1,118 research outputs found

    Small Footprint Multilayered Millimeter-Wave Antennas and Feeding Networks for Multi-Dimensional Scanning and High-Density Integrated Systems

    Get PDF
    This paper overviews the state-of-the-art of substrate integrated waveguide (SIW) techniques in the design and realization of innovative low-cost, low-profile and low-loss (L3) millimeter-wave antenna elements, feeding networks and arrays for various wireless applications. Novel classes of multilayered antenna structures and systems are proposed and studied to exploit the vertical dimension of planar structures to overcome certain limita-tions in standard two-dimensional (2-D) topologies. The developed structures are based on two techniques, namely multi-layer stacked structures and E-plane corners. Differ-ent E-plane structures realised with SIW waveguide are presented, thereby demonstrating the potential of the proposed techniques as in multi-polarization antenna feeding. An array of 128 elements shows low SLL and height gain with just 200g of the total weight. Two versions of 2-D scanning multi-beam are presented, which effectively combine frequency scanning with beam forming networks. Adding the benefits of wide band performance to the multilayer structure, two bi-layer structures are investigated. Different stacked antennas and arrays are demonstrated to optimise the targeted antenna performances in the smallest footprint possible. These structures meet the requirement for developing inexpensive compact millimeter-wave antennas and antenna systems. Different structures and architectures are theoretically and experimentally studied and discussed for specific space- and ground-based appli-cations. Practical issues such as high-density integration and high-volume manufacturability are also addressed

    Novel Compact Three-Way Filtering Power Divider Using Net-Type Resonators

    Get PDF
    In this paper, we present a novel compact three-way power divider with bandpass responses. The proposed power divider utilizes folded net-type resonators to realize dual functions of filtering and power splitting as well as compact size. Equal power ratio with low magnitude imbalance is achieved due to the highly symmetric structure. For demonstration, an experimental three way filtering power divider is implemented. Good filtering and power division characteristics are observed in the measured results of the circuit. The area of the circuits is 14.5 mm x 21.9 mm or 0.16 λg x 0.24 λg, where the λg is the guide wavelength of the center frequency at 2.1 GHz

    Millimetre-Wave Dual-Polarized Differentially-Fed 2D Multibeam Patch Antenna Array

    Get PDF
    In this paper, a novel millimetre-wave dual-polarized 2D multibeam antenna array incorporating differentially-fed antenna elements is proposed to achieve high cross-polarization discrimination (XPD) when the beams scan to the maximal pointing angles. The antenna element is composed of a SIW cavity with four shorted patches placed inside, and it is differentially excited for dual-polarization by a pair of feeding strips and transverse slots beneath the patches. Differential excitation is realized by a power divider designed on two laminate layers. Two Butler Matrices placed perpendicularly with each other in different laminates are employed to generate four tilted beams with dual-polarization. A 2 × 2 dual-polarized 2D multibeam antenna array working at 28 GHz is designed, fabricated, and measured. The operation bandwidth of the antenna is 26.8 GHz – 29.2 GHz. The improvement in the XPD is experimentally demonstrated by far-field measurement. When the beams scan to 30◦ off the boresight, the measured XPDs are 28 dB at the centre frequency and higher than 25 dB over the operation bandwidth, which confirms that the cross-polarized radiation in the 2D multibeam antenna array is suppressed by using the differential-feeding technique. The measured gain is in the range from 7.6 dBi to 10.5 dBi

    Millimeter-Wave Components and Antennas for Spatial and Polarization Diversity using PRGW Technology

