sheer numbers of good matrices impose 
enough limitations to ensure that such jobs will never be 
attempted. The important point is that the business of 
tinkering with the algorithm, which is essential to this 
kind of performance, is far easier with an implementation 
which wears that algorithm on its face, as my ALGOL and 
Pritchard's PASCAL programs do, than with a program which 
buries it under the details of assembly-level manipulations.
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Chapter 1.3 Skippy

By early in 1977 Meyer had realised some of the 
limitations of the naive Test and Change algorithm and in 
an effort to improve it enlisted the help of P.A. Pritchard, 
then a student in computing science at the Australian 
National University. Pritchard's contributions to the 
subject have dominated it ever since. The first major 
advance due to Pritchard resulted in the algorithm I call 
Skippy and incorporates a device used in one form or another 
by all subsequent solutions.

I define a refutation of a setup f as a subset f  
of f such that for no good setup g is it the case that 
f  S g. A refutation is a k-refutation iff its cardinality 
is k. Consider now an assignment of values to variables in 
the suffixing axiom which shows a particular matrix C to 
be bad. The assignment gives an undesignated value to

C[C[i,j], C[C[j,k], C[i,k]]]

and in the course of discovering this we have to "look up" 
at most four cells of C: we need values for C[i,j],

C[j,k], C[i,k] and C[C[j,k], CCi,k]]. If
therefore we reject the matrix C because of this assignment 
we are rejecting it on a 4-refutation at most. Its 
failure is a property not of the whole of C but of these 
four cells. This fact is obvious once pointed out, but 
takes imagination to discover I add in proper immodesty 
since I rediscovered it two years later. Now one of the 
cells involved in the refutation occurs earelier in the 
change order than the rest. Let it be the i-th cell to
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be changed. Clearly any matrix differing from C in at 
most the first i-1 places will contain the same refutation, 
and so all matrices can be skipped until the first one to 
change the i-th cell. A bad matrix will typically yield 
several refutations, so we should choose the best; the 
best is the one whose least cell (i.e. the earliest in the 
change order) is later than the least cell of the rest, so 
that we may maximise the number of useless matrices skipped 
before the next try.

Let us now think of the cells of C as given in a 
linear order - the order in which they are changed - and 
write C. for the i-th cell in this order. Where R is al
refutation of C we write RC for the set of indices of cells
used in R. Recall that R is a set of ordered pairs each
consisting of a cell and its value. The procedure min(X)
delivers the least of a set X of numbers, and max(X) likewise
the greatest. I sometimes write the parameter here as (a,b)
instead of ({a,b}). Now the procedure Test delivers an
integer "index" being the index of the first cell to be
changed, and Change begins the search for the next matrix
from C. , . There are n cells,index
Procedure Test

begin i a "found refutation" is the subset of C
actually looked up in a falsification of 
a postulate ;

for each found refutation R do
cindex max (index, min(R 1)

end;
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Procedure Change; 

begin

for i 1 until n do

if i < index or C. = M then 0

else begin

C . C . +1 ; i l

index 0 ; 

go to E 

end ;

finished true ;

E : end ;

Now the algorithm proper: 

finished «- false ; index ^ 0 ; 

for i *• 1 until n do 0 ;

while not finished do 

begin 

Test ;

if index = 0 then accept the matrix ;

Change

end

The Skippy algorithm given above is substantially 
as given in the unfinished paper by Pritchard and Meyer 
[77]. They spent some time experimenting with the order of 
changing cells in the 4x4 search space forE_̂ , discovering
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that the choice of order can made a considerable difference 
to the time taken, but failing to find any general principle 
for determining a priori the best such order. I have given 
the algorithm for the "idiot" search as I did for Test and 
Change. As before, its efficiency is greatly improved by 
allowing only designated values on the main diagonal and 
only undesignated ones below it.

My contribution to Skippy was to complicate it
somewhat by adding a device for changing the change order
as the job progresses. The basic observation here is that
at the start of the job, when all cells have their initial
values, the change order can be selected quite arbitrarily,
though once some cells have non-initial values their order
becomes fixed. The generalisation of this observation is
that if at any time during the loop there occur two cells
adjacent in the change order both of which hold their initial
values then at that time those cells can be regarded as
unordered relative to each other, though they are ordered
relative to any non-initial cells before or after. This
fact is important when there is a string of cells with their
initial values one of which is the cell C. , from whichindex
the change proper is to start, for maximal efficiency is
gained by assuming to be the last cell in this string.
Accordingly, in the case where C£ncjex holds its initial value
it is moved up the change order as far as the next non-initial
cell. The other constraint is that it must not displace any
other cell used in the selected refutation, of course,
since C. , is to be the least cell used. Other cells used index
in the refutation may however move up the order in the same
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the idea uses a Boolean flag ’swop,is,on' and an integer 
pointer 'ptr';
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swop. is.on false ;

for i +• n step -1 until 1 do ,

if C. does not hold its initial valuel

then swop. is.on false

else if swop.is.on and was used in the refutation

then begin exchange Ck and in the change order ;

ptr +  ptr-1

end

else if not (swop.is.on or was used in the refutation) 

then begin swop,is.on «-= true ; 

ptr 4- i

end ;

This is inserted at the start of the Change procedure.
The device of changing the change order as the job 

progresses can make an important difference in execution 
times, as may be seen from the figures given in chapter 1.7 
below. It was never used much for serious programs, though, 
because the much more efficient algorithms described in 
chapter 1.5 and 1.6 became available very soon after its 
invention. The pleasing thing about it is that it provides 
a way for Skippy to optimise for itself its change order, 
removing the need for a great deal of quasi-empirical research, 
and answering one of Pritchard and Meyer's open questions 
from [77]: how should the change order be chosen?
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Chapter 1.4 Cut and Guess

The problem which brought me into contact with the 

matrix-generating programs concerned the logic RWX (see 

Introduction above and chapter 2.3 below). I particularly 

wanted to see some of the matrices which split RWX from 

the logic R which is properly stronger. This posed two 

serious problems. In the first place the extant programs 

searched for -* matrices only, while RWX and R are full 

logics with rich structure: conjunction, disjunction and

negation are all present as well as implication. The 

additional connectives demanded new thoughts on organising 

the search. In the second place, RWX matrices which fail 

R are rare. There are only 7 pairwise non-isomorphic RWX 

matrices of size 4x4 or less, only one of which fails R. 

Here it is:

Hasse diagram

3

negation

0
1

*2
*3

3
2

1
0

implication 
0 1 2  3

0
1

*2
*3

3 3
1 3
2 3
0 3

This matrix actually shows a good deal. It is based 

on a Boolean algebra, and hence shows not only that RWX 

is weaker than R but that CRWX is weaker than CR and even 

that KRWX is weaker than KR.2 By itself, however, one 

matrix does not tell much of the story. There are just 

5 matrices of sizes up to 7x7 which split the two systems; 

one of these is the 4x4 Boolean monoid just given and another 

is a trivial embedding of it in the 6-element "crystal

lattice":
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Hasse diagram
0
1
2

*3
*4
*5

5
4
3
2
1
0

-y 0 1 2 3 4 5
Q 5 5 5 5 5 5
1 Q 4 4 4 4 5
2 0 1 3 2 4 5

*3 Q 1 2 3 4 5
*4 0 1 1 1 4 5
*5 0 0 Q 0 0 5

Thus I required the machine to search in the 8x8 search 
space at least - an impossibly vast task without using the 
richness of the logic's structure to impose tight constraints 
on the subspace actually searched. As an indication of the 
rarity of model structures for these logics, note that from 
all search spaces up to 10x10 - i.e. naively

10 1 0 0 + 9 8 1 + ___+ 39 + 24

possible matrices - fewer than 700 yield pairwise non­
isomorphic model structures for R.

The first program designed to help in generating 
these matrices was due to E.P. Martin and called (rather 
euphemistically) Fast. Fast required a search space 
specified in full in an input file and worked by applying 
to it a fairly crude Test and Change loop. It tested 
only the suffixing axiom -

B->C "►. A->3 . A-*C

- assuming the rest of the R-W postulates to be written 
into the search space. That this can be done will be proved 
later. The significant innovation, Martin's technical 
contribution to the subject, was in holding in an array the 
possible values for each cell, so that in Change we step
to the next possible value, not the next number. This makes
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possible much greater flexibility in the matter of the search 
spaces which can be represented and tested, and I now use it 
in all my matrix-finding algorithms.

Fast need not be detailed here; the ALGOL program 
Tnc given in chapter 1.7 below is very similar and may be 
examined to see the workings of the idea. The method of 
preparing the search spaces, though is very important and 
should be illustrated. Consider the job of looking for 
8-element models of R-W, and think of these given 
algebraically, but with as the principal operation
instead of °. Now clearly the general case is far too 
big for Test and Change, so we must devise a series of 
smaller jobs and execute these in turn. As noted in the 
Introduction above, an algebraic model of R-W is based on 
an extensional setup, or quadruple <S, <, -, t> where S is, 
for the moment, constant as the set {0,1,2,3,4,5,6,7},
< is a distributive lattice order on S, - is a De Morgan 
complement on S and teS. We may, for the 8-element 
De Morgan extensional setup case, assume that

(i) < is embedded in the numerical order;

(ii) if a is numerically greater than t then t < a;

(iii) a = 7-a if a ^ a.3

Now we determine the extensional setup for each job first, 
using the fact that we know all the 8-element De Morgan 
Lattices quite well. For a simple example consider the 
8-element chain with the atom designated:
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Hasse diagram complement

7
> 6 0 : 7 t = 1
T 5 1 : 6
O 4 2 : 5 designated values:
<> 3 3 : 4
Y 2 1/2,3,4,5,6,7
o 1

0 undesignated value:

One generally useful property of the complemented structures 
I consider in this thesis is contraposition: a+b = b->a.
In the case of this chain contraposition means that we need 
only construct half a matrix since the cells below the 
top right-bottom left diagonal will be mere mirror-image 
copies of those above. The Change component of our program 
can easily allow for this by changing the cell C[7-b,7-a] 
every time it changes C[a,b], and running its recursion 
through the top left triangle of cells only. The initial 
search space is thus:

But now some theorems of R-W (given in algebraesel:
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(x) (0 < x) so in particular 0 < 7 -* a

7 < 0 -> a by permutation
and 7 < a -> 7 by contraposition, assuming 0 = 7.

t -> a = a and a -* f = a where f = t.1*

And a derivable rule:

a < b, c < d =>■ b c  < a -> d.

From 7 < a -* 7 we have 0 -*■ a = 7; from t -* a = a we 
have 1 -*■ a = a; the rule of affixing gives us the important 
principle:

Aff. a < b, c < d => Vxe[be]3ye[ad] x < y
£ Vxe[ad]3ye[bc] y < x.

Here I use [ab] to designate the set of possible values of 
C[a,b]. Applying all this to our initial search space 
we are able to remove some of the values to leave:

0 1 2 3 4 5 6 7

0 7 7 7 7 7 7 7 7

1 0 1 2 3 4 5 6

2 0 0 12 123 1234 12345

3 0 0 0 123 1234

4 0 0 0 0

5 0 0 0

6 0 0

7 0

Now there are 2x32x42x5 = 1440 possible matrices left in the 
space - a job which will not delay Fast for more than a few

seconds.
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Not all the jobs are so simple to prepare. When 
the order is not a chain the complexities increase, and in 
most cases the first effort will not reduce the numbers 
of matrices below the 100,000 or so which can easily be 
tested. Some more principles useful for cutdown include:

Perm: a < b+c => b < a+c

RWP: aA(a^O) = 0 (this only holds of RWX)

ft: f < t => a+b < b->a.

At the time when I was using Fast I did not know about RWP 
(the second R-W paradox - see chapter 2.3 below) or ft,
though the latter is easy enough to derive:
suppose f < t
then a+f < a->t
but a+t < t->b ■>. a->b
so a->f < t-*b ■*. a-*b
but a->f = a and t-̂ b = b
so a < b •>. a->b
so a < a->b->-b (by contraposition)
so a->-b < a->b (by permutation)
i. e . a+b < b->a (by contraposition).

A very useful corollary of RWP for chains is that if a+b = 7 
(7 being the top element) then either a = 0 or b = 7. The 
reasoning is:
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suppose a ->b =5 7 i.e. 7 < a->b
then a < 7^b (by permutation)
so a < b->-0 (by contraposition)
but bA (b-̂ 0) = 0 (RWP)
so either b = 0 and b = 7, or b->0 = 0 and a = 0, since 
0 is not. meet-reducible.
In any case, if a-*b = 7 then aAb = 0. In that it appeals to 
RWP, this derivation requires that the extensional setup 
be such as to validate excluded middle.

Consider, then, the search space for R-W matrices 
on the 8-element chain with five elements designated - i.e. 
as before but with t = 3. Applying the above principles 
we eventually reach:

0 1 2 3 4 5 6 7
0 7 7 7 7 7 7 7 7
1 0 3456 3456 3456 6 6 6
2 0 12 345 345 5 56
3 0 1 2 3 4
4 0 01 012 012
5 0 01 012
6 0 01
7 0

Here there are 43x35x25 = 497,664 possible matrices, 
which makes the job a little too big for comfort. The 
answer is to divide and conquer. Choose a cell - cell [4,1] 
is a good choice - and produce two search spaces differing 
on that cell. Having removed possible values we give our 
cutdown principles something more to bite on, and are able 
to reduce the space further. The two resultant spaces are:



35

0 1 2 3 4 5 6 I 7

0 7 7 7 7 7 7
r

7 7

1 0 3 345 345 6 6 6

2 0 12 345 345 5 56

3 0 1 2 3 4

4 0 0 012 012

5 0 0 012 4+1 = 0

6 0 0
7 0 2 2x3 7 = 8748

0 1 2 3 4 5 6 7

0 7 7 7 7 7 7 7 7

1 0 456 456 6 6 6 6

2 0 12 345 345 5 56

3 0 1 2 3 4

4 0 1 12 12
4+1 =5 0 01 012

6 0 01
7 0 2 5 x 3 5 = 15,5

The total for the two jobs is now 24,500 setups: a
twentyfold reduction in job size at the cost of roughly 
doubled overheads and increased risk of human error.

Fast did indeed produce some results pertinent to 
my original project concerning RWX and R, but there were 
several drawbacks to the procedure:
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1. Fast was rather specialised; a program to search for 
models of a greater range of logics would be an 
improvement.

2. The preliminary paperwork was tedious and time- 
consuming - more so than was justified by the results.

3. Garbage in: garbage out. Mistakes are very easily 
made in the preparation of the search spaces, and 
render the results meaningless.

4. The piecemeal approach was logistically inefficient;
I kept losing the bits of paper.

5. After 8x8 I was going to have to search at 9x9 and 
10x10, where problems 1, 2, 3 and 4 could be expected 
to be amplified exponentially.

The obvious solution was to program the initialisation and 
cutdown of the search space.

