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A B S T R A C T   

2-deoxy-2-fluorine-(18F)fluoro-D-glucose Positron Emission Tomography/Computed Tomography (18F-FDG-PET/ 
CT) is widely used in oncology mainly for diagnosis and staging of various cancer types, including lung cancer, 
which is the most common cancer worldwide. Since histopathologic subtypes of lung cancer show different 
degree of 18F-FDG uptake, to date there are some diagnostic limits and uncertainties, hindering an 18F-FDG-PET- 
driven classification of histologic subtypes of lung cancers. On the other hand, since activated macrophages, 
neutrophils, fibroblasts and granulation tissues also show an increased 18F-FDG activity, infectious and/or in-
flammatory processes and post-surgical and post-radiation changes may cause false-positive results, especially 
for lymph-nodes assessment. Here we propose a model-free, machine-learning based algorithm for the automated 
classification of adenocarcinoma, the most common type of lung cancer, and other types of tumors. Input for the 
algorithm are dynamic acquisitions of PET data (dPET), providing for a spatially and temporally resolved 
characterization of the uptake kinetic. The algorithm consists in a trained Random Forest classifier which, relying 
contextually on several spatial and temporal features of 18F-FDG uptake, generates as an outcome probability 
maps allowing to distinguish adenocarcinoma from other lung histotype and to identify metastatic lymph-nodes, 
ultimately increasing the specificity of the technique. Its performance, evaluated on a dPET dataset of 19 patients 
affected by primary lung cancer, provides a probability 0.943 ± 0.090 for the detection of adenocarcinoma. The 
use of this algorithm will guarantee an automatic and more accurate localization and discrimination of tumors, 
also providing a powerful tool for detecting at which extent tumor has spread beyond a primary tumor into 
lymphatic system.   

1. Introduction 

Positron Emission Tomography (PET) constitutes a non-destructive 
and non-invasive imaging technique to assess the functionality and 
metabolism of tissues in physiological or pathological conditions [1]. 
While computed tomography (CT) and magnetic resonance (MR) im-
aging are based on anatomic changes for diagnosis, staging and 
follow-up of cancers, PET system relies on the detection of pairs of 
gamma rays which are released when radionuclides, such as F-18, 
carbon-11 and oxygen-15, emit positrons that undergo annihilation with 

electrons [2]. It is well-known that cancer cells reprogram their meta-
bolism and energy production networks, in order to sustain rapid growth 
and survival rate even in a hypoxic and poor of nutrients environment 
[3]. The alteration of the glucose metabolism of these cells constitutes 
the basis 18F-FDG-PET imaging technique, which is regarded as a stan-
dard of care in the management of several types of cancer [4,5]. 
18F-FDG, a glucose analog with the positron-emitting radionuclide 
fluorine-18 substituted for the normal hydroxyl group at the C-2 position 
in the glucose molecule, is the most widely and successfully used 
radiotracer for the detection of cancerous tissues. 18F-FDG-PET/CT is 
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widely used in oncology mainly for diagnosis and staging of various 
cancer types, including lung cancer, which is the most common cancer 
worldwide [6]. Since histopathologic subtypes of lung cancer show 
different degree of 18F-FDG uptake, to date there are some diagnostic 
limits and uncertainties, hindering an 18F-FDG-PET-driven classification 
of histologic subtypes of lung cancers [7,8]. Moreover, difference in 
tracer avidity between tumors and non-neoplastic tissues affects the 
diagnostic accuracy of 18F-FDG uptake. Indeed, among several factors, a 
suboptimal preparation of patients with glucose intolerance or diabetes 
and high physiological FDG activity in organs such as brain and liver, 
can render the signal-to-noise ratio unfavorable for lesion detection, 
causing false-negative results. On the other hand, infectious and/or in-
flammatory processes, as well as post-surgical and post-radiation 
changes may cause false-positive results, especially in lymph-nodes 
where activated macrophages, neutrophils, fibroblasts and granulation 
tissues show an increased 18F-FDG activity [9]. 

Aiming to overcome such diagnostic limits of PET imaging, in recent 
years, machine learning (ML)-based applications in metabolic imaging 
have received growing attention [10–13]. Thanks to application of ML 
algorithms for image processing and classification tasks, nuclear imag-
ing has benefited by improvements in cancer staging and restaging, 
identification of the radiation treatment gross tumor volume, moni-
toring of disease, prediction of outcomes and personalization of treat-
ment regimens [14]. The most successful applications are found through 
multi-modal imaging approaches, especially in combination with CT 
[14]. However, images processed by PET-CT scanners, though allowing 
the acquisition of functional and anatomical information in the same 
session, suffer from artifacts in the fusion image due to physiologic 
motions (e.g., cardiac and respiratory motions), especially for the 
assessment of primary lung lesions. The occurring spatial misregistra-
tion hampers the adoption of analysis methods relying on this compar-
ison [15,16]. For thoracic and abdominal lesions, a ML-based automated 
detection tool able to localize and distinguish different types of tumors 
from other non-neoplastic tissues characterized by high 18F-FDG uptake 
is therefore still missing. To pursue this objective, active research has 
focused on dynamic acquisitions of PET (dPET) data, allowing for a 
deeper metabolic characterization of the detected area through the 
acquisition of the temporally resolved 18F-FDG uptake with voxel reso-
lution [17,18]. Metabolic rates are usually separated from transport 
effects and determined from the dynamically acquired PET data by 
applying mathematical models of tracer kinetics from blood into tissues 
[19–22]. However, several factors, including the method of defining 
regions of interest (ROIs) and the reconstruction parameters used [23] 
as well as noise, image resolution [24] and instrumentation factors [25, 
26], can influence the quantification of tracer uptake in a tumor. In 
addition, since the blood activity concentration over time is needed as 
an input function for mathematical modeling, this approach requires an 
invasive continuous monitoring of blood tracer concentration [27–29]. 
In this context, the application of ML techniques to dPET data can be a 
key for the development of a data-driven classification of the tumor 
18F-FDG uptake with improved performance. However, existing appli-
cations of ML on dPET still require kinetic modeling, and were not 
anyway tested to distinguish and classify histotypes of tumors which are 
characterized by different kinetics of 18F-FDG uptake [30]. 