    Get PDF
    The evolution of the wireless communication systems to the future generation is accompanied by a huge improvement in the system performance through providing a high data rate with low latency. These systems require access to millimeter wave (mmWave) bands, which offer several advantages such as physically smaller components and much wider bandwidthcomparedtomicrowavefrequencies. However, mmWavecomponentsstillneed a significant improvement to follow the rapid variations in future technologies. Although mmWave frequencies can carry more data, they are limited in terms of their penetration capabilities and their coverage range. Moreover, these frequencies avoid deploying traditional guiding technologies such as microstrip lines due to high radiation and material losses. Hence, utilizing new guiding structure techniques such as Printed Ridge Gap Waveguide (PRGW) is essential in future mmWave systems implementation. ThemainpurposeofthisthesisistodesignmmWavecomponents,antennasubsystems and utilize both in beam switching systems. The major mmWave components addressed in this thesis are hybrid coupler, crossover, and differential power divider where the host guidingstructureisthePRGW.Inaddition,variousdesignsfordifferentialfeedingPRGW antennas and antenna arrays are presented featuring wide bandwidth and high gain in mmWave band. Moreover, the integration of both the proposed components and the featured antennas is introduced. This can be considered as a significant step toward the requirements fulfillment of today's advanced communication systems enabling both space and polarization diversity. The proposed components are designed to meet the future ever-increasing consumer experience and technical requirements such as low loss, compact size, and low-cost fabrication. This directed the presented research to have a contribution into three major parts. The first part highlights the feeding structures, where mmWave PRGW directional couplers and differential feeding power divider are designed and validated. These components are among the most important passive elements of microwave circuits used in antennabeam-switchingnetworks. Different3-dBquadraturehybridcouplersandcrossover prototypes are proposed, featured with a compact size and a wide bandwidth beyond 10 % at 30 GHz. In the second part, a beam switching network implemented using hybrid couplers is presented. The proposed beam switching network is a 4 × 4 PRGW Butler matrix that used to feed a Magneto-electric (ME) dipole antenna array. As a result, a 2-D scanning antenna array with a compact size, wide bandwidth, and high radiation efficiency larger than84%isachieved. Furthergainenhancementof5dBiisachievedthroughdeployinga hybridgainenhancementtechniqueincludingAMCmushroomshapesaroundtheantenna array with a dielectric superstrate located in the broadside direction. The proposed scanning antenna array can be considered as a step toward the desired improvement in the data rate and coverage through enabling the space diversity for the communication link. The final activity is related to the development of high-gain wide-band mmWave antenna arrays for potential use in future mmWave applications. The first proposed configuration is a differential feeding circular polarized aperture antenna array implemented with PRGW technology. Differential feeding antenna designs offer more advantages than single- ended antennas for mmWave communications as they are easy to be integrated with differential mmWave monolithic ICs that have high common-mode rejection ratio providing an immunity of the environmental noise. The proposed differential feeding antenna array is designed and fabricated, which featured with a stable high gain and a high radiation efficiency over a wide bandwidth. Another proposed configuration is a dualpolarized ME-dipole PRGW antenna array for mmWave wireless communication. Dual polarizationisconsideredoneofthemostimportantantennasolutionsthatcansavecosts and space for modern communication systems. In addition, it is an effective strategy for multiple-input and multiple-output systems that can reduce the size of multiple antennas systems by utilizing extra orthogonal polarization. The proposed dual- polarized antenna array is designed to achieve a stable gain of 15 ± 1 dBi with low cross- polarization less than -30 dB over a wide frequency range of 20 % at 30 GHz

    Design and analysis of wideband passive microwave devices using planar structures

    Get PDF
    A selected volume of work consisting of 84 published journal papers is presented to demonstrate the contributions made by the author in the last seven years of his work at the University of Queensland in the area of Microwave Engineering. The over-arching theme in the author’s works included in this volume is the engineering of novel passive microwave devices that are key components in the building of any microwave system. The author’s contribution covers innovative designs, design methods and analyses for the following key devices and associated systems: Wideband antennas and associated systems Band-notched and multiband antennas Directional couplers and associated systems Power dividers and associated systems Microwave filters Phase shifters Much of the motivation for the work arose from the desire to contribute to the engineering o

    Microwave and Millimeter-wave Miniaturization Techniques, and Their Applications

    Get PDF
    Miniaturization is an inevitable requirement for modern microwave and mm-wave circuits and systems. With the emerging of high frequency monolithic integrated circuits, it is the passive components’ section that usually occupies the most of the area. As a result, developing creative miniaturization techniques in order to reduce the physical sizes of passive components while keep their high performance characteristics is demanding. On the other hand, it is the application that defines the importance and effectiveness of the miniaturization method. For example, in commercial handset wireless communication systems, it is the portability that primarily dictates miniaturization. However, in case of liquid sensing applications, the required volume of the sample, cost, or other parameters might impose size limitations. In this thesis, various microwave and mm-wave miniaturization methods are introduced. The methods are applied to various passive components and blocks in different applications to better study their effectiveness. Both componentlevel designs and system-level hybrid integration are benefited from the miniaturization methods introduced in this thesis. The proposed methods are also experimentally tested, and the results show promising potential for the proposed methods

    Analytical Design Procedures for the Odd Mode of Ridge Gap Waveguide Devices and Antennas