My first attempt to do so produced a program called 
Mag (Matrix generator). The input to Mag was an extensional 
setup in the form of a partial order table, complement 
table and choice of t, and the output all the R-W matrices 
on that setup. A simple variant which also applied

aA(a+b) < b

at the initialisation stage generated matrices for R.
The overall logic of Mag was roughly:
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begin

read in data on < S , <, t > ;

initialise: set [ab] as the designated (undesignated) 

values if a < b (a J b) ; 

set t-*a = a; set a->M = 0>a = M ; 

if excluded middle holds then for each a,b 

do if aAb ^ 0 then [ aO ]-*-[ aO ] - (b } ;

cutdown: apply principles like Aff to squeeze impossible 

values out of the search space ;

pretest: if the number of matrices remaining in the 

space is large then

begin

guess: find a cell <a,b> with as few values as possible, 

given that it has at least 2 values ; 

push the current space onto a stack with the 

lowest value removed from [ab] ; 

remove from the space all values of [ab] 

except the lowest ; 

go to cutdown 

end ;

t e s t : run Test and Change on any matrices remaining 

in the search space ;

pop: if the stack is nonempty then 

begi n

pop the last stored space from the stack ; 

rewrite the current space as this popped one ; 

go to cutdown

end

end
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ENTRY

read in
data

stack
empty

matrices
leftmany

EXIT

split cell 
other way

split a
cell

test

change

set up
search
space

apply
cutdown
principles

printup

Mag

TOP LEVEL FLOWCHART
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"The number of matrices is large" was determined 
empirically to mean "the number of matrices is greater than 
about 600", so a cutoff point was set at 600 for determining 
whether to "guess" at the value in some cell and cut the 
search space again or to test the remaining matrices. The 
Test and Change loop was taken from Fast.

The power of Mag comes from the Guess component, 
which divides the search space. Choosing a cell with only 
2 values if possible is to try to keep the search tree 
balanced, as well as to achieve maximum effect from each cut. 
In the example given earlier the first division reduced the 
job size by a factor of 20; in larger jobs it is not unusual 
for a single Cut and Guess (more accurately Guess and Cut 
given that English "and" is not commutative) to reduce 
the search space by a factor of 1010 or more.

Later versions of Mag produced a series of programs 
under the title Bigmat (Big matrices), the first of which 
was compiled in May 1979. The improvements incorporated 
in Bigmat were sometimes fairly trivial - it gave a choice 
of systems, of fragments of systems and of output formats, 
for instance, and could take many extensional setups based 
on many partial orders in one execution - but some were 
of more significance. Mag had used an idiotic Test and 
Change loop, while more efficient ones were on the market 
at the time. Bigmat incorporated the device Skippy. 
Considerable space is saved during Cut and Guess by pushing 
onto the stack not the entire search space but simply each 
value at a cell as it is cut out, with a marker to show 
whether it was cut arbitrarily as a guess or whether it
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was eliminated by an application of a cutdown principle. The 
cutdown loop, too, could be made more efficient, as suggested 
below.

Bigmat successfully investigated my chosen logics 
up to the limit of the number of matrices which could 
reasonably be held on an output file. Thus it produced 
all De Morgan monoids (R matrices) up to 11x11, R-W up to 
10x10, E and T up to 8x8 and E-W and T-W up to 7^7. These 
were matrices for the full logics. I have not been much 
concerned with fragmentary systems, though my programs now 
are equipped to investigate them. Another significant use 
of Bigmat was in finding De Morgan monoids on large De Morgan 
lattices of sizes up to 18x18 and 20x20. These helped in 
the search for Ackermann constants (see Chapter 2,4 below), 
where an exhaustive search of one particular 14-element 
structure proved most fruitful. We have been able to view 
structures of much greater size and complexity than was 
possible with Fast or Mag, and while some of the results 
have surprised us it must be said that we have begun to 
outrun ourselves in that we lack the techniques to analyse 
such complex data or to pick out from it that which is of 
interest. Presumably manipulation of such large model 
structures will have to be by computer since most 20x20 
matrices are machine-readable at best, being unintelligible 
to the human eye.

The first form of cutdown loop, used in Mag, was 
simply a check on the whole search space to ensure that all 
the principles were satisfied by all the values for cells, 
repeated until no more cuts were being made. In outline
it ran:
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begi n

repeat cut false ;
for each cutdown principle p do 
for each cell ( a,b) do

for each possible value, x, in [ab] do 

if C[a,b] = x is impossible because of p then 

begin

cut out x from the possible values of <a,b> ;
cut true
end

until not cut 
end

A typical cutdown principle is Aff (the affixing rule):

Aff: for i 0 until M do for j <- 0 until M do
begi n

for k 0 until i do for 1 Q until M do 
if k £ i and j < 1 then 

begin

for each possible value, x, in [ij] do 

if ~3y (yeCk'l]&x<y) then 

begin

drop x from [ij]; cut true 
end ;

for each possible value, y, in [kl] do 
if ~3x(xe[ij]& x<y) then

begin

drop y from [kl]; cut 4- true 
end

end

end.
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Remember that unless otherwise stipulated < refers to the 
imposed partial order, not numerical order. The loop is 
a search for 1-refutations only.

This early Cut and Guess routine was inefficient 
in several ways, and most significantly because the 
recursions on i,j,k and 1 in the above loop, for instance, 
run through all the values, meaning that every pair of cells 
related by affixing is examined on every pass. In fact 
there will be no values to drop unless one of the cells in 
the comparison has been cut either on the present pass 
through the loop or on the last (the arbitrary cut due to 
splitting a cell counts as the 0-th pass), Thus we find 
that efficiency is improved, especially on large jobs, by 
keeping a record of the cells cut on each pass, and only 
looking for further cuts where the record indicates their 
possibility.

The most time-efficient version of Cut I have treats 
it as a recursive procedure. The key insight here is that 
the cuts pursuant to a division of a cell are all in cells 
predictably related to that cell. Thus for instance if c 
is removed from [ab] and there remains no de[ab] such that 
d < c then there may be failures of affixing in cells <x,y> 
where x < a and b < y, while if there remains no de[ab] 
such that c < d then there may be affixing failures 
between <a,b> and <x,y> if a < x and y < b; no other 
failure of affixing can be caused immediately by that 
particular cut. Analogous methods pick out the values and 
cells to which a cut may spread by the other cutdown 
principles such as permutation, contraposition and the ft 
rule. The actual cases are a little too complicated to be
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worth giving in full, and in general the programmer must 
use knowledge of logic and algebra to devise both the 
cutdown principles and the procedures for most efficient 
discovery of likely places to find derived cuts.

In broad outline, then, the recursive Cut 
procedure reads:

Procedure Cut (x,y,z); value x,y,z; 
begin

drop z from Cxy]; ! This may involve recording the
cut, setting flags, etc. ; 

for each cutdown principle, p, do

for each cell <a,b> related to <x,y> so that p applies do 
for each ce[ab] do

if p applied to <x,y> rules out c as a value 
of < a,b ) then 

Cut (a,b,c)
end .

In its latest implementation this Cut procedure occupies 
some 300 lines of rather densely written ALGOL, which is 
a measure of its complexity. It does simplify the logic 
of the main program greatly, of course. The drive down 
of the search now reads:

while the number of matrices remaining in the space is 
large do for some value, x, in a cell <a,b> with more 

than one value do 
Cut (a,b,x).

By regarding the number 2 as "large" we may give 
Cut and Guess as a solution to the matrix-generation
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problem: a solution by "divide and conquer". Before
this will work, however, we have to put the tests for the 
actual axioms tried in Test and Change into the cutdown 
loop. This is not difficult. Consider the case of the 
suffixing axiom:

a+b < b->-c •*. a->c.

This does not easily yield a direct cutdown principle 
because of the nested arrows, but where [be] and [ac] 
are unit sets the values of b-*c and a+c are fixed, so we 
have:
for i + - 0 until M do

for j ■*- 0 until M do

for k + ■ 0 until M do

if [jk] and [ik] have just one member each then 

hegi n

Cut from Cij] any value not < some member of 
[ j-*k, i-*k];

Cut from [j+k,i->k] any value not > some member 
of [ij]

end .

Thus by the time only one matrix is left in the search 
space all instances of the axiom will have been tested. 
Other axioms are similarly easy to incorporate.

As detailed in chapter 1.7 below Cut and Guess 
in this form is moderately efficiently. It is very 
effective at cutting huge search spaces down to small ones, 
but far less efficient near the bottom of the search tree, 
actually being overtaken on numbers of matrices less than 
a hundred or so by the "idiot" Test and Change loop.
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Thus my first instinct, to use Cut and Guess to prime the 
search space and some other method to do the fine search, 
was right. The other problem faced by Cut is its recursive 
procedure form is core usage. It takes a noticable amount 
of core just to load a procedure as big as Cut, and 
additionally every time it is entered 10 or 12 new 
variables are declared to avoid feedback problems. Thus on 
very large jobs, where calls 100 deep are not uncommon, 
this adds a significant burden to core usage, already 
running high to accommodate the search space and other 
arrays, and has sometimes pushed me over limits. It is 
often possible to buy space at the expense of time, but 
this is rather unsatisfactory. Cutdown as a mere loop is 
not subject to the same problem and has been used to 
examine structures of sizes up to 30x30.
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Chapter 1.5 And Now for Something Completely Different,

The title of this chapter is that of a paper by 

Pritchard dated October 1978 in which he outlines an 

algorithm for finding matrices by a radically new method.

The algorithm works by repeatedly dividing the search 

space S in response to refutations found. With a search 

space S we associated a matrix C by setting

C[a,b] = min(S[a,b]).

Thus at any time the matrix being considered is that formed 

by assigning each cell its lowest available value. The 

matrix is tested (and if good then accepted) and a 

refutation of it, as defined in chapter 1.3 above, selected, 

A good matrix counts as a refutation involving all the cells

Now consider a

< x ,a > bad.

one of which lacks x 

a at C 2:

Notice, though, that <y,b> occurs in both spaces, so if we 

merely make these changes we may try the same matrix twice. 

The answer is to keep the singleton of the "bad guy" only 

at one of the cells while cutting the other:

with more than one possible value. 

2-refutation involving cells C 1 and

S x,y,z a , b,c

We should now search two subspaces, 

at C and the" other of which, lacks

Sj y , z

S2 x,y,z

a,b,c

b,c
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Sj y,z a

s2 x,y,z b ,c

Here every pair of values except <x,a> occurs in just one of 

the subspaces. An analogous device works for large 

refutations. Suppose <x,a,i> is a 3-refutation of the setup

S x,y,z a,b,c

Then we shall split to give

c 3

if j fk

y,z 

x,y, z 

x , y , z

b , c 

a,b,c

i

i

jfk

Pritchard's algorithm implements the search depth-first 

via a stack of triples each representing a cell to be divided, 

the values taken out and whether the branch thus represented 

has yet been searched. The details of stack manipulations 

are not important except for the note that they are very 

simple and so can be performed extremely fast. In a later 

note dated June 1979 Pritchard gives the algorithm in the

form:
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! S. denotes the j-th member, under a standard 
order, of the set ;

Vi C. S ̂  ; finished «- false ;1 i
repeat stop «- false ;

Test C ; ! This gets a smallest refutation R ;
if C is good then accept C ; 
if I Rj = 0  then stop true 
else begin ! R = (r1,...,r } ;

extend the search tree with

and take the leftmost branch 
end;

if stop then begin
back up the search tree ;
if we reach the top then finished true
end

until finished.

In the 1979 note are four criticisms of this 
algorithm, there named SCD. These go with suggestions for 
improving its efficiency. First, the refutations may not 
always - and will not usually - be discovered in an optimal
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order. Smaller refutations are more significant than larger 
ones, and a more efficient search results if they are higher 
in the tree. This can be brought about by inserting 
refutations into the stack not necessarily at the end but 
above any larger refutations provided that these do not 
involve any of the values at cells (including cells with 
only one value) used in the given refutation. Thus the 
search tree is modified dynamically as the search progresses. 
Pritchard's second criticism is a minor matter of making the 
stacking procedure more elegant. The third and fourth are 
more important. It will often be possible to process several 
refutations from one test, where such refutations are all 
disjoint. This applies especially to 1-refutations, which 
of course are bound to be disjoint. Such mutiple processing 
should be done, or the next matrix will contain a refutation 
we already knew about, which is inefficient. The last point 
made in Pritchard's note is in the form of a question: in 
general what is the best refutation (of a given size) to 
choose. This is difficult, and perhaps no generally right 
answer exists. One suggestion of Pritchard's is to choose 
refutations involving cells with fewer possible values rather 
than those with more. In comparing two refutations it may 
be possible to devise a generally adequate answer, but the 
complexities which arise when comparing two sets of refutations 
may lead to a preference for "heuristic" rules of thumb.

Still, the algorithm is simple in outline, 
undeniably elegant and certainly very efficient for space, 
since the tape complexity is dominated by the array of 
possible values and the stack, both of which are bounded
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by the number of values at cells - i.e, 0(.n3log n) where 
n is the number of values, for there are 0 (n) values at 
each of the n2 cells. On prepared search spaces such as 
those put out by Cut and Guess there will be many fewer 
values, of course.

At the time when I received a copy of the SCD 
algorithm (August 1979) Pritchard had not implemented it, 
so there was no empirical detail on its performance. My 
first reaction was to write a version of Fast (see chapter 
1.4 above) to search prepared 8x8 spaces by SCD. What I 
implemented was a very crude first attempt at the algorithm, 
incorporating none of the suggested improvements and not 
even searching for a smallest refutation of each matrix but 
processing the first one found. This program was moderately 
efficient, but no faster than the later versions of Bigmat. 
It should not be concluded, though, that SCD is in any sense 
a failure. In the first place, the investment of some 
time in incorporating into my little program some of the 
known improvements to the algorithm must result in an 
order of magnitude drop in runtimes. In the second place 
one of the most exciting facts about SCD is that nothing 
in its construction turns on the nature of the algebraic 
structures for which it is to search, so it should be of 
very general application to problems in the classes defined 
in chapter 1.1 above. Moreover, even where the properties 
to be tested are very complex the algorithm remains simple 
and clean, making programs using it quick and easy to write 
and debug - a non-negligible consideration. For this kind 
of reason my current matrix-finding programs use SCD to
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generate isomorphisms on extensional setups for the 
purposes of avoiding searching two isomorphic spaces and 
discovering quickly whether a generated matrix is 
isomosphic to one already accepted.

If I have reservations about the efficiency of 
SCD these spring from reflections on one of its strongest 
points: its space-efficiency. The information on the
basis of which the search is directed is held in a stack 
which rarely contains details of more than twelve or 
fifteen refutations. Quite normal jobs may yield a total 
of a thousand or more refutations in all, so very little 
of the total available information is applied at any one 
time. The search tree for SCD is generally short from root 
to leaves, but very wide, having perhaps some thousands 
of branches. Any refutation can occur only once in one 
branch, but in view of the shape of the tree this is not 
too reassuring. The search may well delete and rediscover 
the same piece of information many times, which is 
wasteful. It remains to be seen how far this problem can
be overcome.
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Chapter 1.6 The method of transferred blocks

It is a waste of time to generate and test two 
matrices both containing the same refutation. For a 
matrix-finding algorithm to be maximally efficient for time, 
therefore, it must keep a record of every refutation found 
and avoid incorporating it again. The task is to devise 
a simple and fast way of doing just that. The search space 
can be thought of as an array S[1:N] of the sets of possible 
values of C[1:N]. Let us write S? for the j-th possible 
value of C^. Cells with only one possible value can be 
left out of this version of the array C. Test and Change 
respects the order of C, C^ being less significant than

i+1 for 1 < i < N-l. We may write Test and Change:
Procedure Test; if C is good then accept C ;
Procedure Search(S[1;x]); value x; search space S ;
for each possible value of C dox x

begin

C <- S1 ; x x
if x = 1 then Test else Search(S[1:x-l]) 
end ;

Search(S[1:N]).