Here we propose a model-free, ML-based method for the automated 
detection and classification of adenocarcinomas (AD), the most common 
type of lung cancer, accounting for approximately one-half of lung 
cancer cases [31,32], and other tumors’ histotypes (i.e. large cell 
neuroendocrine carcinoma, LCNEC, and squamous cells carcinoma, 
SqCC), evaluating its performance on a dPET dataset of 19 patients 
affected by primary lung cancer. This technique consists in a trained 
Random Forest classifier which can classify contextually 18F-FDG uptake 
spatial and temporal features, such as intensity, edges, and texture of the 
detected region, providing for the generation of probability maps 
allowing to discern and localize objects with different kinetics of tracer 
uptake, such as AD and other cancer histotypes. Moreover, the 

classification algorithm can associate to each voxel a probability that the 
tumor has spread in regions outside lung parenchyma, such as 
lymph-nodes. This is very important, and its further development may 
assist the physician in the correct identification of distant neoplastic 
regions. This approach, being independent of the theoretical and 
experimental biases due to the definition and application of a mathe-
matical model, can lead to an accurate classification of lung lesions, 
constituting also a potentially powerful tool for the early and 
non-invasive detection of metastasis and/or other pathological meta-
bolic abnormalities. 

2. Materials and methods 

2.1. Selection of patients 

We prospectively evaluated 19 patients (6 females, 13 males; mean 
age = 70.1 ± 7.7 years) with histologically proved primary lung cancer 
(19 non-small cell lung cancer) referred from the Thoracic Surgery Unit 
of San Camillo Forlanini Hospital (Rome, Italy) to the PET-CT center of 
the Fondazione Policlinico Universitario “A. Gemelli” IRCCS (Rome, 
Italy). A cohort of these patients was previously investigated in a study 
by our group, with different aims [33]. This study was approved by the 
local Ethics Committee. All the clinical investigations were conducted 
according to the principles expressed in the Declaration of Helsinki and 
all patients provided informed consent. 

The epidemiological characteristics of the patients, the anatomic site 
and histotypes of the primary lung cancer are reported in Supplementary 
Material (Section S1). 

All patients underwent 18F-FDG PET/CT. Overall, we analyzed 28 
primary lung cancers (patients #1, #3 and #6 had two primary lung 
cancers, patients #11, #16 and #17 had three primary lung cancers) 
and 11 biopsy-proven metastatic lymph-nodes characterized by mod-
erate/intense 18F-FDG uptake. Regarding the histological classification, 
we analyzed 22 adenocarcinomas and 6 other histotypes. 

2.2. 18F-FDG PET-CT acquisition protocol and data reconstruction 

All patients (6 h fasting-state, blood glucose levels <150 mg/dl) 
underwent dynamic PET acquisition using an integrated PET-CT scanner 
(Biograph mCT, Siemens Healthcare), with a low-dose unenhanced CT 
(120 kV, 90 mA) performed over the thoracic region with a field-of-view 
of 21 cm. The trans-axial CT matrix size was 512x512 (1 mm × 1 mm x 3 
mm). A mean of 240 MBq of 18F-FDG (range: 185–333 MBq, according to 
the body mass index) were intravenous injected (10 ml infusion of 18F- 
FDG at a rate of 4.32 ml/s followed by a 10 ml saline flush) using an 
infusion pump (TemaSinergie, model RADInject). The actual dose 
delivered to the patient was calculated accounting for the residual ac-
tivity in the infusion system. 

PET images were acquired in list mode over the same area defined at 
low-dose CT, lasting 60 min. Dynamic PET frames were defined and 
reconstructed according to previously reported protocol [33]: 24 frames 
at 5 s, 12 frames at 15 s, and 11 frames at 300 s. Each frame was 
reconstructed with the OSEM algorithm, including time-of-flight and 
Ultra HD recovery with 21 subsets and 2 iterations, with trans-axial PET 
matrix size of 256x256 (3.18 mm × 3.18 mm x 3 mm). After dynamic 
acquisition, whole-body PET-CT was acquired and images were recon-
structed using the protocol described above [33]. CT images were used 
for attenuation correction, anatomical localization, and fusion with PET 
images (Syntegra software, Siemens). 

2.3. Kinetics of 18FDG uptake of adenocarcinoma and other tumors 

The purpose of the ML-based method we are going to develop is the 
automated classification of AD, the most common type of lung cancer, 
and other histotypes of tumors, which are from now on classified as NAD 
(not-adenocarcinoma). In Fig. 1A, a representative PET image overlaid to 
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the CT image is reported in a color-coded scale ranging from green to 
yellow, while in Fig. 1B, only the PET image is reported in grayscale. In 
this representative image, two different histotypes are present: AD and 
LCNEC, which is therefore classified as NAD. Both AD and LCNEC are 
yellow-colored in Fig. 1A and black-colored in Fig. 1B. This image shows 
that both lesions, regardless their histotypes, are characterized by a 
higher uptake than the surrounding. After the evaluation of the 
normalized emission intensity (Inorm = I/Imax) of a subset (n = 5) of 
analyzed samples taken from different patients, 1 h after 18F-FDG 
administration, we performed an unpaired two-sided t-test to evaluate if 
the intensity statistically differs between the two histotypes. The result 
of this analysis, giving a p-value > 0.05, highlights that no significant 
differences can be retrieved between AD (0.946 ± 0.065) and NAD 
(0.873 ± 0.217). This means that, relying only on the intensity of the 
image, it is not possible to distinguish between the two histotypes. 

However, although characterized by the same 18F-FDG-uptake, 
Fig. 1C shows that AD show different uptake kinetics with respect to 
NAD tumors. In the graphs, the emission intensity (y-axis, arbitrary 
units) for AD (red), NAD histotypes (green) and background (blue) is 
reported as a function of the time of image acquisition after tracer’s 
administration (x-axis, expressed in seconds). Representative 18F-FDG 
uptake curves are reported for three different patients, and voxels cor-
responding to each class are highlighted in the magnification of the 
image. Looking at these kinetics, it is possible to observe that no 18F-FDG 
uptake occurs in the background, constituted by healthy tissues and/or 
organs, while tumors show a high 18F-FDG demand, regardless their 
histotypes. However, while the AD kinetics are characterized by a slight, 
slower uptake, NAD tumors are characterized by a fast, steep ascent 
followed by the attainment of a saturation level, reached ~1000 s after 
the 18F-FDG infusion. These observations, although interesting to 

highlight macroscopic differences between the AD and NAD kinetics, are 
indicative. No statistical analysis was performed, and curves were not 
parametrized since we will rely on a model-free approach which will be 
described in the following sections. 

2.4. Workflow for the classification of AD and NAD tumors on dynamic 
PET imaging data 

The scheme of the workflow for the ML-based method to classify 
tumors according to their histotypes is represented in Fig. 2. 

