7 research outputs found

    A tabu search heuristic for the Equitable Coloring Problem

    Get PDF
    The Equitable Coloring Problem is a variant of the Graph Coloring Problem where the sizes of two arbitrary color classes differ in at most one unit. This additional condition, called equity constraints, arises naturally in several applications. Due to the hardness of the problem, current exact algorithms can not solve large-sized instances. Such instances must be addressed only via heuristic methods. In this paper we present a tabu search heuristic for the Equitable Coloring Problem. This algorithm is an adaptation of the dynamic TabuCol version of Galinier and Hao. In order to satisfy equity constraints, new local search criteria are given. Computational experiments are carried out in order to find the best combination of parameters involved in the dynamic tenure of the heuristic. Finally, we show the good performance of our heuristic over known benchmark instances

    Analysing the effects of solution space connectivity with an effective metaheuristic for the course timetabling problem

    Get PDF
    This paper provides a mathematical treatment of the NP-hard post enrolment-based course timetabling problem and presents a powerful two-stage metaheuristic-based algorithm to approximately solve it. We focus particularly on the issue of solution space connectivity and demonstrate that when this is increased via specialised neighbourhood operators, the quality of solutions achieved is generally enhanced. Across a well-known suite of benchmark problem instances, our proposed algorithm is shown to produce results that are superior to all other methods appearing in the literature; however, we also make note of those instances where our algorithm struggles in comparison to others and offer evidence as to why

    Metaheuristics for university course timetabling.

    Get PDF
    The work presented in this thesis concerns the problem of timetabling at universities – particularly course-timetabling, and examines the various ways in which metaheuristic techniques might be applied to these sorts of problems. Using a popular benchmark version of a university course timetabling problem, we examine the implications of using a “twostaged” algorithmic approach, whereby in stage-one only the mandatory constraints areconsidered for satisfaction, with stage-two then being concerned with satisfying the remaining constraints but without re-breaking any of the mandatory constraints in the process. Consequently, algorithms for each stage of this approach are proposed and analysed in detail.For the first stage we examine the applicability of the so-called Grouping Genetic Algorithm (GGA). In our analysis of this algorithm we discover a number of scaling-upissues surrounding the general GGA approach and discuss various reasons as to why this is so. Two separate ways of enhancing general performance are also explored. Secondly, an Iterated Heuristic Search algorithm is also proposed for the same problem, and in experiments it is shown to outperform the GGA in almost all cases. Similar observations to these are also witnessed in a second set of experiments, where the analogous problem of colouring equipartite graphs is also considered.Two new metaheuristic algorithms are also proposed for the second stage of the twostaged approach: an evolutionary algorithm (with a number of new specialised evolutionaryoperators), and a simulated annealing-based approach. Detailed analyses of both algorithms are presented and reasons for their relative benefits and drawbacks are discussed.Finally, suggestions are also made as to how our best performing algorithms might be modified in order to deal with further “real-world” constraints. In our analyses of these modified algorithms, as well as witnessing promising behaviour in some cases, we are also able to highlight some of the limitations of the two-stage approach in certain cases

    Compactness and balancing in scheduling

    No full text
    corecore