Now consider a refutation {S? 3". . . S-111} , where S-?nll m  m
is the most significant value at a cell in the refutation.
When C. becomes S-?n this value is fixed in its cell, so m  in
in searching the subspace S[l:(in-1)] we may regard 
{Sii**. S ^ j } as a (n-l)- refutation on this remaining 
space. When the value is subsequently inserted the
remainder becomes a (n-2)-refutation on the still smaller
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space and so on. When this process of transfer of the
refutation eventually produces the refutation {S?^} on
the subspace SCI:(12—1)]r the value S?^ may be removed,
temporarily, from S^, as there is a 1-refutation blocking it.
When S^2 is taken out of C^2 as Change moves on, the
2-refutation as recovere(  ̂anĉ  tlie block removed,
so S?^ goes back into as a possible value, provided,
of course, no further refutation is still blocking S?^.
This release of the subrefutations is repeated as the
successive values are taken out of the relevant cells,
until when S?n is cleared from C. the whole n-refutation m  m
again applies to the search space.

Such is the reasoning behind the method of 
transferred blocks. The idea is implemented via two arrays: 
an integer array 'suspended' and a stack of pairs. The 
number

suspended?

records how many blocks are in force to prevent value S? 
from being inserted into cell C^. If suspended? > 0 then 
S? is, temporarily, not a possible value for C^. The 
stack, which for efficiency might well be a singly or 
doubly linked list, though such details are not my present 
concern, consists of pairs

< x,b)

where x is an integer and b is Boolean. Each pair is 
governed by a pair <i,j> of integers.

Recall that an n-refutation is one involving n 
open cells - i.e. cells each with more than one possible
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value. Now to the method of stacking n-refutations, A 
O-refutation refutes the entire search space, so given a 
O-refutation simply skip out of the search. A 1-refutation 
could be recorded by removing the offending value S? from 
S^, but it is less messy to record it by setting

suspended? +- suspended? + 1.

For a 2-refutation we use the stack. Let a
2-refutation with i < j. Then add to the stack the pair

<p(suspended?J), true>

governed by <i2,j2>. Here p(v) for variable v is a pointer 
to that variable. In practice it will consist of the pair 
<il,jl> in this case. Now when becomes S?^ the substack
governed by <i2,j2> is scanned for pairs with 'true* in 
their Boolean field. This indicates that the refutations 
they represent are in force. The pair we have just seen 
stacked will be among those picked out and the refutation 
it represents will be implemented by downward transfer of 
the block to <il,jl>, by setting

suspended?^ «- suspended?^ + 1.

This makes {S?^} a 1-refutation on the subspace remaining 
after gets a value. When the value of CL 2 is changed
again, the block will be transferred back upwards to 
<i2,j2> by setting

suspended?^ ■*- suspended?^ - 1.

Now to stack a 3-refutation {S?^,S?^/S?^} , add to the 
stack the pairs:
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position in stack pair governed by

kl < p (suspended^) , false ) < i2,j2 >
k2 < p(kl), true > ( i3,j3 )

To stack a 4-refutation (S^, S;?̂ / Sj3 sj4l 1.3' i4J add to the
stack the pairs:

position pair governed by
kl < p (suspended^) , false) ( i2,j2 )
k2 < p(kl) , false ) ( i 3 , j 3 )
k3 < p(k2), true ) < i4,j4 )

In general to stack an n-refutation for n > 4,

{Sjltbil ..... Sin>
add to the stack:

position pair governed by
kl < p (suspended^) , false) ( i2,j2 )
k2 < p(kl) , false ) ( i3 , j 3 >

k(n-2) (p(k(n-3)), false) ( i(n-1),j(n-1) )
k(n-l) (p(k(n-2)), true) <in,jn>

The operation of the stack can be seen from the 
procedures to insert and release values at cells:
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procedure Insert(x,y) ;
begin Cx +■ ;
for each stack entry <p(v),b> governed by <x,y> do 

if b then

begin if p (v) points to 'suspended' then v v+1
else the Boolean field of stack ■*- truev

end

end;

procedure Release(x, y) ;
for each stack entry <p(v),b> governed by <x,y> do 

if b then

begin if p(v) points to 'suspended' then v •«- v-1
else the Boolean field of stack •*- falsev

end ;

Note that a 3-refutation or larger is transferred by 
creating a temporary smaller refutation elsewhere in the 
stack. The Search procedure now reads:

procedure Search(S [ 1: x] ) ; search space S[l:x] ;
for each possible value of C dox x

begin Insert(x,i) ;
if x = 1 then Test else Search(SC1 :x-l]) ;
Release(x, i)

end ;

And the main program still reads:

Search(S[l:N]).
I have omitted the technical details which tend to 

obscure the algorithm. There must, for instance, be some
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form of index to the stack, so that the substack governed 
by a given pair can be scanned quickly. And there must be 
a device for recognising whether p(v) points to another 
entry in the stack or to a suspension number. Again, some 
form of Skippv should be incorporated, and will add 
complications, as Release must be applied to all the values 
in cells before the first one used.

One phenomenon which is important is what I have 
called the total suspension of a cell. It sometimes 
happens that a certain combination of values in cells late 
in the change order results in the suspension of every 
value in some S. earlier in the order. In such a case nol
value is possible for the totally suspended cell, so the 
set of values causing the suspensions is a refutation and 
can be stacked as such. If, for instance, has three 
members, and we have the refutations

{Si' S3' S6}

<s?,

{S1' S 6 }
4 2then when Ŝ. are placed in C^, there will be no

possible value for C, , so we should stack {S^, S^} as a1 J o
2-refutation. I call the refutations resulting from total 
suspensions secondary refutations, and those resulting from 
bad assignments of values to subformulae of the postulates 
primary refutations. The stacking of secondary refutations 
greatly increases the efficiency of the algorithm.

Its efficiency is also increased by cutting down
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the amount of testing which must be clone. To test a 10x10 
matrix for satisfaction of the suffixing postulate, for 
example, one makes 1000 (= 103) assignments of values to the 
variables i,j,k and asks whether

C[i,j] < C[C[j,k], C[i,k]]

each time. If the matrix is bad perhaps ten cases will 
fail the axiom, whence 99% of the questions are wasted, 
giving no information. Maybe we have three possible 
values for C[l,2], and for each of them we ask thousands 
of times whether

C[1,2] < C[C[1,2], C[1,2]] .

This is a waste of time. It seems that the most efficient 
way to test is to take advantage of the fact that the 
transferred block method never loses any information and 
find all the primary refutations at the outset by testing 
all ascriptions of values from the search space to parts 
of postulates before a single matrix has been generated.
The procedures I have for doing this do not look optimally 
efficient and are, apart from being complicated, each 
specific to a particular postulate. In fact my programs 
currently spend so long setting up primary refutations 
than even on search spaces as small as 108 possible matrices 
it is often more efficient to run Cut and Guess, dividing 
the space into two, and test the two separately than it 
is to run the test on the whole. For all that, the 
combination of a Cut and Guess outer loop and an inner test 
of the kind outlined in this chapter is the fastest 
algorithm known for jobs of the size normally encountered.
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Observations on the runtimes of some implementations are 
given in the next chapter. The major drawback to the 
transferred block method is its space complexity, for 
every 4-refutation requires three stack entries, and 
there may well be a thousand primary refutations in quite 
a small search space, even if some procedure ensures that 
no refutation with a proper subrefutation is ever stacked.
The space complexity for primary refutations is polynomially 
bounded, as all primary refutations are 4-refutations at 
most, so their number is bounded by the number of 4-tuples 
of values at cells, which is limited by a polynomial in 
the dimension of the matrix. In fact there will be much 
tighter bounds for actual logics, since by no means all 
4-tuples can occur as the values of subformulae of postulates. 
Polynomial or not, the function determining numbers of 
refutations is too large to permit jobs with more than 25 
to 30 cells with 3 or 4 values each to run in a reasonable 
amount of core (say 40K). This is unsatisfactory, and I 
am working on ways of decreasing the size of the stack 
without seriously interfering with speed.

Clearly, too, the time taken to generate and stack 
each primary refutation before starting the Change loop 
is at most a polynomial of the size of the job, and since 
each examination of a stack entry and transfer of a block 
can be done in constant time (ignoring the sizes of numbers), 
the time for inserting and deleting a value is likewise 
polynomially bounded, being of the order of the number of 
refutations stacked against that value at that cell. All 
that stands in the way of a polynomial upper bound on the
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time complexity of the algorithm is the number and size of 
the secondary refutations. This is a little annoying, as 
in normal-sized jobs there are not very many such - 
usually at least 3/4 of the stack is taken up by primary 
refutations - and they tend to be quite small, only 
occasionally requiring anything more than a 5 or 6-refutation 
to be stacked. There is, however, no control over them and 
no clear reason why they should not proliferate exponentially 
as job sizes increase. It should be noted that the numbers 
of good matrices of given sizes for the logics investigated 
appear to be exponentially related to size, so bounds must 
be regarded as functions of the size of the matrices and 
their number, rather than just of size.
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Chapter 1.7 Conclusions to Part 1.

The research programme in computer generation of 
matrix models began with two needs for such models. Meyer 
wanted little matrices (4x4) for a little logic, E , and 
I wanted big matrices (8x8, 10x10) for a big logic, RWX.
Once it became evident that the problem of efficient 
matrix generation had two features of the great problems - 
idiot solutions do not work and clever solutions do - the 
project took on an independent interest. Most of the 
development of Cut and Guess and the transferred block 
method was conditioned by the aim of generating as many 
matrices to a specification as possible as quickly as 
possible, without much regard to their applications. Now 
that the generating problems are on the way to being solved, 
interest is starting to shift back to the uses of matrices. 
The second part of this thesis will be a report on some 
investigations suggested already by the output, but before 
that I want to give a brief survey of the performances of 
the algorithms discussed above and of the jobs for which 
they might be suitable.

Direct comparisons of runtimes of the going programs 
is made difficult by the fact that they are not all aimed at 
the same jobs. All my programs are designed to find 
Ackermann groupoids and the like, so they assume fusion 
will be defined along with implications, and require an 
element t such that for every a,

t < a iff a is designated.

Pritchard and Meyer, on the other hand, were mostly concerned
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with pure implication systems where there might not be a 
least designated value in this sense in the models, and 
where there is it might not satisfy such additional 
postulates as

t ■> a < a

in E_̂  for example. Moreover the actual polished programs 
are in different languages and were designed to run on 
different machines.

As a partial solution I wrote a series of simple 
ALGOL-60 programs based on the idea of Fast to take a 
description of a search space from a file and search it 
for matrices satisfying

A-+B . B~>C . A->C

B-»C -*■. A->B ->■. A-*C.

The data structures are:
integers siz, open, setmax, matno, tryno, runtime

siz: the highest value ("M" in the algorithms above).
open: the number of cells with 2 or more possible values.
setmax: the largest number of possible values for one 

cell.
matno: the number of matrices found, 
tryno: the number of matrices tried, 
runtime: the execution time for the main loop.

Boolean array partord [0: siz, 0: siz] 
integer arrays a,b,kount [1: (siz + ] )z]

c, call [0: siz, 0: siz] 
possval [1: (siz +1) ,1: setmax]

partord: the partial order - partord[i,j] = i < j.
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possval: the possible values - possval[i,j] is the 
j-th possible value of the i--th cell.

kount: the numbers of possible values - the i-th 
cell has kountCi] possible values.

call: the change order of cells - call[i,j] = k iff 
i-*-j is the k-th cell.

a,b: the opposite of call - a[k] = i and b[k] « j 
in the last example.

so call[a[i], b[i]] is i.

The contents of all these variables are simple read from an 
input file, except in the obvious cases of 'matno', 'tryno' 
and 'runtime'. For each i-th cell then initially 

c[a[i], b[i]] possval[i, 1 ] .
There are two basic procedures:
procedure Test ;
begin

tryno ■*- tryno + 1 ;
suffixing: for i ■*- 0 until siz do

for j -<- 0 until siz do

for k < - 0 until siz do

if not partord [c[i,j], c[c[j,k], c[i,k]]] 
then go to End.of.test ;

prefixing: for i «- 0 until siz do

for j ^ 0 until siz do

for k 0 until siz do

if not partord [c[j,k], c[c[i,j], c[i,k]]] 
then go to End.of.test ;

accept: matno matno + 1 ;
End.of.test: end ;
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procedure Search(x); integer x ;
begin integer i ;
for i 1 until kountCx] do

begin c[a[x]f b[x]] < ■ possval[x,i] ; 
if x = 1 then Test 
else Search(x-1) 
end

end ;

Now the main loop:
runtime < - the current job time ;
Search(open);
runtime ■*- the current job time - runtime.
All that then remains is to print out some statistics, such 
as 'runtime' and the search ratio, or 'tryno/'matno'.

The program I have given in some detail here is the 
"idiot" Test and Change implemented via a recursive 
procedure. The format lends itself to easy adaptations 
to other algorithms. To introduce Skippy add a new 
variable 'index' and amend Test so that instead of 

go to End.of.test
we have

index «- min (callCi,j], call[j,k], call[i,k],
callCcCj,k], c[i,k]], index)

for suffixing, and for prefixing:
index •«- min (call[i,j], call[j,k], call[i,k],

call[c[i,j], c[i,k]], index),
and just before 'Accept:' we add
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if index < open then go to End.of.test.
Before each test 'index' is initialised to 'open' + 1. The
amendment to Search is to add a skipout clause, so:
procedure Search(x); integer x ;
begin integer i ;
for i < - 1 until kount [x] do

begin c[a[x], b[x]] •«- possval [x, i ] ; 
if X = 1 then Test else Search(x-l); 
if index < open and index > x then go to Eos 
end ;

Eos: end.

I wrote six little programs to do this same job, 
implementing six different algorithms. They were:

T&C the "idiot" Test and Change already given;
Sk Skippy, as suggested above;
Sw3 Skippy with a device to change the order of cells

as the job progresses (see chapter 1.3 above); 
the "3" records that three progressively better 
refutations (at most) are taken from each matrix 
tested;

C&G a Cut and Guess loop, applying the principle
"Aff" (see chapter 1.4 above) and a test for the 
actual postulates on unit sets;

SCD Pritchard's algorithm (chapter 1.5 above), with
mutiple processing (i.e. taking several refutations 
from each bad matrix) but without dynamic stacking;

Trb an implementation of the block transfer method
substantially as in the last chapter.