The workflow is divided in five steps and can be implemented by 
using the open-source software Ilastik [34] and the open-source image 
processing tool ImageJ (NIH).  

1) Building of the time-resolved dPET stack (software: ImageJ). Since the 
classification workflow relies on the kinetic of tracer uptake to 
classify and localize different tumors, we considered only the PET 
slice corresponding to the z-plane containing the tumor (see Section 
S2, Supplementary Materials), as per the contouring provided by the 
physician, to build the stack representing the temporal sequence of 
radionuclide tracer uptake, which consisted of 47 time-frames with 
resolution 512 × 512 voxels (Step 1). Each time frame is treated as an 
additional image channel for the next Step 2. In this way, we created 
“artificial” color channels for the learning algorithm, introducing an 
original data structure in which the statistical unit object of learning, 
rather than a single 2D-pixel (x,y), is a set of voxels with 2+n di-
mensions (x, y, t1, t2, …, tn). For the training of the classifier, we used 
pixels from dPET stacks of 22 tumors (17 AD and 5 NAD histotypes) 
out of 28 tumors, corresponding to the 78%, that were provided as an 

Fig. 1. Kinetics of 18F-FDG uptake of adenocarcinoma and large cell neuroendocrine carcinoma. (A) Overlay of PET-CT image, represented in a color-coded scale 
from green to yellow with increasing the 18F-FDG uptake. (B) Emission intensity of adenocarcinoma (AD) and large cell neuroendocrine carcinoma (LCNEC), rep-
resented in a grayscale (low intensity, white = 0; high intensity, black = 255). (C) Different kinetics of 18F-FDG uptake for AD, NAD, and background (B). The three 
graphs represent the emission intensity of AD (red), NAD (green), and B (blue) as a function of the acquisition time for three different patients. The criterion used for 
voxels’ selection is highlighted in the magnification of the image. 
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input for the Step 2. The remaining 6 stacks (22%) were used as test 
set to measure the performance of the technique.  

2) Detection of adenocarcinoma (software: Ilastik). Voxel-classification 
workflow assigns labels to voxels based on spatial features and 
user annotations. This workflow employs by default a Random Forest 
classifier, a flexible supervised learning algorithm which builds 
multiple decision trees and merges them together to get more ac-
curate and stable predictions [35,36]. To train the Random Forest 
classifier, dPET stacks of 22 tumors out of 28 tumors (78%) are used. 
Three classes are defined in the first stage, according to the different 
kinetics of uptake of 18F-FDG: B, background; AD, adenocarcinomas 
and NAD, other histotypes. The software provides the following 
feature types:  
• Color/Intensity, that use color or brightness to discern objects;  
• Edge, accounting for brightness or color gradients to discern 

objects;  
• Texture, an important feature if the objects in the image have a 

special textural appearance. 

For image classification we select the following spatial features, 
calculated on each of the 47 image channels representing a time step: 
Gaussian Smoothing for Color/Intensity, Laplacian of Gaussian, 
Gaussian Gradient Magnitude and Difference of Gaussians for Edge, and 
Structure Tensor Eigenvalues and Hessian of Gaussian Eigenvalues for 
Texture. A detailed description of features properties is reported in 
Section S3 (Supplementary Materials). Usually, when semantic seg-
mentation is performed on PET or other medical physics images, only 
texture features or features detecting brightness and brightness gradi-
ents are used, since in this context we deal only with grayscale images. In 
this workflow, since the images are characterized by n-additional 
channels which are the dPET images acquired at different times, we can 
exploit color brightness and gradient features due to temporal 

differences related to the distinct kinetics of uptake. For this reason, it is 
important to consider color information, as well as brightness gradients 
and texture features, to uncover those relations and correlations be-
tween voxels that are embedded in the time evolution of tracer uptake. 

For each class, a probability map (single channel image, 512 × 512 
voxels resolution, 32-Bit), representing the probability that each voxel 
belongs to the selected class (PB(x,y), PNAD-1(x,y) and PAD(x,y), respec-
tively), is obtained. It holds the normalization condition PB(x,y)+PNAD- 

1(x,y)+PAD(x,y) = 1 for each voxel (x,y). The probability map PAD(x,y) 
serves as a first input for the automated detector used for the spatial 
localization and the quantification of probability. 

The probability maps provides the rationale to build the semantic 
segmentation image (SS(x,y)), consisting in a single channel image (512 
× 512 voxels resolution) with three values, each corresponding to one 
class. The class is obtained by selecting the maximum element of PB(x,y), 
PNAD-1(x,y) and PAD(x,y) at each voxel. This image, in combination with 
the dataset built in Step 1, constitutes the input for the detection of NAD 
tumors (Step 3).  

3) Detection of other tumor (software: Ilastik). To ultimately distinguish 
tumor histotype, the ‘Autocontext’ approach is applied. Although 
from the first stage of voxel-classification it is possible to distinguish 
the three probability maps, the application of this procedure is 
particularly efficient and highly recommended when the image data 
show multiple distinct classes since it improves the voxel- 
classification workflow by training a cascade of classifiers. Indeed, 
a better accuracy is guaranteed, and observed from a comparison of 
the probability values obtained for the class of other tumor from the 
first and second stage, respectively, by the fact the segmented image 
obtained in the previous stage is added as new channel to the raw 
data. The input of this second-stage segmentation thus consists in a 
48-channels stack, obtained by adding the SS image to the dPET data 

Fig. 2. Workflow for the ML-based method for classification of different histotypes of tumors. The workflow represented consists in five major steps. Step 1: 
construction of the time-resolved stacks for tumors (adenocarcinomas and other histotypes). Step 2: first-stage voxel-classification through the open-source software 
Ilastik, providing the detection of adenocarcinomas. In this first level, three classes were defined: adenocarcinoma (AD), not-adenocarcinoma (NAD) and background 
(B). The output consists in a probability map for each class (PAD(x,y), PNAD-1(x,y) and PB(x,y), respectively). The merge of the three probability maps provided the 
semantic segmentation (SS) image, which was added to the original stack and used as input for the second-stage of classification (Step 3), which is based on the same 
voxel-classification approach and allows for the detection of other tumor histotypes. The probability maps obtained for AD in Step 2 and for NAD in Step 3, 
respectively, constituted the input for the detector, that is finally able to provide both the spatial localization of adenocarcinomas and not-adenocarcinomas (Step 4) 
and to assign a probability value of belonging to a specific class to each voxel of the image (Step 5). 
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generated in Step 1. The algorithm of ‘Autocontext’ is optimized to 
compute features on these results, meaning that it can then learn to 
interpret edges and texture variations in probability maps as well as 
in the raw data. A detailed description of this workflow is reported in 
[37]. For this second stage, only two classes are defined: other tumor 
and background. The probability map (PNAD-2(x,y)) obtained as the 
output of this second stage, combined with the PAD(x,y) previously 
obtained from Step 2, is used as the second input for the automated 
detector.  

