2 research outputs found

    Compact real-valued teaching-learning based optimization with the applications to neural network training

    Get PDF
    The majority of embedded systems are designed for specific applications, often associated with limited hardware resources in order to meet various and sometime conflicting requirements such as cost, speed, size and performance. Advanced intelligent heuristic optimization algorithms have been widely used in solving engineering problems. However, they might not be applicable to embedded systems, which often have extremely limited memory size. In this paper, a new compact teaching-learning based optimization method for solving global continuous problems is proposed, particularly aiming for neural network training in portable artificial intelligent (AI) devices. Comprehensive numerical experiments on benchmark problems and the training of two popular neural network systems verify that the new compact algorithm is capable of maintaining the high performance while the memory requirement is significantly reduced. It offers a promising tool for continuous optimization problems including the training of neural networks for intelligent embedded systems with limited memory resources

    Automated detection and classification of tumor histotypes on dynamic PET imaging data through machine-learning driven voxel classification

    Get PDF
    2-deoxy-2-fluorine-(18F)fluoro-D-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET-driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or inflammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into lymphatic system
    corecore