I had these programs search for Ackermann groupoids
satisfying the T-W^ postulates on extensional setups based
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on chains. Chain models make fusion definable, by 

a°b = df. Ac: a < b+c

and on finite chains generalised meets always exist. On 

chains, too, the postulate

(a->b) a (a+c) = a^bAc,

which is needed for the given definition of fusion, holds 

trivially. It suffices for fusion to be defined, given 

these facts,- that where M is the top element, for every a:

a+M = M.

This is easily written into the search space. Only the 

matrix for -> needs to be found. Thus on the extensional 

setup

f 2
<► 1 t = 1

v 0

for instance, we have the search space:

Hence in terms of the specific data structures for the

programs:
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siz = 2 , open = 3 , setmax - 2f

1 2 3 4 5 6 7 8 9
a
b
kount 
possval 1 

2

0 0 1
O i l  
2 2 2

1 1 1  
2 2 2

O i l  
2 0 2

1 1 1  
2 0 2

2 2 2 

0 1 2  

1 1 1  
0 0 2

partord 0 1 2 call 0 1 2
0 true true true 0 1 2  4
1 false true true 1 5 3 6
2 false false true 2 7 8 9

Such is the test I devised for the algorithms.
The first results are the runtimes for the various cases and 
the search ratios.

Runtimes in seconds (to 2 signficant figures)

Number of
elements t T&C Sk Sw3 C&G SCD Trb

3 1
2 not measurable (less than 0.05

tot

4 1 0.22 0.72 0.26 0.18 0.06 0.05
2 1.4 0.98 0.26 0.36 0.12 0.13
3 0.40 0.46 0.34 0.32 0.18 0.14

tot 2.0 2.2 0.86 0.88 0.36 0.32
5 1 44 13 4.2 1.4 1.3

2 125 11 3.9 2.5 1.8
3 93 12 20 4.3 2.0
4 28 14 8.5 4.9 1.8
tot 290 50 36 13 6.9



68

Cont' d

Number of
elements t T&C Sk Sw3 C&G SCD Trb

6 1 210 82 39
2 120 92 42
3 720 120 39
4 510 150 44
5 290 160 50

tot 1800 610 210

These are execution (cpu) times on the Australian National 

University's DEC system KL10. The timesharing system 

results in up to 6% variation in runtimes, so the figures 

should not be taken to provide more than rough comparisons.

Search ratios (to 3 significant figures).

elements t T&C Sk

3 1 4.00 3.00
2 2.00 1.75

all 2.67 2.17

4 1 60.8 8.75
2 256 9.75
3 29.2 5.72

all 105 7.62

5 1 19.8
2 56.6
3 41.3
4 18.9

all 31.8

6 1
2
3
4
5

all

Sw3 C&G SCD Trb

2.00 1.50 1.50 2.00
1.75 1.00 1.50 1.25
1.83 1.17 1.50 1.50

4.58 1.08 2.00 1.58
4.63 2.06 3.94 1.81
4.44 1.16 3.24 1.56
4.76 1.42 3.17 1.62

9.82 1.13 2.69 1.22
11.0 11.1 5.95 1.34
11.8 3.37 6.27 1.34
10.7 1.51 5.32 1.32
10.8 1.80 5.12 1.37

1.23 3.53 1.04
1.15 8.23 1.06
4.17 8.66 1.08
2.87 6.77 1.07
1.89 6.03 1.07
2.13 6.30 1.06
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Search ratio is defined as the number of matrices tested 
divided by the number of good matrices. C&G does not actually 
test matrices, so there I define "the number tested" as the 
number of terminal nodes in the search tree. This gives a 
very low figure, as most of the work goes into processing 
the nonterminal nodes.
The search ratio for T&C can be calculated without running 
the jobs, since it simply tests every matrix in the space, 
and the total of possible matrices is known.

With only four or five partial orders tested it is 
obviously hard to be confident about the shape of curves.
We know that where there are n cells each with just k possible 
values T&C is bounded for time complexity and search ratio 
by 0(kn), so more complicated exponential functions of this 
kind should apply to it for all jobs. The search ratio of 
Sk and Sw3 are also fairly clearly exponentially bounded: 
witness the onset of the 69-day syndrome in their runtimes 
between the 5x5 and 6x6 cases. The long run increase in 
search ratio for SCD appears to be linear at worst, and it 
seems that the search ratio for Trb actually decreases as 
the size of the job grows. This is because the information 
we have - see chapter 2.1 below - suggests that for some 
positive constant K, the number of T-W matrices of size 
nxn for n > 2 is always greater than K x 2n, while it is 
easy to show that the number of primary refutations, which 
bounds the number of bad matrices tried, is polynomially 
bounded, for example by the number of 4-tuples of values 
at cells which is at worst of the order of n12.

(Kx2n) + K1n12 
Kx2n

But
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is asymptotically 1. So the proportion of bad matrices 
generated by Trb, if the observation on numbers of good 
matrices is correct, becomes vanishingly small as the 
job size increases. At the small sizes given in the 
table the search ratios for Trb are depressed by the 
fact that the program stacks failures of Aff first, before 
the search, and on small matrices Aff covers a large 
proportion of the refutations. This distorts the curve 
at its lower end. In large search spaces the preliminary 
stacking of the 2-refutations from Aff is proportionally 
much less important. Experiments with the 7-element chain 
suggest a search ratio there of about 1.0Q5, which is 
rather impressive. One job on the 7-element chain yields 
over 230,000 good matrices in finding which Tbl tries 
just over 900 bad ones.



Chapter 2.1. Numbers of matrices
some tables and graphs.



Blanks in the table indicate jobs too big to be run in reasonable time.
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Numbers of De Morgan groupoids validating six central systems 
of relevant logic. 

Sy size of lattice.
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GRAPH 1.

# matrices

GRAPH OF TABLE 1
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size



Note. 
An extensional setup s is "occupied" by logic L just in case
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natrices GRAPH 2 (TABLE 2) 
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TABLE 4. 
Numbers of positive Ackermann groupoids per extensional setup
for the systems in table 3. 

By size of lattice.
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GRAPH 4 (TABLE 5).

Totally ordered Ackermann groupoids of order 7.

choice of t
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GRAPH 6.

The 26 De Morgan lattices of order 12.
Numbers of De Morgan monoids yielded, 
by numbers of pairs of independent elements.
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Chapter 2.2 Observations on the numbers of matrices

The simplest operation to perform on the small 
model structures for a set of systems such as the six I 
have been considering is to count them, or rather, 
having regard to one's sanity, have a machine count them.
For this purpose they must be partitioned in suitable 
ways. I have given above tables representing gross 
numbers of model structures satisfying the postulates set 
out in the Introduction, divided by order (number of 
elements), and more detailed analyses of a few more specific 
cases. While division by order is the most obvious, it 
is not the only division possible; nor is it clearly the 
most revealing. The structures could be divided by length 
of longest chains in their partial orders, by smallest 
numbers of generators or by numbers of prime filters in 
the lattices, for instance, but this thesis is a 
preliminary survey, not the final word, and division by 
order is most simply managed.

My programs first generated partial order tables 
representing De Morgan or distributive lattices, for 
instance. Then for non-isomorphic choices of t, giving the exten- 
sional setups, they produced implication matrices with built-in 
assumptions that fusion would be defined. All the numbers 
in the tables are of pairwise non-isomorphic model 
structures. The postulates I used are:
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For T-W: < is a partial order, 

(a+b) a  (a->c) < a->bAc

(a-^c) a  (b-^c) < avb+c 

aAb < a aAb < b
a < avb b < avb
aA(bvc) < (aAb)vc 

ä = a 

a->b = b-*a 

a->b < b->c a-*c

b->c < a->b a-*c

t < a->b a < b
a°b < c ° a < b-*c.

For T: T-W plus 
a a+b < a->b
a-̂ a < a.

For E-W: T-W plus 
t->a < a.

For E : T plus 
t->a < a.

For R-W: T-W plus 
t->a = a.

For R: T plus 
t-*a = a.

The positive logics simply drop the two negation postulates 
In the positive and full logics the existence of fusions is 
easily secured, for finite lattices are complete and have a 
greatest element, T. Fusion exists if and only if for
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every element a, a-*T = T, Clearly if fusion exists then 
since everything is less than or equal to Tf

t°a < T

whence

T < a-*T 

and T = a-*T.

For the converse we may define fusion in these finite 
positive-logic structures:

a ob =df. Ac: a < b->c.

Since a < b^T, the general meet of the definiens is always 
nonempty, so it remains to show

(Ac: a < b+c) < d ° a < b->d.

From right to left this is trivial, since d is an element 
of the meet. From left to right it suffices that

a < b-> (Ac: a < b-*c) ,

and this we prove by finitely many applications of 

(b-*u) a (b-*d) - b+cAd 

and meet semilattice properties.

For "pure" -* logics this move to define fusion 
is not available, for which reason I have not yet 
investigated Ackermann groupoids in general very much.
I have given some results on totally ordered ones, for 
where the underlying order is a chain the operations 
a and v exist and moreover trivially satisfy the full 
postulates of the positive logics. Thus for chains
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the definability of fusion is yery simply written into the 
search space. My further reasons for concentrating on chains 
are:

1. Since no two totally ordered model structures are 
isomorphic there is no need to worry about eliminating 
or accommodating isomorphisms, which cleans up a messy 
corner of the subject.

2. The chains form a clear sequence ascending by size:
it is obvious which structure to choose as representing 
the "same but bigger".

3. The simplicity of the order also makes it clear how 
high or low in the structure each element is, so 
choices of t are subject to an obvious ordering by 
position, making graphs 4 and 5, for example, 
clearly 2-dimensional. Moreover, since chains force 
the full positive logic to hold, there is always a 
least designated value for t to take.

4. Chains, as suggested below, are in any case fairly 
typical underlying orders in the sense that they 
yield more model structures for these logics than
do other configurations. Statistics based on chains 
therefore resemble those for all orders together.

The first point from table 1 is that the numbers 
of De Morgan groupoids of order n validating each of the 
given systems appears to be bounded below by an 
exponential function of n. This emerges more strongly 
from the graphs where all the numbers have been logged yet 
the lines are approximately straight. T-W has at sizes
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n _2up to 8 about 2.5 x 2r distinct model structures, and R
n _ 2has about 1.2 x 2n at sizes from 3 to 12. A glance at 

the other graphs will confirm this appearance of 
exponential order. If the numbers of good matrices do go 
up exponentially then, as noted in Part 1 above, this 
places an irreducible exponential lower bound on runtimes 
for the algorithms described earlier.

The "zigzag" pattern of the curves in graph 1 is 
partly due to the fact that there are more De Morgan 
lattices with even than with odd numbers of elements, as 
can be seen from table 1. In an effort to eliminate the 
resultant distortion from the figures I tabulated matrices 
per extensional setup, giving table 2. This .device also 
abstracts from the order of the groupoids, removing the 
effect of the greater number of extensional setups of 
greater order. The decision only to count occupied setups 
was based on the feeling that a setup on which it is 
impossible to base a model structure for logic L is not 
really an extensional setup in the sense given by L at all. 
Thus in the case of the system with reductio it is silly to 
look for matrices on setups which fail excluded middle.
It is, of course, quite possible to tabulate 
and graph numbers of matrices per extensional setup, 
occupied or not. A slightly different set of curves 
results, and it is a matter of intuition which version gives 
a better impression of the way the numbers mount. In 
table 4 I have given the ratio of matrices to all extensional 
setups rather than just to occupied ones, though in fact 
without negation unoccupied setups are rare.
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The next observation is that numbers of models giye 
a sense in which strictly independent systems can be 
compared for strength, Lj being stronger than L2 if it has 
fewer models of any given finite size greater than some n. 
There are obvious limits to the meaningfulness of such 
comparisons where the logics concerned take widely differing 
kinds of structure for their models. In the present case, 
however, we can see a clear sense in which R-W is stronger 
than E, for example, and we may likewise conjecture that 
T is stronger than E-W. Curiously, the evidence from the 
positive logics (tables 3 and 4) suggests that E-W+ is 
stronger than T+ in the same sense, so in the case of logics 
in the region of T reductio appears to be a very strong 
principle. The large numbers of T+ matrices come mainly 
from one type of extensional setup: the chain with the
atom designated. This one case contributes 34,047 out of 
the 71,582 T+ algebras of order 8. E-W+ by contrast has 
only 551 matrices based on the same setup. Even discounting 
that one setup, however, E-W+ seems stronger than T+ in 
the suggested sense.

A related kind of observation has to do with the 
relative nearness of neighbouring systems. It is evident 
from graphs 1 and 2 that E, for example, is more like T 
than it is like R, though again the reductio postulate 
seems to play a large part in strengthening T. Even in 
its positive fragment, though, T appears to resemble E 
more than it does T-W. At 6*6 there are about 2.76 times 
as many T-W+ matrices as there are T+ matrices, and about 
2.24 times as many of the latter as there are E matrices,
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which places T slightly nearer to E than to T-W. Curiously 
enough, the same sort of reasoning places E+ closer to R_̂  
than to T , the difference factors being 3.01 and 3.67

T"

respectively at 7x7. It is unclear what force these 
comparisons would have if it emerged that the systems in 
question lack the finite model property. Nothing is known 
of whether T, E and R do have the finite model property, 
although the systems have been investigated for some twenty 
years now.

One of the first observations I made on the numbers 
of matrices was that long thin structures like chains yield 
more matrices for the relevant logics than short wide ones 
like Boolean algebras. This impression has been confirmed 
repeatedly as more species of structure have been examined. 
Over 25% of the 10-element De Morgan monoids are chain-based, 
and over 20% of the 12-element ones. Yet the chain is only 
one of 13 De Morgan lattices of order 10, and of 26 of 
order 12. Graph 6 shows the distribution of De Morgan 
lattices at 12x12 by number of pairs of independent 
elements - i.e. pairs {a,b} such that a  ̂b and b  ̂ a - and 
number of De Morgan monoids based thereon. The line joins 
the geometric means of the numbers of matrices yielded by 
De Morgan lattices with the same numbers of independent 
pairs. There is some scatter, but a general downward 
trend as the relation decreases. The other systems and 
the other sizes exhibit the same overall pattern, which 
seems independent of the presence or absences of De Morgan 
complement. The surprise here is that we have always 

thought of the model structures for relevant logics as
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resembling Boolean algebras and of the set of truths on a 
model as consistent. Now it appears that most model 
structures are more like chains, and since on such 
structures a < a quite often holds, if the law of excluded 
middle is to hold the truth according to such models is 
likely to be inconsistent. About 86% of 10-element 
De Morgan monoids are inconsistent. Thus the typical 
models are not much like the canonical models. At the 
moment observations like these stand as mere curiosities;
I have not been able to harden them into theorems, and 
nor do I know of any concrete use to which they may be 
put. But they have changed my vision of R and its kin.

Another curiosity is the distribution of matrices 
according to the position of the least designated value, 
and on this I can offer some partial reasons why things 
should be as they are. The majority of matrices for logics 
with contraction, such as T, E and R, are to be found based 
on extensional setups in which t is low in the order.
This may be because the rule of contraction operates to 
knock undesignated values out of the search space:

a  ̂b =*■ a  ̂ a-*b.