4) Spatial Localization (x,y). The histotype class of different tumors is 
classified relying on the probability maps PAD and PNAD-2, analyzed 
using the open-source software ImageJ (NIH), according to the 
workflow described in the previous steps. To provide for a spatial 
localization of AD and/or NAD tumors, the ‘Find Maxima’ tool 
(ImageJ) is applied. To filter non-meaningful multiple local maxima 
that can be due to noise fluctuations, we set the algorithm by 
imposing to ignore local maxima if their value does not emerge from 
the surroundings by more than a defined value, called ‘prominence’, 
which was set to 0.5 for our dataset. By applying this method, we 
ensure that a single point, corresponding to the maximum above 
prominence, is identified and highlighted for each region charac-
terized by a higher probability value than the surrounding, thus 
avoiding the requirement for average calculations that can be 
affected by the arbitrary selection of the voxels belonging to the 
tumor. This procedure is applied to both PAD and PNAD-2 to identify 
voxels classified as adenocarcinomas and those classified as other 
histotypes. According to this choice, all the maxima above the 
prominence threshold set were, then, marked by a red cross if they 
are classified as adenocarcinomas and by a green cross if they are 
classified as other tumors, respectively, and the result of this locali-
zation consists in a couple of coordinates (x,y) which was overlaid to 
the original PET image, to assess the correspondence between both 
the histotype and the position defined by the classifier and that 
provided by the physician.  

5) Probability (P). The last step of the workflow for tumor classification 
consists in obtaining, for each voxel of the image, the probability 
value, and the corresponding uncertainty, of belonging to a specific 
histotype class (AD or NAD tumor). These values, combined with the 
coordinates provided by Step 4 and then collected in a table, will 
provide a prediction of both the histological and spatial character-
ization of the detected lesions. 

2.5. Statistics 

Statistical T-tests for sets of biological/biophysical data are per-
formed by the free software environment R (https://www.r-project.org/ 
, Version 4.1.2). Baseline characteristics among groups have been 
compared with ANOVA for parametric variables and p-values below 
0.05 (p < 0.05) were considered statistically significant. 

3. Results 

3.1. Automated detection of tumors: classification of tumor histotypes 

The results of the detection of AD and NAD tumors, with the output 
of the classification, the associated probability value, the corresponding 
uncertainty, and the spatial position (x,y) are summarized in Table 1. 
The number of the detected lesions is reported in the second column for 
each patient, along with their histotype (third column). A total of 28 
tumors was included in the study, including 8 non-small cells lung 
carcinoma favoring adenocarcinoma (NSCLC, 28.6%), 14 adenocarci-
nomas (AD, 50.0%), 2 large cell neuroendocrine carcinoma (LCNEC, 
7.1%) and 4 squamous cell carcinoma (SqCC, 14.3%). However, for the 
automated detection and classification, tumors are divided in 22 AD, 
including NSCLC and AD, and 6 NAD, including LCNEC and SqCC, ac-
cording to the different kinetics of 18F-FDG uptake, and the output of the 
classifier is reported in the fourth column. By comparing the different 
tumors’ histotypes known from the existing biopsy diagnosis, that 
constitute the gold-standard against which the model is trained, with the 

Table 1 
Output of the classification of tumor histotypes. The table reports the characteristics of the tumors considered for this study: the histotype, as provided by the 
histologic examination (AD = adenocarcinoma; NSCLC = non-small cell lung carcinoma (favouring AD); LCNEC = large cell neuroendocrine carcinoma; SqCC =
squamous cell carcinoma), the output of the classifier (AD = adenocarcinoma; NAD = other histotype), the probability value associated to the defined class along with 
the corresponding k of the cross-validated procedure, the relative uncertainty, the voxel position of the detected lesion (x,y) and the index of localization ε.  

Patient # Tumors Histotype Classification Output Probability k Uncertainty X (voxel) Y (voxel) ε 

#1 01T NSCLC AD 0.98 2 0 97 121 0.02 
02T 0.64 1 0 109 141 0.33 

#2 01T NSCLC AD 0.2 3 0.13 115 152 0.59 
#3 01T AD AD 0.9 2 0.12 119 157 0.29 

02T LCNEC NAD 0.96 3 0 112 136 0.30 
#4 01T NSCLC AD 0.57 3 0 108 140 0.31 
#5 01T AD AD 0.79 2 0 153 120 0.15 
#6 01T AD AD 0.91 1 0 157 135 0.59 

02T 0.99 3 0 161 136 0.34 
#7 01T LCNEC NAD 0.83 1 0 93 142 0.49 
#8 01T NSCLC AD 0.54 2 0.02 110 118 0.36 
#9 01T AD AD 0.94 3 0.1 106 138 0.35 
#10 01T NSCLC AD 0.99 3 0 160 141 0.41 
#11 01T AD AD 0.78 1 0 131 128 0.81 

02T 0.99 1 0.02 98 132 0.47 
03T 0.83 2 0.04 104 143 0.26 

#12 01T SqCC NAD 1 2 0 165 136 0.74 
#13 01T NSCLC AD 0.56 3 0 158 128 0.40 
#14 01T AD AD 0.83 1 0.34 112 149 0.69 
#15 01T AD AD 0.72 3 0 104 183 0.29 
#16 01T SqCC NAD 1 1 0 107 140 0.79 

02T 0.69 1 0 118 146 0.65 
03T 0.54 2 0 92 134 0.42 

#17 01T AD AD 0.8 1 0.4 104 118 0.40 
02T 0.1 3 0.12 149 116 0.34 
03T 0.95 1 0.08 142 139 0.14 

#18 01T NSCLC AD 0.25 2 0 104 135 0.39 
#19 01T AD AD 0.5 3 0 143 146 0.64  
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classification output, it is possible to observe that the classifier can 
distinguish adenocarcinomas from other histotypes of tumors in all the 
evaluated cases. 