    Get PDF
    The millimeter-wave (mm-wave) band has attracted attention due to its wideband characteristics that make it able to support multi-gigabit per second data rate. Nevertheless, the performance of mm-wave wireless communication systems is restricted due to attenuation loss. Design of mm-wave components and antennas is rapidly growing with the current evolution in the wireless communication systems. However, the traditional waveguide structures such as microstrip, coplanar, substrate integrated waveguide, and rectangular waveguide either suffer from high losses or difficulty in manufacturing at mm-wave band. The ridge gap waveguide (RGW) technology is considered as a promising waveguide technology for the mm-wave band. RGW technology overcomes the conventional guiding structure problems as the wave propagates in an air gap region which eliminates the dielectric loss. Moreover, RGW does not need any electrical contacts, unlike traditional rectangular waveguides. Also, the RGW can be implemented in the printed form (PRGW) for easy integration with other planer system components. In this thesis, the use of the odd mode (TE10 (RGW)) RGW to design mm-wave components and antennas is presented. First, a systematic design methodology for the RGW using hybrid PEC/PMC waveguide approximation is presented. This reduces the design time using full wave simulators. The concept has been verified by simulation and experimental measurements. Second, two different methods to excite the odd mode in RGW are studied and investigated. In the first method, a planar L-shape RGW is used where less than -10 dB reflection coefficient is achieved, from 28 to 36 GHz, and more than 93% of the input power has been converted into the odd mode at the output port. The second method uses a magic tee with a shorted sum port and provides a wideband pure odd mode at the output port with reflection coefficient less than -10 dB from 28 GHz to 39 GHz. Other mm-wave components based on odd mode TE10 RGW are designed and presented including a Y-junction power divider and 3 dB forward coupler are designed for the first time in RGW technology. The Y-junction has a wideband matching from 28 to 34 GHz with a reflection coefficient less than -15 dB and the transmission output levels are about -3.3 dB. The usefulness of the odd mode RGW lies in the ability to increase the channel bandwidth that has been achieved by designing a dual-mode RGW. A magic tee is used to simultaneously excite the fundamental mode Q-TEM and the odd mode TE10 (RGW) on the ridgeline. The proposed dual-mode RGW performance is verified through simulation and measurement of a back-to-back configuration. The proposed design achieves a matching level less than -10 dB for the two modes over the frequency range from 29 GHz to 34.5 GHz with isolation better than 23 dB. The dual-mode RGW is then used to feed a reconfigurable Vivaldi horn antenna where two different radiation patterns can be obtained depending on the excited mode. The Q-TEM generates a single beam pattern, while the odd mode TE10 (RGW) generates a dual-beam pattern. The maximum gain for the single beam radiation is 12.1 dBi, while it is 10.43 dBi for the dual-beam pattern. The bandwidth of the dual-mode antenna is 25% at 32 GHz with impedance matching less than -10 dB and isolation better than 20 dB. Finally, several antennas are presented in this thesis based on the odd mode RGW. A novel differential feeding cavity antenna using the odd mode of RGW is presented. The measured results show good performance in terms of gain, bandwidth, sidelobe level, and cross-polarization. The maximum gain is 16.5 dBi, and the sidelobe level is -17 dB and -13.8 dB, for the E-plane and H-plane, respectively. Moreover, the proposed antenna has low cross-polarization levels of -35 dB in the E-plane and -27 dB in the H-plane. In addition, two 2x1 linear frequency scanning array antennas are designed and implemented using the proposed Y-junction to generate single beam and dual-beam patterns. The beam scan is from -11(degree) to -40(degree) at 28 GHz and 32 GHz, respectively

    Ultrawideband and Multi-state Reconfigurable Antennas with Sum and Difference Radiation Patterns

    Get PDF
    Pattern diversity is a term used to describe the operation of several antenna elements working together to produce multiple different radiation patterns with the aim of improving the quality and reliability of a communications system. One useful implementation of pattern diversity considers sum and difference radiation patterns which can be exploited to extend high-gain space coverage and tackle multipath fading. The conventional forms of such pattern diversity antennas are generally working at a single or multiple narrowband frequencies and are designed for specific applications. Hence, generating sum and difference pattern diversity in wide range of frequencies requires the development of new pattern diversity antenna designs. Ultrawideband and frequency reconfigurable designs of pattern diversity antennas are desirable to help reduce the cost and increase the flexibility in applications of pattern diversity antennas. These two types of performances constitute the principal parts of this thesis. The first part of this thesis deals with the challenges of designing ultrawideband Vivaldi antennas with sum and difference radiation patterns. When two Vivaldi antennas are placed next to each other, two mutually exclusive phenomena of grating lobe generation at the highest end of frequency and mutual coupling at the lowest end of frequency will define the bandwidth. Hence, to enhance the bandwidth, the separation between the antenna elements is reduced, which delays the grating lobes generation, and the coupling at lower frequencies is mitigated by introducing an asymmetry in the design of each Vivaldi antenna element. It is shown that this method can be extended to multi-element Vivaldi antennas for higher gain. Next, the bandwidth is further enhanced by adding two vertical metal slabs between the antenna elements improving the isolation at lower frequencies. The proposed antennas use commercially available couplers as feeding networks. As a potential replacement for couplers, an out-of-phase power divider with unequal power division is also proposed. In the second part of this thesis, the pattern diversity function is combined with multistate frequency-reconfigurable filtering functions in a series of novel designs. In the first proposed design, two quasi-Yagi-Uda antennas are used for pattern diversity, while two switchable and reconfigurable bandpass-to-bandstop filters are used to excite the antenna elements. The whole system is excited by an external commercially available rat-race coupler. In a next step, this design is modified to attain wideband, tunable bandpass, and tunable bandstop operations while obviating the need for an external coupler by using three antenna elements excited by a switchable power divider. In another implementation, the filtering functions is extended to dual-band independently tunable bandpass and bandstop to excite wideband antennas. While all the former designs featured E-plane pattern diversity, in another design aiming at increasing space coverage, a switchable patch antennas with sum and difference radiation patterns in both E- and H-plane of the antenna is designed.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 202
    • …
    corecore