Thus the more undesignated values there are the more grip 
contraction gets. This could be passed off also as an 
explanation of why chains and the like, where many ceils 
hold designated values, are most fruitful, were it not 
for the fact that R-W and T-W also exhibit a liking for 
strongly ordered lattices. It might well prove fruitful 
to examine matrix models for the contraction-free systems



93

to discover how many instances of contraction tend to hold, 
even if some instances fail. We know, for example, that 
R-W models which validate

Av~A

also validate

A& (A+F) ->F

where F is always assigned 0, and moreover validate

(A A-+F) A->F

(see next chapter). The pattern of occurrence of matrices 
with positions of t in R-W emerges clearly in table 7 and 
graph 5. There are many matrices with t low in the structure 
and with t high in the structure but very few with t in the 
middle. The illustration is the chains, but similar, if 
more complex, patterns exist for all structures. The reader 
is invited to find a function to predict the number of R-W 
matrices on a chain of n elements. Table 7 is full of 
tantalising almost-regularities and affords hours of 
innocent amusement.

Another exercise valuable for adding small fragments 
to our understanding of the relevant logics R-W and R is 
that of finding explanations of why certain extensional 
setups are unoccupied (yield no matrices for one system or 
another) or singly occupied (yield exactly one matrix).
In the next chapter is a theorem explaining why there is 
only ever one R-W matrix based on the element m of a 
finite chain. A simpler theorem is that any distributive 
lattice with t as the top element yields exactly one Dunn
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monoid (R+ algebra). In R+ anyway we have the theorem 

A & B *>■ A o B 

or algebraically

aAb < a<>b.

Now suppose for every element a 

a < t.

Then since t < b-*b,

a < b+b and b < a-*b by permutation.

That is to say, residuating,

a°b < b and a°b < a.

Therefore

a°b < aAb so a«b = aAb.

Hence the one Dunn monoid on the setup is the Heyting 
lattice.

Explaining unoccupied setups is generally not so 
easy. There would be some interest in a theorem giving a 
straightforwardly extensional condition necessary and 
sufficient for the occupation of a setup by R-W or R.
The best I have is a few piecemeal results. For example 
there is no Dunn monoid based on a positive extensional 
setup of the form

1

\  /

2
0



The argument is:

l A  (1 +0) = 0 theorem of RT
1+0 = 2 or 1+0 = 0.

Suppose 1+0 = 2.
2 < 1+0
2 < 1+2 affixing
2 = 1+2 since t  ̂1+2

But 1+0 < 0+2 +. 1+2
2 < T+2 since 0+x = T
2 < T+t affixing
1 < 2+0 permutation of supposition
1 < T+t by analogous argument

• 1 v2 < T+t
i.e. t < T+t
i.e. T < t which is false.

.*. 1-̂ 0 = 0.
But 1 < t and t < 2+2

1 < 2+2
2 < 1+2
t < 1+1 and 2 < t
2 < 1+1
2 < (1+ 1) A (1 + 2)
2 < 1 + 1 A 2

i.e. 2 < 1+0.
But 1+0 = 0, so 2 < 0 which is absurd.
Unfortunately there is no obvious way of generalising the 
argument to take in a large number of cases of unoccupied 
setups.
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Some interest also attaches to setups on which all 
matrices for one system validate another. For example, if 
t is the sole atom in a De Morgan groupoid then any E-W 
algebra based thereon also validates all of E. To show 
this it suffices to use E-W postulates and

t  ̂a or a = 0

to derive

a-*a  ̂ a
a -t. a->b < a->b.

The former is easy. Suppose t < a. Then

a+a < t->a and t-̂ a < a 
a+a < a.

Now suppose a = 0. Then a < b, and in particular 

a < a->a
a+a < a by contraposition.

The proof I have of contraction goes through properties 
of the complement operation. Suppose a = 0.
Now

boc < a
.*. b ° a < c i.e. b < a+c 

and in particular
a a->b < a-*b.

Now suppose t < a. Then
a a-*b < t +. a^b, and 
t ■>. a->b < a->b 
a + . a->b < a-*b.

Proofs of small-scale theorems like this may be sought
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in cases where quasi-empirical ohsexvation of numbers of 

matrices suggests they may hold. The same kind of 

observation suggests that all chain-based matrices for 

T where f < t are also matrices for E; no proof of this 

conjecture is yet known.

The combinatorial analysis of propositional logic 

has scarcely begun. The preliminary observations in this 

chapter already suggest a number of promising lines for 

future research. Firstly we may count different objects. 

I have considered just species of Ackermann groupoid 

modulo isomorphism. It is of course possible to drop t 

and ° from the models, leaving the direct correlates of 

the connectives only. Such a move gives many more models 

for pure -*■ systems and for systems weaker than R-W and R. 

Again, models validating exactly the same formulae are in 

a sense duplicates, even if non-isomorphic. It might 

be worthwhile eliminating from the counts direct product 

algebras and the like; the effect of doing so is 

uncalculated.

As noted earlier, many different selections of 

classes of model are possible, and there are of course 

a great many more systems of logic which could be 

investigated. One line which may prove very fruitful is 

the study of the results of representing each of a number 

of postulate schemes by the generalised lattice meet of 

its instances. A logic as naturally axiomatised emerges 

as a filter in this treatment. The idea might well begin 

to provide some measure of the relative strengths of 

postulates. To date, however, I have done very little
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work on it. Finally it must be confessed that we need 
some theorems. Most of the above observations on the 
numbers of models for systems are based on no more than 
intuitive extrapolation from a few brute facts. Some 
asymptotic bounds on the numbers would be welcome, for 
instance. I have no proof that the bounding functions 
are exponential, that R-W is "stronger" than E, that most 
De Morgan monoids are inconsistent or that chains are 
more productive than Boolean algebras. I repeat that we 
are at the start of combinatorial analysis of logics; my 
claim is to have unearthed enough facts - and to have 
provided the means for discovering more - to make 
numerical methods possible.
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Chapter 2.3 The Logic R-W

Recall that the logic R-W has the postulates
axioms: 1. A->A

2. A+B ->. B-*C -*■. A+C
3. B-*C -*■. A-̂ B ■>. A-*C
4. A -*■. A-*B->B
5. A&B-*A
6. A&B-*B
7. (A-*B) & (A->C) A+B&C
8. A->AvB
9. B-*AvB

10. (A->C) & (B->C) + . AvB-MS
11. A& (BvC) (A&B) vC
12. A+f+f-*A

rules: 1. A , B =» A&B
2. A->B, A => B

definitions: 1. ~A =df. A-*f
2. A°B =df. ~(A-*~B)
3. t =df. ~f.

Some of the above are redundant, and there are
ways of shortening the list by combining some
but I believe particular axiomatisations to be of very 
little logical importance; my axioms and rules are chosen 
to give some feel for what is in the system. Axioms 1 to 
4 with rule 1 given the pure -* system; axioms 1 to 11 with 
the two rules given the positive logic. Orthodox 
conservative extension results follow from considerations 
given, for instance, in the appropriate sections of
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Anderson and Belnap [75] and Routley and Meyer [R], and 
are not my present concern.

In our paper on Abelian logic ([79]) Meyer and I 
have expressed our philosophical thoughts on R-W, which 
is indeed a curious system It is converted to R by the 
addition of any one of:

1. (A A-*-B) A->B
2. A& (A+B) -> B
3. A+~A ~A
4 . A^B -> ~AvB
5. (A-*B) & (B->C) A->C
6. (A B+C) A&B+C

There are some well-loved principles in this list. 1, the 
contraction axiom of E and R, shows perhaps most clearly 
what divides the two systems R-W and R: in a relevant
deduction according to R a premiss must be used at least 
as many times as it is assumed (see Church [51] and 
Anderson and Belnap [75] for discussion of the "use 
criterion" for valid arguments); R-W, lacking contraction, 
goes further in requiring each premiss to be used exactly 
as many times as it is assumed. 2, roughly the rule form 
of 1, is the modus ponens theorem of the stronger systems, 
and recasts the points in disallowing, in systems where 
it holds, logical theories not closed under detachment, 
just as 5 legislates against theories not closed under 
transitivity. R-W is in general very careful to distinguish 
between the compounding of premisses truth functionally by 
conjunction and their intensional fusion, a distinction
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which emerges clearly in the failure of 6, whose converse 
fails in all the relevant logics. The failure of 3 and 4, 
both of which fail in rule form also, has the important 
consequence that R-W has no theorems in the &,v,~ vocabulary 
at all. The contraposed version of 4 is the principle of 
material counterexample

A&~B ~(A->B)

and on the given definition of fusion the contrapositive of 
3 is the square-increasing postulate

A A°A.

In view of the lack of all these supposed "laws" 
of logic it is tempting to dismiss R-W as a merely silly 
or at best partial system. This would be o'erhasty, for 
R-W is, as I have suggested in several places above, a 
strong system in other ways and embodies a philosophy of 
logic in many ways closer to the spirit of the motivation 
of relevant logic than is the more orthodox Anderson-Belnap 
line. The differences between R-W and R surround three 
very delicate questions: the role of contraction principles
in deductions, the logic of negation, and the place of 
"extensional" principles, such as the classical tautologies, 
in logic. On this last issue R-W represents a position 
opposed to Quine's remark that logic is concerned with the 
logical truths, for it is based rather on a catalogue of 
valid implications. And pv~p, though it might be a 
necessary truth of some sort, is not a record of an inference, 
and so perhaps should not be asserted by pure logic.

So much for the weakness of R-W. Its strength
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lies in the fact that arbitrary permutation of antecedents 
tends to unify ordinarily diverse principles - witness the 
given list of "equivalents" of contraction - and thus 
greatly facilitates derivations. This flexibility in the 
way complex implications are taken emerges in the 
theoremhood of:

(A B+C) <* (B A-+C)

(A . B-*C) ** (A°B C)

Ao (BoC) ** (AoB) oC

A°B ** B°A.

The positive fragment of R-W is contained in both that of 
Heyting's intuitionist logic and that of L , the denumerable 
valued logic of Lukasiewicz. Both of those systems also 
validate

A -*. B->A,

and the addition of that scheme to R-W produces the logic 
RWK. Where A^B is defined as t&A-*B, RWK is just the 
fragment of R-W. While standard extensions of R-W go 
either in the direction of R or in that of Lukasiewicz's 
logics, it is possible to strengthen the double negation 
scheme

A-*f-*f-*A 

to the general 

A-»B+B->A

which produces the strangely beautiful Post-complete system 
A investigated by Meyer and me in the paper cited above.
A, while fascinating, is too far from the purpose of this
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thesis to be detailed here.
My thumbnail sketch of R-W and its surroundings has 

been one part of the scene-setting for the main theorem of 
this chapter, the second R-W paradox, which follows shortly. 
Before giving the proof, however, I should continue with 
its background by saying something briefly about the 
programme of paraconsistency. Where |- is a deducibility 
relation defined on a language S, T, a subset of S, is a
I-theory just in case it is closed under |- . T is
inconsistent with respect to monadic connective * iff 
for some AeS both AeT and *AeT and trivial iff T=S. |-
is par aeons is tent with respect to * iff some |- theory is 
inconsistent with respect to * but nontrivial. The 
terminology is taken from da Costa. Evidently 
paraconsistency with respect to * comes to the invalidity 
of A , *A |- B. Thus where * is negation the paraconsistent 
logics are those which deny that from a contradiction 
anything follows, and among such logics those of the 
relevant group present an independently motivated line.

One project for which paraconsistent logics may 
be suitable is the formulation of a naive set theory. The 
natural axioms to govern the intuitive idea of sets are:

(z) (zex = zey) -* x=y (extensionality)

xe{y: A(y)} ** A(x) (abstraction).

These may be subject to appropriate restrictions on 
binding of variables and the like: these details are
not my present concern, and nor is the large subject of 
relevant quantification theory. To extract trouble from
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the abstraction axiom it needs only a step of substitution 
to yield

xe{y: y^y) x^x

whence, using R for {y: y^y} and instantiating,

ReR <*■ R/R.

By reasoning valid by intuitionist (and relevant) lights 
this quickly yields

ReR & R^R

whence a negation paraconsistent logic is needed to avoid 
utter collapse. Interestingly, the contraction-free 
relevant logics do not permit the inference from the 
biconditional to the conjunction, and nor does their 
supersystem £ .

Since the contributions of Curry and Moh-Shaw-Kwei 
it has been fairly well-known that there are paradoxes in 
naive set theory which afflict not the theory of negation - 
which is not too hard to amend - but that of implication, 
Anderson and Belnap's "heart of logic". As Geach pointed 
out as long ago as 1955, there are analogous antinomies in 
the truth theories of semantically closed languages of which, 
as Tarski noted in [56], the natural languages are examples. 
The classic Curry paradoxes are recapitulated in the 
Meyer-Dunn-Routley paper in Analysis (1979) which, however, 
was written in 1975. One such paradox argument runs:
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let a be {x: xex *> p} 
now aea *►. aea -> p 
so aea aea -*■ p.
Given contraction this yields 
aea +  p
and from this and the biconditional 

I aea
whence by detachment

P-

Similar arguments replace contraction by the weaker modus 
ponens theorem scheme, and where fusion is present as a 
connective some versions use only conjunctive syllogism as 
their contracting move. Hence a logic suitable for naive 
set theory has to be very weak, even lacking

A& (A-*B)-*B.

is such a logic, as are its subsystems such as R-W.
It is not known whether R-W is weak enough to contain the 
naive axioms nontrivially, and nor is it known whether £ is 
strong enough to allow ordinary mathematics up to some 
large slice of analysis to be deduced from the naive 
axioms. The most important positive result yet available 
is that just announced by Brady (Brady [80]) that naive 
set theory is nontrivial in a logic which contains at 
least:

Av~A
A&B^A A&B-*B
(A+B) & (A+C) A+B&C
A-> A v B B->AvB
(A+C) & (B+C) AvB+C

A& (EvC) -► (A&B) vC
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A-+~~A — A^A
A^B -*■. ~B+~A 
(A+B)&(B+C) A+C
A-̂ B, A => B
A+B, O D  =* B-*C A+D 
A #B =* A&B

The curiosity here is that this system contains not only 
excluded middle but also the conjunctive syllogism, which 
principles are absent from R-W. The conjunctive syllogism 
is a contraction postulate of a sort, since it holds in 
just those Ackermann groupoids satisfying

a°b < a° (a°b) .

The contraction axiom itself corresponds exactly to 

a°b < (a»b) °b

which at least looks related.5
As noted earlier the conjunctive syllogism takes 

R-W to R where naive set theory collapses to triviality, 
but Av~A, sufficient for all the tautologies in &, v and ~, 
can be added and produces the system RWX. I began to 
investigate RWX by looking at matrix models of the logic, 
and especially at those distinguishing RWX from R. I 
noticed that a high proportion of RWX matrices, including 
all the chain-based ones, are rigorously compact. That 
is to say that validate (where T and F are the top and 
bottom elements respectively) :
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a+T = F-*a = T

a/T =*■ T->a - F

a/F =* a^F = F.