The probability maps obtained following the workflow previously 
described (see Section 2.5) associate a probability value at each tumor 
detected and classified, as reported in the Probability column in Table 1. 
This value, extracted from PAD (x,y) or PNAD-2 (x,y) depending on the 
classification output provided by the classifier, ranges from 0 (lowest 
probability, surely not belonging to the specific class) to 1 (maximum 
probability, surely belonging to the class). To check the strength of the 
method and to exclude any arbitrary dependence on the chosen training 
and test sets, respectively, we applied a k-fold cross-validation strategy 
with k = 3, by changing the tumors used for training the classifier and 
those used to evaluate its performance, while keeping fixed the same 
relationship between them. The mean probability values for tumors 
belonging to the test set are reported in Table 1 along with the corre-
sponding k of the cross-validation procedure. By applying this method, 
we calculated the mean probability associated to AD and that associated 
to NAD, obtaining 0.704 ± 0.268 for AD, and 0.948 ± 0.189 for NAD, 
respectively. This result allows us to observe that the classifier not only 
localizes tumors, but it also discriminates the histological type of lesion. 
To quantify the ability of the k-fold cross-validated procedure applied in 
discriminating the different histotypes, we evaluated the accuracy of 
this strategy and compared it with the overall accuracy of the non-cross- 
validated approach. Calculating the ratio of the properly classified tu-
mors over the total tumors included in the test set, we obtained accuracy 
values of 83% for the non-cross-validated method, and of 89% for the k- 
fold cross-validation strategy. The accuracy reported for the k-fold 
validation strategy is the mean obtained by averaging the single accu-
racies retrieved for each fold of the procedure, 100% for k = 1, 88% for 
k = 2, and 80% for k = 3, respectively. Considering these values, a 10% 
standard deviation should be associated to the 89% accuracy reported. 
This result, besides confirming the high accuracy of the described clas-
sification tool, also highlights that the application of the k-fold cross- 
validation ensures an improvement in the histotypes identification. 

However, since the Random Forest classifier consists of many deci-
sion trees (NT = 100), and each pixel is classified by collecting the votes 
of each individual tree, besides the prediction maps, the software also 
computes an uncertainty map, by associating at each pixel the value 
obtained by subtracting the two highest votes attributed to different 
classes (HV1 for class 1, and HV2 for class 2, respectively) (HV1 and HV2, 
respectively) at that pixel, and subtracting that from 1, according to the 
following equation 

uncert = 1 − (HV1 − HV2)

An uncertainty map is generated for each stage of the classification 
workflow, meaning that, at the end of the two-stage pixel classification, 
we obtained two uncertainty maps. To properly associate at each pixel 
the uncertainty corresponding to the used classified, we followed the 
procedure described in detail in Section S4 (Supplementary Materials). 
The uncertainty values associated to each lesion also provide a measure 
for the accuracy of the workflow. The mean uncertainty associated to 
detection of adenocarcinoma is 0.069, while for other tumors is 
approximately 0. 

In addition, to evaluate the correspondence between the position 
defined by the classifier and that provided by the physician, we asso-
ciated to each tumor an index of localization ε. This index, reported in 
the last column of Table 1, was calculated according to the following 
formula: 

ε=ΔCM
R  

where ΔCM is the distance between the center of mass of the detected 
area (CMtumor) and the center of mass of the area highlighted by the 
physician (CMROI), calculated as 

ΔCM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xCMtumor − xCMROI )
2
+ (yCMtumor − yCMROI )

2
√

If the index of localization ε is lower than 1, it indicates a correct 
localization, otherwise it provides a measure of the misclassification. 
The mean value of this error (0.49 ± 0.20) confirms the power of the 
localization tool. 

A more detailed explanation of how the index is calculated is re-
ported in Section S5 (Supplementary Materials. 

3.2. Estimation of the lymph-node metastatic risk 

The process based on voxel-classification provides, as an output, the 
probability associated with each voxel in the image of belonging to the 
adenocarcinoma class rather than the other. Moreover, the application 
of the whole workflow for the detection and automatic classification of 
the different tumor histotypes previously described detects the spatial 
position of the regions characterized by highest probability values. The 
analysis of the probability maps and the results provided by the detector 
revealed the presence of local maxima in correspondence of the lymph- 
nodes, thus highlighting the existence of regions characterized by a18F- 
FDG uptake that falls with high probability in the AD class. 

In Fig. 3, the automated detection of lymph nodal regions with 
adenocarcinoma-like 18F-FDG uptake is shown. In Fig. 3A a single PET 
image collected 1 h after 18F-FDG administration is represented in 
grayscale, with intensity values ranging from 0, corresponding to low 
intensity, i.e., low 18F-FDG uptake (white), to 1, high intensity that is 
increased 18F-FDG uptake (black). Four dark regions can be easily 
identified: two corresponding to tumors and indicated as 02T and 03T, 
respectively, and two corresponding to lymph-nodes, indicated as 01N1 
and 01N2. While the histotype of both the tumors is known (adeno-
carcinomas), to obtain histological information is not always feasible for 
lymph-nodes. 

Looking at this intensity-based picture, in which all the regions with 
an increased 18F-FDG uptake are dark, it is not possible to distinguish 
tumors from other non-neoplastic tissues with a high 18F-FDG demand 
and, moreover, no information about the different kinetics can be 
retrieved. However, the AD probability map (PAD) represented in Fig. 3B 
in a color-coded scale ranging from light purple (probability = 0) to 
yellow (probability = 1) revealed the presence of yellow-colored regions 
(i.e. high probability regions) that, although other than tumors, are 
characterized by a high probability of belonging to the AD class. The 
local maxima identified by the automated workflow for tumor detection 
and classification are indicated by the green dots shown in Fig. 3B and 
highlighted in the magnification, where they are labelled according to 
their nature (02T and 03T, tumors; 01N1, lymph-node). The red dashed 
line was used to evaluate the profile of the probability and the corre-
sponding distance in voxels (from 0 to 50) is indicated in the picture. In 
Fig. 3C, the plot profile of the probability value of being adenocarci-
noma (y-axis) is reported as a function of the distance in voxels (x-axis). 
The graph shows that not only tumors but also one of the two lymph- 
nodes (01N1) is characterized by a high probability value (PAD > 0.05, 
dashed black line) of belonging to the AD class, thus identifying a 
lymphatic region characterized by an increased 18F-FDG uptake, similar 
to that of the adenocarcinoma. 

Following this observation, we evaluated the probability value of 
belonging to the class of adenocarcinoma, associated by the classifier to 
each lymph-node identified by the physician. A summary of all the 
lymph-nodes, with the result of the histological exam (when available), 
the associated AD-probability value, the corresponding uncertainty, and 
the spatial position (x,y) are reported in the following Table 2. 