I started looking for an explanation, and soon discovered 
the little theorem

T -* (A->F A+F) .

This is the first R-w paradox and is proved:

F T-*-F because F+ anything

A-*F A T->F by prefixing

A-*F T -*, A-̂ F by permutation

T A+F A+F by permutation.

This product of the permutation principle does not look too 
harmful on its own, but together with excluded middle 
it leads us astray:

(A->F) v (A/F) (using A/F for ~(A->F))

( (A-»F) v (A/F) A-KF) A+F

i.e. (A+F ->. A-*F)&(A/F A+F) A-*F

and so by the first R-W paradox 

(A/F A-*F) A+F.

Now by permutation

(A A/F+F) A->F

and by contraposition, given T *>~F,

(A T A->F) A-+F

so by permuting again
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CA A T->F) A+F,
But

F T-*F as before

A-*F A T+F prefixing

CA -». A-*F) A A T->F prefixing 

so

CA A-*F) A-KF.

This is the second R-W paradox or r w x  paradox in the form 
of a contraction theorem for the absurd constant F. Notice 
that its derivation nowhere uses prefixing or suffixing 
in theorem form: premutation of antecedents is the only
principle used not in the system DK6 for which Brady has 
proved the non-triviality of the naive comprehension and 
extensionality axioms. The assertion axiom of R-W requires 
the suffixing axiom to yield permutation in theorem form, 
but nothing prevents the last from being taken as an axiom.

Now in naive set theory the constant F is definable 
with its characteristic axiom scheme 

F+A.
We take F =df. (x)(y)xey. By instantiation,

F x e { y: A }
but by the abstraction axiom 

xs{y: A} A 
whence as required 

F+A.
Now let a be the set {x: xex+F). We have 

aea aca+F
asa-̂ -F aea.
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From the former by the RWX paradox 
aea+F

and from this and the latter by detachment 
aea

and so by detachment again 
F

so naive set theory collapses.
There are many variants of the argument, some 

using distribution for & and v, some requiring 
contraposition in rule form only and so on. With fusion 
introduced by the residuation rule

A B+C ° A°B+C

permutation can be replaced in the derivation by the 
suffixing axiom and

A°(B°C) ** (A°B)°C.

Excluded middle can be replaced by

~ (A ** ~A) .

Proofs of these last assertions are easy enough to be 
left to the reader, but I should perhaps provide some hints. 
For the "associativity" version, then, note that the 
suffixing axiom is equivalent to

(A°B) °C + Bo(A ° C)

so th.e associativity scheme gives 

(AoB) oC + (B°A) °c

alloying permutation back in except for the last place 
in compound fusions. The proof is then easy; further
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hint: use T->F instead of F. As for using

~ (A ** ~A)

instead of excluded middle, my (large1 hint is to use 
the case

~(A->F «*. A/F)

and follow roughly the same argument as before.
The paradox can be made to emerge in the forms

A& (A->F) ■> F

(A+B)& (B+F) + . A+F

(T-*A) & (A-̂ B) T->B

T ° A T°AoA

T°A -> (T°A) ° (T°A)

(A°A **■. A->F) -*•. A->F

We might define a kind of negation

~1A =df. A->F

and, following Curry, we might dub it absurd negation. 
Then variants of the RWX paradox emerge as:

A-OA -> ~1A

A&1A B

“1 (A&~lA) and B -> ~l (A&~1A)

(A->B)&“1B -> ~1A 

~“lA-tlA 1A.

Some of these start to look familiar.
My result is the strongest negative result to date
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limiting the set of logics within which naive set theory 

is possible. We must either abandon the theoryr drop the 

lattice operations & and v (without which the recovery 

of ordinary mathematics hardly seems likely) , drop 

De Morgan negation, lose excluded middle or cease to 

permute antecedents in conditionals. Only the last two 

look like viable ways of amending logic. As far as is 

known either will do. None of the equivalents of the 

RWX paradox given above is derivable in £ , which contains 

R-W but lacks the law of excluded middle. Nor are they 

derivable in the system I dubbed in the introduction to 

this thesis EWX, for the following is a matrix set for EWX 

in which they all fail:

0 3
1 2

*2 1
*3 0

Hasse
diagram

T 3
Ol
<►0

2 __3
3 3 
3 3 
3 3 
1 3

EWX does have, in addition to Av~A, at least some restricted 

permutation principles, including:

A+B B->C A-*C

(A -*■. B~*C) -*■. D->B -*■, A ->. D+C

A =* A->B->B.

These do not appear strong enough to give any trouble. E-W 

can be strengthened by the addition of the reductio axiom

a +~a ->-~a

without collapsing to E. EWR (E-W plus reductio) gives
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the tautologies as deriyable theorems. It is not known 

whether EWX or EWR will support a nontrivial naive set 

theory, nor whether EWR contains the RWX paradox.

The RWX paradox can be used as a Lemma to prove 

further metatheorems, particularly those which show 

RWX to be closer to R than might have been thought. We 

have already noted in chapter 2.1 and 2.2 that very few 

small models distinguish between the systems, and in part 

this is due just to the smallness of the models. That 

ava be in the positive cone requires the identity t to 

be fairly low in the order structure, and in any case 

as we have seen most models of RWX are based on extensional 

setups in which t is low. But t < a entails a+a < t->af 

which is a-*a < a. And if a is very close to the bottom of 

the lattice then usually a+a < a anyway. Thus the 

requirement that there be elements high in the structure 

outside the positive cone and the requirement that the 

positive cone be large tend in small algebras to squeeze 

each other out.

There are, however, some unexpected similarities 

between RWX and R models which hold irrespective of the 

size of the matrix. For example, consider finite models 

in which the lattice order is a chain, in which every 

ava is designated and in which f < t. It is known (see 

Anderson and Belnap [ 75 ] §27.1) that the addition of 

f+t

to R produces Dunn's semi-relevant system RM, whose 

proper axiom is the "mingle" scheme

A **■. A-*A.



113

The derivation goes:

1. f+t

2. A-* f . A-̂ t 1, prefixing

3. t A+A

4. A-*f **■. A . A-̂ A 2,3r suffixing

5. ~A . A ->, A->A 4, def.~

6. (A ■>. A->A) ->-« A+A contraction

7. ~A •*-. A^A 5,6, transitivity

8. ~A ->. ~A-̂ ~A 7, contraposition

9. A ->. A->A 8, subs ~A/A,
double negation.

This derivation will not work in RWX, where the step 
6 is unavailable. For a model splitting RWX plus f->t 
from RWX plus mingle consider:

S = the integers;

 ̂ is numerical order;

a ,v are numerical minimum and maximum; 

a — — a 

a-̂ b = b-a 

t = f = 0 

a ob = a+b

This is, as Meyer and I proved in [79], a characteristic 
model for the system A of Abelian 1-group logic with the 
canonical negation, group inverse. Where a is any positive 
integer, a < a+a fails, for a-* a is always 0. A has no 

nontrivial finite model at all, for any finite lattice is
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complete and has a greatest element T. As an instance of 
the "axiom of relativity"

A-*B->B+A

we have

a-*T-*T < a.

But a+T+T is designated, since a+T < T, whence every element 
is designated and the model is trivial. Now while I do not 
know whether RWX plus f+t has the finite model property 
and in particular whether

A -*. A->A

can be falsified in a finite model,7 we can show the partial 
result that every finite chain model satisfies all of RM.

RM is standardly algebraised by Sugihara chains: 
totally ordered De Morgan lattices where for every a,b, 
if a < b then a+b = avb and if b<a then a->b = aAb. I now 
show that every finite chain model of RWX in which f < t is 
a Sugihara chain. Proof is by induction on the length, 
n, of the chains. There are two base cases: 
n = 1 trivial;

n = 2 the only RWX model is truth tables - a Sugihara chain.

Now for the induction hypothesis suppose the only model on 
the (k-2)-element chain is the Sugihara matrix (known as 
RM(k-2)) . We must show for n=k that the only model on the 
n-chain consists of just RM(k-2) with new top and bottom 
elements T and F and the -* matrix extended by rigorous 
compactness:
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RMk -*■ table F T
F T • . . T, , . T

••
F RM (k— 2)

••
•

T••

T F 1..F... T

It suffices to show that any -> matrix on the k-element 
chain is rigorously compact and has a submatrix for its 
interior - i.e.

F->a = a+T = T

a^T =* T->a = F

a^F => a-KF = F (these define rigorous compactness) 

a/{T,F} & b£{T,F} =► a+b£{T,F}.

Rigorous compactness is easy to show, for:

F < T->a because F < anything

so T < F->a permuting antecedents.

and T < a->T contraposing.

aA (a-*F) = F RWX paradox

so a = F or a-*F - F total order

and a = T or T-*a = F contraposing.

Now to demonstrate that T cannot occur in the interior:

suppose a+b = T - i.e. T < a-*b;
then a < T-*b by permutation
so a < b+F by contraposition
but b = F or b+F = F as proved above
so b = T or a = F,
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To show, finally, that F cannot occur in the interiorf 
we must use the fact that f < t,

f < t 
t+b < f-*b 
b < f-*b
b < a->f -*, a-*b 
b < a a->b 
a < b •>, a+b

Now suppose a-*b = F and b ^ F. Either b = F or b-*F =; F, 
by the RWX paradox, so b+F = F. But we are supposing 
a+b = F, so b a^b = b-̂ F, so b a-*b = F, Therefore 
a < F, so a = T. Hence the interior is a submatrix, has 
the lav; of excluded middle and has f < t, so the interior 
is RM(k-2), and the whole matrix is RMk.

As noted in chapter 1.4 above, the RWX paradox 
and the rule

f < t =* a->b < b+a
are very useful in speeding up the search for R-W matrices. 
These theorems were discovered after I entered the 
conjectures on the grounds that the search programs only 
produced matrices obeying them. In this way such programs 
can be improved through feedback from their own output.
The investigations in this chapter are also intended to 
illustrate the process whereby theorems are not proved but 
suggested by examination of such quasi-empirical data as 
the machine produces, the analytic proofs coming after.
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Chapter 2.4 Ackermann constants

The sentential constants t and f ("the true" 
and "the false") have made frequent appearances throughout 
this thesis, and indeed throughout the history of relevant 
logic. The true - or perhaps more accurately the logically 
true - is a natural identity for Ackermann groupoids, and 
the false has been used, as in the last chapter, to define 
negation for the R-like logics. These constants were part 
of Ackermann's original logical scenery (Ackermann [56]); 
Anderson and Belnap eliminated them from E and R in their 
early formulations; Dunn, algebraising R, began the 
rehabilitation of t, and Meyer, investigating further the 
notion of enthymematic implication, added more to its role.
The story of the fall and rise of Ackermann's sentential 
constants is to be found scattered through Anderson and 
Belnap's [75].

Ackermann constants are hereby defined as formulae 
built up from t and f by closing under the logical connectives. 
They are to be distinguished from Church constants, which 
are built up from T and F in the same way, and mixed 
constants which are founded on all four of these. The 
governing postulates are:

A ° t-*A 
~A o A-»f
A-*T
F-*A.

This study is concerned with Ackermann constants only.
What there is to say about Ackermann constants in
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classical logic can be said thus: 
t

f
This will also do for the Church constants, and direct 
products of it will famously complete the picture for the 
whole of that system. Classical logic is thus Ackermann 
saturated: the system which results from letting
propositional variables range over the Ackermann constants 
(or indeed the Church constants) is the same as that 
resulting from their ranging over arbitrary propositions. 
Another Ackermann saturated logic is the system A which I 
developed with Meyer in our [79]. There (as we prove) 
the integers are a characteristic model, so since they 
only require one generator the one variable fragment is 
polynomially free for the whole system; and f behaves 
exactly like p, so Ackermann saturation is immediate. As 
examples of Ackermann unsaturated logics consider Heyting's 
intuitionist system J and the logic RM defined in chapter 
2.3 above. For both these systems the Ackermann fragment, 
that part of logic consisting solely of Ackermann constants, 
is "truth tables" or the 2-element chain, as it is for 
classical logic, but both systems fail Pierce's "law" -

A+B-+A+A.

- which is a tautology. The Ackermann fragment of J is 
truth tables because there the Ackermann and Church constants
are identical, for:
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\- A B+A

[- t A+t

but |- t

|- A+t whence t = T;

and “1 A =df. A+F i.e, f = F.

In RM the Sugihara chains are characteristic, and they force 
for every dyadic connective <j>:

<J> (A,B) e {A,~A,B,~B> .

Thus in RM every Ackermann constant is t or f; f < t, 
and the rest is easy.

No interesting general results about Ackermann 
saturation are to hand. The concept really only applies 
to systems with at least implication and negation and 
satisfying the postulates of B (see Routley and Meyer 
[F]), perhaps with a weakened negation part. Clearly 
Post-completeness is a sufficient condition for Ackermann 
saturation, for the Ackermann fragment gives rise to a 
supersystem of the base logic. I have no information on 
the converse conjecture. There seems no good reason why 
Post completeness should be necessary for Ackermann 
saturation, and systems like T-W and R-W might well 
provide counterexamples, as little is known of their 
constant structure beyond the fact that, since they are 
subsystems of A, they have infinitely many distinct 
constants.8 On the other hand I can see little chance 
of anything short of such a concrete counterexample showing 
that Post completeness is not necessary. For all the
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contraction-free relevant logics the question of Ackermann 
saturation is open.

In systems weaker than R-W and R the properties 
of Ackermann constants are complicated by the fact that 
A+f and ~A are in general different formulae. The 
importance of f for the stronger systems lies in just this 
possibility of regarding relevant negation as inferrential 
in character; in E and its subsystems it is rather difficult 
to know how to think of the sentential constants, especially 
f.9 For this kind of reason, and because we wanted to 
begin with solvable cases, Meyer and I began the investigation 
of Ackermann constants with R and its variants.

The only paper, so far as I am aware, dealing 
solely with constants in relevant logic is Meyer's [79].
There the constant structure of some fragments and extensions 
of R is settled, and the attack opened on R itself. The 
presence of f ensures that all fragments with constants 
have negation. Implication and negation suffice to define 
fusion, and conjunction and negation suffice for all the 
extensional connectives, so the two fragments worth 
investigating are the closures of {f} under the 
intensional fragment, and under -* and &, the full logic, 
t may be defined as f-*f. The intensional Ackermann 
constants in R are 6 in number and have the Hasse diagram:
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( f 2 ). 2

5 C£+t-*U 

> 4  (t)

(f) 1 Cf-*t)

/Q(Cf+t) of)

-> 0 1 2 3 4 5
0 5 5 5 5 5 5
1 3 4 5 3 3 5
2 3 3 5 3 3 5
3 0 2 2 5 5 5

*4 0 1 2 3 4 5
*5 0 0 0 3 3 5

Note the notation of a2 for a°a. Generally we shall write 
a11 for a fused with itself n times. That these six 
formulas in fact constitute the Ackermann fragment of 

follows from Meyer's [70], and is Theorem 1 of his 
[793. I do not propose to repeat the proof, as this 
intensional subsystem of R is not my main concern here.

completely is CR, introduced in Routley and Meyer's [74] 
under the name CR*. CR has the additional connective 1 
whose postulates are:

One of the theorems fundamental to the constant structure 
of CR is

~t ** “It

Another system whose Ackermann fragment is known

ASHA rt B

A + BvlB.
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which immediately gives the rather surprising 

t&f -* B 

A -* tvf.

The proof that the two negations of t are equivalent c

LEMMA 1~A ° ~1A.

Proof 1. A&~IA -*■ ~~I~A

2. “l~A -* ~ (A&~1A) 1, contraposition

3. -|~a -> ~Av~“lA 2, duality

4. “l~A&l~A -> ~~1A 3, Boolean laws

5. -|~a -> ~~IA 4, & idempotent

6. ~“I~A -> AvlA

7. ~(Av~lA) -> 1~A 6, contraposition

8. ~A&~’1A ~l~A 7, duality

9. ~~IA -> "l~Av~l~A 8, Boolean laws

10. ~~IA -> n~A 9, v idempotent

11. ~i~a ~ia 5,10, adjunction.

MAIN THEOREM ~t ^ “It.

Proof 1. t -* ~itv~“it excluded middle

2. t&t •> ~nt 1, Boolean laws

3. t -> ~nt 2, & idempotent

4. "it -* ~t 3, contraposition

5. t -* n~t 3, LEMMA

6. ~t -*• nt 5, contraposition

7. ~t it 4,6 adjunction.7
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The structure of the constants in CR is the 
8-element Boolean monoid:

Hasse diagram

This structure is readily seen to be a product algebra, 
decomposing into

0
*1

1 1 
0 1

t=l
f=0

O
t=i 
f=2

Now the product is given by:

2-element 4-element 8-element constant
algebra algebra algebra

0 0 0 t&f
0 1 1 t&f 2
0 2 2 f
0 3 3 f 2
1 0 4 f+t
1 1 5 t
1 2 6 fv(f+t)
1 3 7 tvf
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Since the 8-element algebra given Is a De Morgan monoid
with Boolean complement it is a model of R and of CR, so
these 8 Ackermann constants are all distinct in CR, To
show that there are no more than these 8 we prove that CR
is the intersection of CR+f2 Ci.e, CR with f2 as a new
additional axiom) and CR+f-»-t, and then show that these two
systems have the constants fragments given by the 2 and
4-element structures above. The first lemma is simple,
for CR, like all the relevant logics, is the intersection
of its prime, regular theories10, and validates the law
of excluded middle, so in every prime model either f2 is verified
or f->t is verified. We know that the addition of f->t to R,
and hence also to CR, produces at least the system RM, whose
Ackermann fragment we saw to be truth tables. It remains
to show that CR+f2 has just the 4 Ackermann constants

t
f
t&f = f->t 
tvf = f2

and for this it suffices to show 
tvf = f2

for the set is then clearly closed under the connectives, 
t&f being lattice 0 as already shown. This is quite easy, 
for f-*f2 is a theorem of R anyway, and t-*f2 is f2 which 
holds as an axiom of CR+f2, whence 

tvf < f2.
And we know

f2 < tvf.
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To complete closure under -* note that 
f-*t+t = fvt 

since clearly
t < f+t+t

and
f-*t < f-*t

SO (f-*t) of < t 
SO f o (f->t) < t
so f < f-*t-*t 
so tvf < f-*t-*-t.

And of course again 
f-*t-*t < fvt.

Notice that the proof leans heavily on the "paradoxical" 
theorems of CR: 

f&t -> A 
A -> fvt.

For this reason, as we shall see, it will not go through 
in the case of R. These theorems give us the bonus that 
the Church constants T and F are definable in CR as fvt 
and f&t respectively. As another bonus, notice that the 
De Morgan and Boolean negations as defined for the 
Ackermann constants are the same, so the same constant 
structure obtains in KR, which adds to CR the scheme 

A+B -►. ~IB-*“1A.
A similar line of argument shows that R is not Ackermann 
saturated: the Ackermann fragment of R+f-*t is truth tables,
which validates Pierce’s law:

A^B^A-^A
and that of R+f2 of course validates f2, so
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f2 v Cp+q+p+p)
is a theorem of the Ackermann fragment of R, It is not 
a theorem of R, however, for the following is a De Morgan 
monoid

also begins to investigate the constant structure of R itself. 
Meyer notes that the following structure is also an 
f-generated De Morgan monoid:

>3 0 1 2 3]> 2 0 3 3 3 3
*1 0 1 2 3

<>1 t= 1 *2 0 0 1 3
<>0 f=2 *3 0 Q 0 3

& 0 1 2 3 O 0 1 2 3
0 0 0 0 0 0 0 0 0 0 0 3

*1 0 1 1 1 *1 0 1 2 3 *1 2
*2 0 1 2 2 *2 0 2 3 3 *2 1
*3 0 1 2 3 *3 0 3 3 3 *3 0

Notice that the implication table and the negation table 
are identical with those of the "diamond" structure given 
earlier for CR+f2, but that one extra element - f - is 
designated. This coincidence of tables with different 
order structures is not uncommon in R. Now the De Morgan

3 o 0 1 2 3 -* 0 1 2 3
2 t=2 0 0 0 0 0 0 3 3 3 3

* 2 0 1 2 3
1 0  1 1 3 1 0 2 2 3

* 2 0 1 2 3
* 0 a=3-a * 3 0 3 3 3 * 3 0 0 0 3

and on assignment of 1 to p and 3 to q the suggested
formula takes the value 1, which is undesignated.

These results are all in Meyer's paper of 1979, which



127

monoid which is the direct product of this 4-chain with 
the 8-element Boolean monoid of CR is also f-generated, 
which accounts for Meyer's observation that there are at 
least 32 pairwise non-equivalent Ackermann constants in R. 
His crude proof was to have the computer generate formulae 
taking all values on the 32-element product algebra.

When he wrote [79] Meyer left open the questions 
of how many Ackermann constants R has and of whether in fact 
there are exactly 32. My first suggestion was to look at 
De Morgan monoids based on the 6-element extensional setup

t=2
f=3

The idea immediately bore fruit. This "crystal lattice" 
can replace the 4-chain in the direct product algebra 
above, giving a 48-element f-generated De Morgan monoid. 
The implication table for the 6-element structure is:

The proof that the 48-element direct product is f-generated 
is quite elegant. Let each element be represented by an 
ordered pair <a,b> where a is an element of the 8 and b 
of the 6. First note that the element <7,0> is generable:
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it is
f2 -* fvt.

Its negation, of course is <0,5>. Now in general we can 
generate <a,0>: where A is the formula generating a in the
8-element structure, <a,0> is generated by

A& (f2 -* fvt) .

Similarly, where B generates b in the 6, <0,b> is 

B&(f2 o(f&t)).

But now all the 48 can be generated from what we have by 
closing under disjunction, for

<a,b> = <a,0>v<0/b>.

When these 48 were discovered I was working on the 
matrix-generating programs in the Bigmat series, which began 
producing De Morgan monoids on much larger structures, 
exhausting the possibilities at 10x10 and going on to 
12x12 and beyond. Having become interested in the Ackermann 
constant question, I next wrote a little program to generate 
the Ackermann constants distinguished by a set of input 
matrices

m ,  . . . mi n
Each matrix m^ gives the constant f a value f^ and consists 
of two tables, and &^. Every formula generated is 
represented by the sequence of the values it takes on the 
n matrices. Thus A is represented by

<vi (A) . . . vn (A) > .

The basic structure is a stack of such sequences representing 
the formulae generated so far. Let there be k of these.
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Then the stack is

<S. . . .S. >1 k
where each is

<sl . . . S*?>l l

and each S? is the value on the j-th matrix of the constant 
represented by S^. The basic algorithm is:

procedure Try (cn,x,y]; connective cn; local i;
begin for i ■<- 1 until n do ŝ  +- cn.CS^S 3* l x y
if s is not already in the stack then

begin k +■ k+1; 
put s into the stack; 
print out cn,x,y and s 
end ;

Now the main program, after reading in the data:

Initialise: k +■ 1; Si <f(. . .f >;
Loop: for i •*- 1 until k do

for j •«- 1 until i do 
begin

try(&,i,j); 
try(-*,i,jl? 
try (+, j,i)
end .

The actual algorithm used was more complex, as the stack 
entries were kept not in order of discovery but in a 
numerical order to facilitate a binary search. This 
required an index to the stack and so on. Moreover, 
to save space the entries were packed densely into core
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words, only 5 bits being used to represent each integer.
All these details are irrelevent to the general idea, though 
essential to its implementation.

All the 8-element De Morgan monoids were examined 
for constants and yielded nothing beyond the 48 we had 
already. Extensional setups with odd numbers of elements 
are of no interest for their Ackermann fragments, since they 
require the De Morgan complement to have at least one fixed 
point, a. Now

a = a

aAa = ava

aAa < f and t < ava 

t < f

Thus conjunction gets no grip, as the intensional constants 
all satisfy

c < t or f < c,
which makes the constant structure a chain. In fact the 
Ackermann fragment of any inconsistent De Morgan monoid 
is at most the 4-element chain which was used by Meyer 
to split the 32 Ackermann constants of the 1979 paper. The 
next matrices to try therefore were those of size 10*10,

The first structure of this size to produce any 
further constants was the "crystal Boolean lattice" which 
consists of the 8-element Boolean algebra with a new top 
element and a new bottom element, giving:
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Hasse diagram negation implication
~ -> 0 1 2 3 4 5 6 7 8 9
0 9 0 9 9 9 9 9 9 9 9 9 9
1 3 1 0 4 4 4 4 8 8 8 8 9
*2 7 *2 Q 1 2 3 4 5 6 7 8 9
3 6 3 0 1 1 2 4 5 5 6 8 9

*4 5 *4 0 1 1 1 4 5 5 6 8 9
5 4 5 0 0 0 Q 0 4 4 4 4 9

*6 3 *6 0 0 0 Q 0 1 2 3 4 9
7 2 7 0 Q 0 0 Q 1 1 2 4 9

*8 1 *8 0 0 0 Q 0 1 1 1 4 9
*9 Q *g 0 Q 0 0 0 0 0 0 0 9

Notice that the implication table is of the same overall 
form as those of the other De Morgan monoids specified
in this chapter; this is the reason for my slightly odd 
placing of designated values. This form can be specified 
for a matrix of size (M+1)x (m +1); allow a to stand for 
{1...(M-l)/2} and $ to stand for {(M+l)/2...M-l} (assume 
M is odd); now the implication and negation tables are 
schematically11

0 a B M ~
0 M M M M Q M
a 0 a B M a B
B 0 0 a M B a
M 0 0 0 M M Q

Moreover, except for the Boolean algebras, the conjunction 
table is

B
0 0 0 0
0 a a a
0 a B B
0 a B M
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In general, except, again, for the Boolean algebra of 
truth tables, t is one of the "a" elements and f 
correspondingly in the range of 0. The generalised structure 
is, of course, the 4-chain which Meyer used in splitting 
32 constants in [79]. Any f-generated De Morgan monoid 
of this form clearly has the property that its direct 
product with the 8-element Boolean monoid characteristic 
for the Ackermann fragment of CR is likewise f-generated.
The reason is, as before, that the formula

f&t f->t

is evaluated as some a -* 0, which is Q, but it is 
evaluated as the top element of the Boolean monoid. The 
argument then follows that which showed the 48 f-generated. 
Notice that any constant falls into the same class of 
values (.{0},a,3 or {M}) on all models of the given form.
Thus there is no chance that the direct product of any 
two of them might be f-generated.

Consider, however, the 10-element structure just 
given and the 6-element crystal lattice given earlier.
These are both of the form under discussion, and since it 
will be convenient to have the terminology I shall dub 
such structures Ackermann crystal monoids, As noted, 
the class of Ackermann crystal monoids is not closed under 
direct products, but it is closed under Ackermann products, 
which I symbolise with x^ and define:
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let m and m 2 be Ackermann crystal monoids, 

with element sets Q,al,31,M1 and 

0,a2 ,$2,M2 respectively. Then m 1x m  ̂

has element sets 0x0, a 1X a 2 r ß x32, M 1x m 2. 

In n^x m 2, we define

<a,b> = <a,b>

<a,b>-><c,d> = <a->c,b-*d>

<a,b>A<c,d> = <aAb,CAd> 
t = <t,t> and f = <f,f>,

It is merely tedious to verify that m^x m 2 is indeed an 

Ackermann crystal monoid. Now the Ackermann product of 

our 10- and 6-element Ackermann crystal monoids is an 

Ackermann crystal monoid with 18 elements:

6-element
algebra

10-element
algebra

18-element
algebra class

0
1
1
1
1
2
2
2
2
3
3
3
3
4 
4 
4
4
5

0
1
2
3
4 
1 
2
3
4
5
6
7
8
5
6
7
8 
9

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16 
17

0
a
a
a
a
a
a

To generate all these elements it clearly suffices to 

generate a, and by the usual construction this requires 

only that the elements 4 and 5 of the Ackermann product

ö
 

ö
 ca ca ca ca ca oQ

 c
q c

q S
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be generated. 4 is generated by 
(f& (f&t-*t) ) ° (f&t-»-t)

and 5 by
f&t -* t -* t.

Further investigation pushed the number of known 
Ackermann constants beyond the 144 of the direct product 
of these 18 with the 8-element Boolean structure. First 
came another 10-element Ackermann crystal:

This yields the f-generated monoid with the -* table:

The Ackermann product of this with the 18-element 
Ackermann crystal monoid we already have is also



135

f-generated, and of course has 66 elements, so its product 
with the Boolean 8 gives 528 distinct Ackermann constants.
The crucial elements for the usual proof of f-generation,
abbreviating f&t-*t to g, are:

first second
6-element 10-element 10-element formula
algebra algebra algebra

1 4 4 (g°f) & g
2 1 4 g g&f -*■ g&f
2 4 1 g ■> g&f t
2 1 1 g -> t
1 4 1 Cgof) & (g -* g&f -* t)
1 1 4 (gof) & g & (g&f -* g)

Only three of these, the first three (or the last three)
are strictly required by the proof. The element g is the
greatest member of a in all these algebras.