Histological evidence of metastatic nature was available in 11/47 
visually PET-positive lymph-nodes. Since the classifier was trained on 
voxels characterized by the 18F-FDG uptake of adenocarcinomas, a high 
probability value associate to lymph-nodes can be considered as repre-
sentative of an increased metabolic activity similar to that of tumors 
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and, therefore, of a metastatic risk probability. 
Looking at the values reported in Table 2, it is possible to observe 

that 6 of the 11 confirmed metastatic lymph-nodes, corresponding to 
54.5%, are classified as AD with a probability value higher than 0.5. In 
this perspective, to quantify the extent of the informative content of the 
uptake kinetics for predicting lymph-node metastatic nature, we divided 
the probability values assigned to voxels corresponding to lymph-nodes 
in fourth quartiles: Q1, for probability values between 0% and 24.9%; 
Q2, probability between 25% and 49.9%; Q3, probability between 50% 
and 74.9% and Q4, probability between 75% and 100%. 

The results of the quartile distribution analysis of lymph-nodes are 
reported in Table 3. While the first and second column summarizes the 
range of percentages that characterizes each quartile, the number of 
identified lymph-nodes belonging to each Q-interval is reported in the 
third column. According to the trained classifier for tumors histotypes 
detection and classification, 34 lymph-nodes were associated with a 
probability of belonging to the AD class lower than 50% (in particular, 
19 lymph-nodes have a probability lower than 25% (Q1), and 15 a 
probability between 25% and 49.9% (Q2)), while 13 were classified as 
AD with a probability higher than 50% (11 lymph-nodes between 50% 
and 74.9% (Q3) and 2 lymph-nodes with a probability higher than 75% 
(Q4)). The total number of visually PET-positive nodes included in the 
analysis (47) is reported in the last line, in bold. The result obtained from 
the classifier was, therefore, compared with the known outcome of the 
available histological examination. The number of confirmed metastatic 
lymph-nodes belonging to each quartile range is reported in the fourth 
column: 2 of them, though metastatic, were associated with a proba-
bility value lower than 25%, 3 with a probability between 25% and 50%, 
4 with a probability between 50% and 75% and 2 with a probability 
higher than 75%. To estimate the ability of the classifier in predicting 
the risk of metastasis associated with lymph-nodes, we then assessed the 
fraction of truly metastatic lymph-nodes attributed to the different 
quartiles with respect to the total number of lymph-nodes belonging to 
each interval, according to the following formula predictive accuracy =
metastatic nodes

# nodes . The value of predictive accuracy is reported in the fifth 
column of Table 3. The percentages retrieved, from 11% for Q1 to 100% 
for Q4, through the 20% and 36% for Q2 and Q3, respectively, revealed 

that in each quartile the fraction of metastatic lymph-nodes identified 
increases, thus indicating how probability values higher than 50% of 
belonging to the adenocarcinoma class are with good accuracy associ-
ated with metastatic lymph-nodes. Further considerations on the power 
of this application are reported in Section S6 (Supplementary Materials). 

4. Discussion and conclusions 

In recent years, due to the improvement of imaging data acquisition 
techniques, the increasing number of large datasets and the urgent need 
for more accurate and precise analysis tools, ML-based approaches have 
received growing attention [10,38]. Among them, the supervised se-
mantic segmentation, referring to a process of assigning a semantic label 
to each voxel of an image, has been extensively used for bioimage 
analysis [39]. However, since semantic segmentation classifies voxels 
according to their features, one of the main challenges of this kind of 
approach is that classes characterized by a high degree of similarity in 
visual appearance can in principle reduce the ability of the classifier to 
discriminate properly. The potential limit of this approach emerges also 
in the analysis of PET images, where the increased glucose uptake of 
different types of tumors or again structures other than tumors (i.e., 
lymph-nodes) can affect the correct detection of pathological/neoplastic 
lesions. However, the information provided by the dynamic PET data 
acquisition on the time-resolved 18F-FDG uptake, which is contained in 
each voxel, can constitute the additional key feature that allows 
discriminating between the different histotypes of tumors, lymph-nodes, 
and other non-neoplastic tissues. The hereby presented application of a 
multi-stage voxel classification provide an accurate semantic image 
segmentation, identifying and classifying the regions of the image ac-
cording to a combined approach combining spatial features and uptake 
kinetic. This has resulted in the definition of a workflow for the auto-
mated detection and classification of AD and NAD on dynamic PET 
imaging data through machine-learning driven semantic segmentation. 
With respect to previous methods and to the use of single-image, non--
dynamic PET data [23–25,40], this algorithm presents improved per-
formances. The ML method, relying contextually on several 18F-FDG 
uptake spatial and temporal features, generates as an outcome 

Fig. 3. Detection of lymph nodal regions with AD-like FDG uptake. (A) Single PET image represented in grayscale (0 = low intensity, white; 1 = high intensity, black) 
showing two tumors (02T and 03T, both adenocarcinomas) and two lymph-nodes (01N1 and 01N2, without histological indication). (B) Adenocarcinoma probability 
map PAD (x,y). Each voxel’s color spans from light purple (probability = 0) to yellow (probability = 1). The yellow-colored regions, indicated by the green dots, are 
highlighted in the magnification reported along with the probability map, and labelled according to their nature (02T and 03T, tumors; 01N1, lymph-node). The 
dashed line is used to evaluate the profile of the probability and the corresponding distance in voxels is indicated. (C) Plot profile of the probability value of being 
adenocarcinomas (y-axis) as a function of distance (in voxels, x-axis) obtained for tumors and lymph-node. The graph shows that not only tumors but also one of the 
two lymph-nodes (01N1) are characterized by a high probability value (PAD > 0.5, dashed black line) of belonging to the AD class. 
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probability map allowing to distinguish AD from NAD tumors, ulti-
mately increasing the specificity of the technique. Indeed, the relevance 
of this approach relies in the fact that time stacks are used to perform 
machine learning based pixel classification. The creation of “artificial” 
color channels, corresponding to the different time points, allows to 
exploit, besides brightness gradients and texture, also color features and 
gradients, corresponding in our picture to time features and gradients (i. 
e. kinetics) for the tumors classification. This constitutes a powerful 
improvement in pixel classification, since it allows to exploit an 
easy-to-use tool to uncover those relations and correlations between 
voxels, that are embedded in the time evolution of tracer uptake. For this 
reason, the use of the developed algorithm guarantees an automatic and 
more accurate localization and discrimination of tumors, providing, as 
output of the classification, not only the spatial position (x,y), but also 

the associated probability value, with the corresponding uncertainty 
(0.943 ± 0.093, for AD, and 0.958 ± 0.090, for NAD, respectively). 