The llxll and 13x13 matrices were no help, as already 
noted, and those at 12x12 yielded only products of the
f-generated De Morgan monoids of smaller sizes. The 
next productive structure has 14 elements:

a = 13-a 
t = 2 f = 11
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The table follows the familiar pattern:

9 10 11 12 13
13 13 13 13 13 13 13 13 13 13 13 13

6 12 12 12 12 12
10 11

6 10 12 10 10 10

To show that the Ackermann product of this with all the
previous Ackermann crystal monoids is f-generated it
suffices as always to generate a, and for this, given that
the four input structures are all f-generated, we need
four crucial formulae, for which I abbreviate f&t-*t to g as
before, and abbreviate g&f to h. Then we have:

formula value on: 6 10(1) 10(2) 14
g+t 2 1 1 1
(fog) & (g->h->t) 1 4 1 1
(t&(h-*g) ->. g-*t) -* f&t 1 1 4 1
(f o (g+h) ) & (t&(h->g) ■* f&t) 1 1 1 6

The direct product of the Ackermann product of these four
Ackermann crystal monoids with the Ackermann fragment of 
CR is a 3088-element f-generated De Morgan monoid, 
establishing the best result to date on the constant 
structure of R: there are at least 3088 distinct
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Ackermann constants in R.
The immediate unanswered question is whethex" there 

are exactly 3088 or whether some yet more devious ploy 
will increase the number again. The "empirical" evidence, 
for what it is worth, suggests that any further increase 
will be hard to find by the methods used thus far. I haye 
used a Cut and Guess algorithm to enumerate f-generated 
De Morgan monoids based on (substructures of) all likely-' 
looking extensional setups up to 18x18 and some at 20x20 
and 22x22. I have even exhausted some of size 30x30 which 
at one time looked promising. So far no new constant has 
emerged. Elementary acquaintance with the natural numbers, 
however, suggests that even large amounts of such evidence 
are not particularly conclusive. The best hope of proving 
that there are infinitely many Ackermann constants in R 
seems to lie with the project of finding a sequence of 
progressively more complex constants no two of which are 
equivalent. The sequence

f, f2, f3...fn,fn+1...
for instance does not terminate in R-W or RWX; in R we 
have

which blocks such a simple-minded approach, but there may 
be some recursive compounding procedure producing such a 
sequence. Perhaps some relatives of the formulae I used 
to generate the Ackermann product above would form the 
initial segment, but it must be said that there is no 
immediately obvious pattern. Our knowledge of the Ackermann
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fragment of R has been produced mainly by the computer, 
and it may be that we should continue to use mechanical 
aids in searching for repeatable patterns of this kind.

In the months since the discovery of the 3088 
known Ackermann constants in R there has been no progress 
to report on any of the conjectures Meyer and I made 
then. One conjecture was that there are infinitely many 
of these constants; the only observation I have to offer 
there is that the problem is nontrivial. Another conjecture 
of some interest is the torsion conjecture: for every
Ackermann constant, c, of R there is some finite n such 
that

n n+1 c = c

A stronger form is

c o c = c °c °c -i.e. n-2.

If there are only finitely many Ackermann constants, of 
course, then the torsion conjecture is trivially true, and 
if there are exactly 3088 then its stronger form is true.
The natural first thought on torsion is to find an 
inductive argument based on complexity of formulae. After 
all, f2=f3 is a convenient base case for such an induction, 
and clearly if an=an+  ̂ and bn=bn+  ̂then (a°b)n = (a°b)n+ .̂ 
Moreover,

n n+1 ,n ,n+l _ / 2n , w, Jn+1a = a , b = b =* (avb) = (avb)

so closure under disjunction preserves the torsion property. 
To prove the last statement, I first streamline notation a 
little by dropping the dot of fusion in favour of simple
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juxtaposition. Now a basic property of De Morgan groupoids 
is

(avb)c = ac v be

whence

(avb)2 = a2 v ab v b 2

and in general
i=n

(avb)n = V [a11 1 b1] 
i=0

where a^ = t. This expansion is unique as given for R
because fusion is unrestrictedly associative and commutative
there. Now suppose a11 = an+  ̂and bn = bn+^, and consider 

2 n(avb) . Its expansion is
i=2n 0 w r 2n-i , 1-,V [a b ]
i=0

which reduces, by identifying an+"̂ with a11 and bn+  ̂with 
, nb , to

i=n . i=n
V [an b1 ] V V [a1 bn ]. 

i=0 i=0
2 n + -j_

Now consider (avb) , which results from fusing avb to

this big disjunction. It gives the 4-way disjunction

i=n . i=n
a ( V [a11 b1]) v a ( V [a1 b11]) 

i=0 i=0

i=n
v b ( V  

i=0
r n  , 1 -i \[a b ])

i=n
v b ( V 

i=0
r i v n -,x[a b ])

which quickly reduces to
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i=n
V r nil . i n [a b ]

i=n 
v V r itl , n n [a b ]

i=Q i-Q

i=n
V r n . iil_ C a b  ]

i~n 
v V r i . n i l , [a b ]

i=0 i=Q

This is immediately

i=n
V

i=0
r n[a i—

i
•HX

i

i=n 
v V 

i~l
[a1 bn]

i=n
V

i=l
r n[a b1]

i=n 
v V 

i=0
[a1 bn].

But the second and third large disjuncts are sub-disjunctions 
of the first and fourth, so we have

i=n . i=n
V [a11 b1] V V [a1 bn] 

i=0 i=0
which is the formula we had before, completing the proof.
I can, however, see no way of proving analogous induction 
steps for compounding under conjunction, implication or 
negation; the iductive proof of the torsion conjecture 
has poor prospects.

This chapter on the Ackermann constants thus ends 
on a failure to prove or disprove what ought apparently to 
be a readily decidable conjecture. And it is vexing to 
have found no answer, either, to the major problem of the 
number of such constants. Should their number be finite 
and as great as 3088 this I think would mean that the system 
is more complicated than we have thought, for its apparatus 
for distinguishing types of formula and types of model
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structure would deliver large finite numbers. Thus failures 
to have found a decision procedure could easily be results 
of not having accounted for all the cases relevant to this 
or that, of not having appreciated the richness of the 
structure, suggesting that the number of such failures is 
less good inductive evidence for undecidability than has 
sometimes been thought.
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Chapter 2.5 Conclusion.

Such is the state of the research programme in the
application of computers to relevant logic. My thesis is
at many points inconclusive, for I have opened more lines
of inquiry than I have closed. The investigation closest
to completion is that of the logic R-W, especially given
the metacompleteness and other results for the system

*which I have reported elsewhere and which do not form 
part of Chapter 2.3. In the case of R-W the most 
important remaining open problem is that of the absolute 
consistency of its naive set theory; my intuition that it 
is absolutely consistent has no formal support. The 
study of Ackermann constants (Chapter 2.4) is much less 
advanced. The constant structure of R has been investigated 
in close collaboration with machines, but now what we need 
are some hard theorems, with which the computer will help 
us less, and some different approaches to generating more 
non-equivalent constants if there are any. Apart from 
the question of the number of R constants and the torsion 
conjecture (see Chapter 2.4) the problem of describing 
the constant structures of logics weaker than R remains 
completely open.

The really perplexing issues are those raised in 
Chapter 2.1 and 2.2 concerning the analysis of sheer 
numbers of model structures. By accident I stumbled 
into a field in which I have not been trained - something

In my [F2].
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which also happened to Meyer and me when we "discovered"
abelian groups last year. It is true that the characteristic
interests of logicians, especially those of a more
philosophical bent, can illuminate a familiar landscape
from an unfamiliar angle and may produce some insights, but
it is also true that to find oneself a rank amateur in a
subject to which generations of good professionals have
devoted their working lives is somewhat unnerving. The
feeling is that since there is an established scientific
community which has a name for what one is trying to do,
someone somewhere must have had all one's good ideas twenty
years ago. In the case of the present project I appear to
have been saved by the complexity of the structures, for
the problem of enumerating semigroups, for instance, is
largely one of avoiding isomorphisms, while the selection
of non-isomorphic extensional setups almost eliminates
isomorphisms from Dunn monoids and the like. Thus my
actual techniques are new, though the notion of a
backtrack search with pruning of the search tree, which
underlies all the algorithms I discuss, is well worn 

*indeed. It has emerged already from my investigations 
that there are strong patterns to the distribution of model 
structures among the available base setups. We have no deep 
theorems to explain these patterns; nor am I sure what such 
theorems would be like or what vocabulary they would use.
The question, for example, of the senses in which R-W is

See e.g. the outline in Reingold, Nievergelt and Deo [77], 
especially their Chapter 4.
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stronger than E "on the available evidence" feels strange, 
for we are accustomed to logic as a body of "analytic" 
knowledge not subject to statistics or experiments such as 
are now possible.

The situation with regard to the search programs 
is that while most of the algorithmic problems of 
generating matrix models have been solved the actual extant 
programs are less than optimally useful. I have not 
concentrated in the thesis on the matter of how to present 
matrices for easy readability, but this is a nontrivial 
aspect of the subject, if one of less theoretical importance 
than those treated here. No less difficult is the 
arrangement of the thousands of available matrices in some 
canonical or catalogued order, which must presumably be 
influenced by the uses to which they are to be put. One 
line to be pursued, then, is the construction of a 
program to rearrange the order, content and format of the 
output from matrix-finding programs either for readability 
or to make up input files for further programs such as 
those which split Ackermann constants.

Another important line has to do with some of the 
common uses to which matrices are put. The classic use 
of a matrix model is to refute a nontheorem of a given 
system, and I am now in a position to write a program to 
search for a matrix to refute a formula presented at runtime. 
Such a program would try to find a falsifying assignment 
from a search space and progressively reduce the space 
using techniques from Cut and Guess as the assignment to
parts of the formula is built up. At some point a matrix
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search by the transferred blocks, method or SCD could take 
over to produce the desired matrix if there is one. At 
present searching for refutations of formulae, using programs 
like Tester, is time-consuming and requires a good deal of 
human effort and ingenuity. It seems that some of the 
methods and procedures we now possess should be applicable 
to the practical problem of using such an intended application 
of a matrix to guide the search.

Finally, it should now be possible to take the 
algorithms we have and reconsider using them to find model 
structures for a much wider range of logics and other 
algebraic systems than I have considered in detail here.
The modal logics and their fragments are well within range, 
as are other relevant logics and extensions thereof, many 
of which are detailed in Routley and Meyer's forthcoming 
volume [F]. It is perhaps time to write a fairly large 
program or package which should be marketable wherever 
logicians want mechanical assistance in finding models or 
"empirical" data on their systems. The future for my 
projects is at any rate nonempty.
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Notes.

1. Page 18. I recently tested this calculation empirically 
with an "idiot" program of my own, and found it to be 
sadly astray. The figure of 4.5 seems to have been a 
mistake of simple arithmetic, but in any case the time 
of 6.3 seconds included some overheads not allowed for 
in the calculation. On rather more efficient hardware 
my idiot loop generated the 147 matrices for E_̂ at
3x3 in just over 2 seconds cpu time, and at 4^4 was 
testing about 10,000 matrices per second, which suggests 
a runtime in the region of 5 days for my program and 
perhaps 15 days for Meyer's. Still, the story is a 
classic of its type. That our programs will often 
run in very reasonable time (like 6 seconds) for some 
nxn but become wildly unreasonable (like 69 days) at 
(n+l)x(n+l) has become knowrias the "69-day syndrome" 
in its honour.

2. Page 28. Where L is a relevant logic, CL results by 
adding Boolean negation with the postulates

A&-»A -> B

A -> Bv-iB.

KL is the system CL with the added axiom scheme
A->B ■*. ~»B->- -\A.

These "classical relevent logics" were studied in the 
papers of that title by Routley and Meyer, [73] and [74],
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3. Page 30. This happy state of affairs breaks down on 
the 9-element extensional setup:

Here if t, c, b, 0 are the highest numbers the 
complement table cannot be given by

x = 8-x.

4. Page 32. This suffices for R-W, given the choice of
extensional setup, the "symmetry" treatment of negation 
for contraposition and the suffixing axiom, since R-W 
results from the De Morgan lattice first degree 
entailments by the addition of:

1. (A+B)&(A+C) + . A+B&C

2. A-*B ~B->~A

3. A->B B-*C A->C

4 . A-*B ->. O A  ->. O B

5. A A+B+B.

The third and fourth of these are interderivable given 
the second, which is accounted for by the "symmetry" 
property. 5 results from 3 and 

t->a — a
by substituting t for A, A for B and B for C. To 
establish the claim then it suffices to derive 1 from
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the others. Note that fusion is definable in R-W by 
A°B -df. ~(A->~B)

since the following are all clearly equivalent;

A B->C 

A ->. ~C-*~B 

~C A+~B 

~(A-̂ ~B) -> C.

Now note the theorems 

(A+B)«A -* B 

(A+C) °A -* C

/. ( (A+B) & (A->C) ) °A -> B&C 

(A->B) & (A->C) A B&C.

This justifies the earlier claim that given the 
initialisation moves and the treatment of negation 
only the suffixing axiom (number 3 of my list above) 
need to be tested.

5. Page 106. These equivalences were noted by Routley
and Meyer in [72]. The derivations are not difficult. 
The instance of 

a°b < a°(aob)
used to derive conjunctive syllogism is obtained by 
substituting

(a+b) a (b-*-c) for a 
a for b.

For the converse the relevant case of conjunctive 
syllogism is
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Cb -* aob) a (a«b -> ao (a«b) ) < b -> ä« (a«b)

for a entails the left-hand side. The case of contraction 
is very easy. The following are equivalent:

c°a < (c°a)°a 

(c°a) °a < b =* c°a < b 

c°a < a->b =► c < a->b 

c < a . a->b =* c < a->b

for all a,c 

for all a,b,c 

for all a,b,c 

for all a,b,c.

6. Page 108. DK was introduced by Routley and Meyer in 
[76] where it was provided with quantifiers and 
relational ("worlds") semantics. Its propositional 
part is that given on p. above.

7. Page 114. I have had a program search all models up 
to 11x11 without finding a refutation, so the problem 
appears nontrivial.

8. Page 119. R-W and its subsystems are subsystems of
the system A whose canonical model is the integers 
with t interpreted as 0, ° as +, -* as and & as 
numerical minimum. The constant f may be any integer 
in this model: let it be 1. Then all members of the
sequence

f f2 f3 ... fn ...

are distinct. There are thus denumerably many distinct 
powers of f, and so denumerably distinct Ackermann 
constants, in all subsystems of A.
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9. Page 120. Traditionally (see Ackermann [5G] and 
Anderson and Belnap [75] for instance) the constants
t and f have been used in E and similar systems to define 
modality:

□A =df. t-tA

□~A =df. A->f.

This appears to be some form of modality and does 
provide a modal account of the constants, but the 
picture is unclear, especially as E does not seem to 
be a modalised form of its "de-modalisation", R.
Routley gives some discussion of modal interpretations 
of the constants in Routley and Meyer [F], Ch. 4,

10. Page 124. The proof that any nontheorem C of a standard
relevant logic can be refuted in a prime regular theory 
(a theory is regular iff it contains the logical truths) 
is a simple Henkin construction: start with Tq as the
set of theorems of logic and for some enumeration of 
the wffs define T.:l

if for some B, . . .B, e T. , I- B & . . . &B, &A. ->C i k l-i 1 i k l
then T . = T .l l-i

else T . = T . u {a .}.l l-i l
00

Nov; T is u T., and T is easily shown to be the
0) • 1  U)i=l

required prime theory. The construction does not 
yield a refuting theory with all the pleasant properties 
one might wish: for instance will not generally be
consistent with respect to negation, and in the case of 
the contraction-free systems it is not generally closed



151

under modus ponens , These are difficulties for some 
applications of the metatheorem, but not for the 
present one,

11. Page 131. The tables are read;

fl(X2...X ) = )s xi e )♦
Thus there is an epimorphism from any model structure 
of the described form to the 4-element chain-based 
structure. This epimorphism is moreover 1-1 on the 
top and bottom elements.
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