Another important aspect of this tool is the assistance they can 
furnish in detecting at which extent tumor has spread beyond the pri-
mary lesion into lymphatic system. In this pilot study, the developed 
algorithm has successfully recognized if lymph-nodes were affected by 
tumor spreading, with a well-defined value of probability and uncer-
tainty. Indeed, among the 11 confirmed metastatic lymph nodes, 6 were 
classified as belonging to the adenocarcinoma class with a probability 
value higher than 50%, 3 with probability between 25% and 50% and 2 
with a probability lower than 25%. These preliminary results pave the 
way for further optimization and validation of the algorithm for 
extending its use well beyond adenocarcinoma classification, through a 
well-planned longitudinal study, with the aim of providing the physician 

Table 2 
Evaluation of the metastatic probability for detected lymph-nodes. The table reports the characteristics of the lymph-nodes for each patients: the histotype (when 
determined) as provided by the histologic examination (metastatic = malignancy confirmed), the metastatic probability value associated to each lymph-node, the 
corresponding uncertainty and the voxel position of the detected node (x,y).  

Patient # PET positive lymph-nodes Histotype Metastatic Probability Uncertainty X (voxel) Y (voxel) 

#1 01N2 not defined 0.01 0.02 123 119 
02N2 not defined 0.12 0.00 124 129 

#2 01N1 not defined 0.04 0.00 115 141 
#3       
#4 01N1 metastatic 0.78 0.39 117 132 

02N1 metastatic 0.79 0.38 112 130 
#5       
#6 01N1 not defined 0.14 0.00 151 135 

01N2 not defined 0.16 0.00 141 131 
02N1 not defined 0.19 0.00 149 137 

#7       
#8 01N1 metastatic 0.52 0.94 110 119 
#9 01N1 metastatic 0.06 0.00 115 140 
#10 01N1 not defined 0.29 0.00 150 134 

01N2 not defined 0.21 0.42 138 133 
02N2 not defined 0.21 0.00 128 133 
03N2 not defined 0.33 0.00 137 122 
04N2 not defined 0.18 0.00 134 125 

#11 01N1 not defined 0.31 0.00 118 127 
01N2 not defined 0.05 0.00 125 124 
01N3 not defined 0.01 0.02 111 119 
02N1 not defined 0.03 0.06 118 128 
02N2 not defined 0.18 0.00 124 126 

#12       
#13 01N2 metastatic 0.43 0.89 137 125 

02N2 metastatic 0.68 0.00 134 117 
03N2 metastatic 0.28 0.58 136 124 
04N2 metastatic 0.69 0.61 145 135 
05N2 metastatic 0.51 0.00 141 129 

#14       
#15 01N1 metastatic 0.27 0.00 117 166 

01N2 metastatic 0.05 0.00 130 163 
#16       
#17       
#18 01N1 not defined 0.12 0.24 118 129 
#19 01N1 not defined 0.55 0.88 128 129 

02N1 not defined 0.54 0.91 140 131 
01N2 not defined 0.59 0.82 131 112 
02N2 not defined 0.47 0.95 131 128 
03N2 not defined 0.28 0.62 133 126 
04N2 not defined 0.32 0.67 135 116 
05N2 not defined 0.30 0.65 135 119 
06N2 not defined 0.48 0.99 132 126 
07N2 not defined 0.73 0.53 138 127 
08N2 not defined 0.66 0.65 142 126 
09N2 not defined 0.58 0.82 128 130 
10N2 not defined 0.23 0.48 135 127 
11N2 not defined 0.12 0.26 141 133 
12N2 not defined 0.63 0.71 142 126 
13N2 not defined 0.30 0.66 137 121 
14N2 not defined 0.36 0.74 126 132 
01N3 not defined 0.45 0.92 122 121 
02N3 not defined 0.14 0.30 124 121 
03N3 not defined 0.43 0.65 135 119  
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a preliminary picture of the general staging status of the patients. 
Overall, this algorithm thus can speed-up and furnish further evi-

dence in diagnosis and staging of lung cancer, which is undoubtedly a 
complex process. Diagnosing indeed includes not only categorizing lung 
cancers in ways that help to determine the best treatment plan, but also 
determining whether it has spread to other parts of the body. This 
method, in association with other tests, can thus help to decide which 
treatments might work best. This approach, being fully automated and 
completely independent of theoretical and experimental biases due to 
the definition and application of a mathematical model, and thus not 
requiring specific knowledge and skills from the user, is able to provide a 
very good indication of areas characterized by abnormal glucose uptake 
kinetics. Another advantage is that this technique relies to multiple PET 
acquisitions, improving the confidence in the evaluation and interpre-
tation of dynamic PET/CT scans, thus mitigating misalignments of PET/ 
CT images due to physiologic motions (e.g., cardiac and respiratory 
motions) [41,42]. Indeed, this workflow does not require an overlap 
between images acquired with a hybrid method. The overlap requires a 
standard calibration and alignment procedure which is user and ma-
chine dependent, and moreover since CT resolution is higher than the 
PET one, can suffer more deeply by physiological motions. A limitation 
of this study is the number of analyzed patients, that must be increased 
to optimize the protocol and the workflow. Moreover, since this 
ML-approach is based on the temporal information of glucose uptake 
contained in each voxel, it cannot disregard the acquisition of dynamic 
PET images, which requires a certain amount of time (~45 min) to be 
obtained. However, the definition of shorter acquisition protocols is 
feasible since the short dynamic acquisition immediately after tracer 
injection for the calculation of the input function can be neglected, being 
a model-free approach, and efforts can be concentrated in optimizing 
late dynamic acquisitions for improving the performance. In any case, 
especially for selected group of patients requiring a more accurate 
analysis, the dPET acquisition, combined with the application of this 
machine learning-based method for the semantic segmentation of dPET 
data, can be introduced in the clinical practice, by reserving ad-hoc slots 
especially at the beginning and at the end of the day. This step, together 
with the development of an automatized software, can be integrated in 
the clinical routine, providing a powerful tool to both support the 
physician in localizing area which need a deeper investigation and 
ensure early and accurate classification of tumors and metastatic 
lymph-nodes. Moreover, this tool, by exploiting specially optimized 
neural networks [43], can be potentially applied for the classification 
and organization of several types of data, including not only bioimages 
[44–46], but also text documents [47–49], and time-series [50], thus 
speeding up, favoring, and improving the analysis of even larger 
datasets. 
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M. Jiménez, L. Pijuan, FDG PET-CT SUVmax and IASLC/ATS/ERS histologic 
classification: a new profile of lung adenocarcinoma with prognostic value, Am. J. 
Nucl. Med. Molecul. Imag. 8 (2018) 100. /pmc/articles/PMC5944825/. (Accessed 
28 July 2021). 

[9] A. Almuhaideb, N. Papathanasiou, J. Bomanji, 18F-FDG PET/CT imaging in 
oncology, Ann. Saudi Med. 31 (2011) 3–13, https://doi.org/10.4103/0256- 
4947.75771. 

[10] K.P. Wong, D. Feng, S.R. Meikle, M.J. Fulham, Segmentation of dynamic PET 
images using cluster analysis, IEEE Trans. Nucl. Sci. 49 (2002) 200–207, https:// 
doi.org/10.1109/TNS.2002.998752. 

[11] I.R. Duffy, A.J. Boyle, N. Vasdev, Improving PET imaging acquisition and analysis 
with machine learning: a narrative review with focus on alzheimer’s disease and 
oncology, Mol. Imag. 18 (2019) 1–11, https://doi.org/10.1177/ 
1536012119869070. 

[12] T. Wang, Y. Lei, Y. Fu, W.J. Curran, T. Liu, J.A. Nye, X. Yang, Machine learning in 
quantitative PET: a review of attenuation correction and low-count image 
reconstruction methods, Phys. Med. 76 (2020) 294–306, https://doi.org/10.1016/ 
j.ejmp.2020.07.028. 

[13] H. Arabi, A. AkhavanAllaf, A. Sanaat, I. Shiri, H. Zaidi, The promise of artificial 
intelligence and deep learning in PET and SPECT imaging, Phys. Med. 83 (2021) 
122–137, https://doi.org/10.1016/j.ejmp.2021.03.008. 

[14] L. Wei, I. El Naqa, Artificial intelligence for response evaluation with PET/CT, 
Semin. Nucl. Med. 51 (2021) 157–169, https://doi.org/10.1053/j. 
semnuclmed.2020.10.003. 

Table 3 
Quartile distribution of metastatic lymph-nodes. The table reports the 
probability associated to lymph-nodes divided in fourth quartiles: Q1, proba-
bility from 0% to 24.9%; Q2, probability from 25% to 49.9%; Q3, probability 
from 50% to 74.9%; Q4, probability from 75% to 100%. The number of lymph- 
nodes belonging to each quartile is reported in the third column, while the fourth 
column indicates the number of confirmed metastatic lymph-nodes included in 
each range (the sum of lymph-nodes is reported in the last line, in bold). The fifth 
column corresponds to the percentage of metastatic nodes belonging to each 
quartile with respect to the total number of lymph-nodes included in Q1, Q2, Q3 
and Q4, respectively.   

quartiles range (%) # nodes metastatic nodes  

Q1 0–24.9 19 2 11% 
Q2 25–49.9 15 3 20% 
Q3 50–74.9 11 4 36% 
Q4 75–100 2 2 100%   

47 11   

G. Bianchetti et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.compbiomed.2022.105423
https://doi.org/10.1016/j.compbiomed.2022.105423
https://doi.org/10.1053/j.seminoncol.2010.11.012
https://doi.org/10.1053/j.seminoncol.2010.11.012
https://doi.org/10.1148/rg.242025724
https://doi.org/10.3389/fonc.2019.01215
https://doi.org/10.3389/fonc.2019.01215
https://doi.org/10.1634/theoncologist.9-6-633
https://doi.org/10.1093/annonc/mdu089
https://doi.org/10.3322/CAAC.21660
https://doi.org/10.1097/MNM.0000000000000254
https://doi.org/10.1097/MNM.0000000000000254
http://refhub.elsevier.com/S0010-4825(22)00215-3/sref8
http://refhub.elsevier.com/S0010-4825(22)00215-3/sref8
http://refhub.elsevier.com/S0010-4825(22)00215-3/sref8
http://refhub.elsevier.com/S0010-4825(22)00215-3/sref8
http://refhub.elsevier.com/S0010-4825(22)00215-3/sref8
https://doi.org/10.4103/0256-4947.75771
https://doi.org/10.4103/0256-4947.75771
https://doi.org/10.1109/TNS.2002.998752
https://doi.org/10.1109/TNS.2002.998752
https://doi.org/10.1177/1536012119869070
https://doi.org/10.1177/1536012119869070
https://doi.org/10.1016/j.ejmp.2020.07.028
https://doi.org/10.1016/j.ejmp.2020.07.028
https://doi.org/10.1016/j.ejmp.2021.03.008
https://doi.org/10.1053/j.semnuclmed.2020.10.003
https://doi.org/10.1053/j.semnuclmed.2020.10.003


Computers in Biology and Medicine 145 (2022) 105423

10

[15] C. Cohade, M. Osman, L.T. Marshall, R.L. Wahl, PET-CT: accuracy of PET and CT 
spatial registration of lung lesions, Eur. J. Nucl. Med. Mol. Imag. 30 (2003) 
721–726, https://doi.org/10.1007/s00259-002-1055-3. 

[16] M.M. Osman, C. Cohade, Y. Nakamoto, L.T. Marshall, J.P. Leal, R.L. Wahl, 
Clinically significant inaccurate localization of lesions with PET/CT: frequency in 
300 patients, J. Nucl. Med. 44 (2003). 

[17] A. Dimitrakopoulou-Strauss, L. Pan, L.G. Strauss, Quantitative approaches of 
dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological 
patients, Cancer Imag. 12 (2012) 283–289, https://doi.org/10.1102/1470- 
7330.2012.0033. 

[18] M. Muzi, F. O’Sullivan, D.A. Mankoff, R.K. Doot, L.A. Pierce, B.F. Kurland, H. 
M. Linden, P.E. Kinahan, Quantitative assessment of dynamic PET imaging data in 
cancer imaging, Magn. Reson. Imag. 30 (2012) 1203–1215, https://doi.org/ 
10.1016/j.mri.2012.05.008. 

[19] M. Westerterp, J. Pruim, W. Oyen, O. Hoekstra, A. Paans, E. Visser, J. van 
Lanschot, G. Sloof, R. Boellaard, Quantification of FDG PET studies using 
standardised uptake values in multi-centre trials: effects of image reconstruction, 
resolution and ROI definition parameters, Eur. J. Nucl. Med. Mol. Imag. 34 (2007) 
392–404, https://doi.org/10.1007/s00259-006-0224-1. 

[20] M.L. Calcagni, M.V. Mattoli, M.A. Blasi, G. Petrone, M.G. Sammarco, L. Indovina, 
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