33 research outputs found

    Compact Generalized Non-local Network

    Full text link
    The non-local module is designed for capturing long-range spatio-temporal dependencies in images and videos. Although having shown excellent performance, it lacks the mechanism to model the interactions between positions across channels, which are of vital importance in recognizing fine-grained objects and actions. To address this limitation, we generalize the non-local module and take the correlations between the positions of any two channels into account. This extension utilizes the compact representation for multiple kernel functions with Taylor expansion that makes the generalized non-local module in a fast and low-complexity computation flow. Moreover, we implement our generalized non-local method within channel groups to ease the optimization. Experimental results illustrate the clear-cut improvements and practical applicability of the generalized non-local module on both fine-grained object recognition and video classification. Code is available at: https://github.com/KaiyuYue/cgnl-network.pytorch.Comment: Technical report; To appear at NIPS 2018; Code is available at https://github.com/KaiyuYue/cgnl-network.pytorc

    Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects

    Full text link
    An image is not just a collection of objects, but rather a graph where each object is related to other objects through spatial and semantic relations. Using relational reasoning modules, such as the non-local module \cite{wang2017non}, can therefore improve object detection. Current schemes apply such dedicated modules either to a specific layer of the bottom-up stream, or between already-detected objects. We show that the relational process can be better modeled in a coarse-to-fine manner and present a novel framework, applying a non-local module sequentially to increasing resolution feature maps along the top-down stream. In this way, information can naturally passed from larger objects to smaller related ones. Applying the module to fine feature maps further allows the information to pass between the small objects themselves, exploiting repetitions of instances of the same class. In practice, due to the expensive memory utilization of the non-local module, it is infeasible to apply the module as currently used to high-resolution feature maps. We redesigned the non local module, improved it in terms of memory and number of operations, allowing it to be placed anywhere along the network. We further incorporated relative spatial information into the module, in a manner that can be incorporated into our efficient implementation. We show the effectiveness of our scheme by improving the results of detecting small objects on COCO by 1-2 AP points over Faster and Mask RCNN and by 1 AP over using non-local module on the bottom-up stream

    LatentGNN: Learning Efficient Non-local Relations for Visual Recognition

    Full text link
    Capturing long-range dependencies in feature representations is crucial for many visual recognition tasks. Despite recent successes of deep convolutional networks, it remains challenging to model non-local context relations between visual features. A promising strategy is to model the feature context by a fully-connected graph neural network (GNN), which augments traditional convolutional features with an estimated non-local context representation. However, most GNN-based approaches require computing a dense graph affinity matrix and hence have difficulty in scaling up to tackle complex real-world visual problems. In this work, we propose an efficient and yet flexible non-local relation representation based on a novel class of graph neural networks. Our key idea is to introduce a latent space to reduce the complexity of graph, which allows us to use a low-rank representation for the graph affinity matrix and to achieve a linear complexity in computation. Extensive experimental evaluations on three major visual recognition tasks show that our method outperforms the prior works with a large margin while maintaining a low computation cost.Comment: ICML 201

    Toward Interpretable Music Tagging with Self-Attention

    Full text link
    Self-attention is an attention mechanism that learns a representation by relating different positions in the sequence. The transformer, which is a sequence model solely based on self-attention, and its variants achieved state-of-the-art results in many natural language processing tasks. Since music composes its semantics based on the relations between components in sparse positions, adopting the self-attention mechanism to solve music information retrieval (MIR) problems can be beneficial. Hence, we propose a self-attention based deep sequence model for music tagging. The proposed architecture consists of shallow convolutional layers followed by stacked Transformer encoders. Compared to conventional approaches using fully convolutional or recurrent neural networks, our model is more interpretable while reporting competitive results. We validate the performance of our model with the MagnaTagATune and the Million Song Dataset. In addition, we demonstrate the interpretability of the proposed architecture with a heat map visualization.Comment: 13 pages, 12 figures; code: https://github.com/minzwon/self-attention-music-taggin

    Associating Multi-Scale Receptive Fields for Fine-grained Recognition

    Full text link
    Extracting and fusing part features have become the key of fined-grained image recognition. Recently, Non-local (NL) module has shown excellent improvement in image recognition. However, it lacks the mechanism to model the interactions between multi-scale part features, which is vital for fine-grained recognition. In this paper, we propose a novel cross-layer non-local (CNL) module to associate multi-scale receptive fields by two operations. First, CNL computes correlations between features of a query layer and all response layers. Second, all response features are weighted according to the correlations and are added to the query features. Due to the interactions of cross-layer features, our model builds spatial dependencies among multi-level layers and learns more discriminative features. In addition, we can reduce the aggregation cost if we set low-dimensional deep layer as query layer. Experiments are conducted to show our model achieves or surpasses state-of-the-art results on three benchmark datasets of fine-grained classification. Our codes can be found at github.com/FouriYe/CNL-ICIP2020.Comment: Accepted by ICIP202

    Hierarchical Multi-Scale Attention for Semantic Segmentation

    Full text link
    Multi-scale inference is commonly used to improve the results of semantic segmentation. Multiple images scales are passed through a network and then the results are combined with averaging or max pooling. In this work, we present an attention-based approach to combining multi-scale predictions. We show that predictions at certain scales are better at resolving particular failures modes, and that the network learns to favor those scales for such cases in order to generate better predictions. Our attention mechanism is hierarchical, which enables it to be roughly 4x more memory efficient to train than other recent approaches. In addition to enabling faster training, this allows us to train with larger crop sizes which leads to greater model accuracy. We demonstrate the result of our method on two datasets: Cityscapes and Mapillary Vistas. For Cityscapes, which has a large number of weakly labelled images, we also leverage auto-labelling to improve generalization. Using our approach we achieve a new state-of-the-art results in both Mapillary (61.1 IOU val) and Cityscapes (85.1 IOU test).Comment: 11 pages, 5 figure

    Low-shot Object Detection via Classification Refinement

    Full text link
    This work aims to address the problem of low-shot object detection, where only a few training samples are available for each category. Regarding the fact that conventional fully supervised approaches usually suffer huge performance drop with rare classes where data is insufficient, our study reveals that there exists more serious misalignment between classification confidence and localization accuracy on rarely labeled categories, and the prone to overfitting class-specific parameters is the crucial cause of this issue. In this paper, we propose a novel low-shot classification correction network (LSCN) which can be adopted into any anchor-based detector to directly enhance the detection accuracy on data-rare categories, without sacrificing the performance on base categories. Specially, we sample false positive proposals from a base detector to train a separate classification correction network. During inference, the well-trained correction network removes false positives from the base detector. The proposed correction network is data-efficient yet highly effective with four carefully designed components, which are Unified recognition, Global receptive field, Inter-class separation, and Confidence calibration. Experiments show our proposed method can bring significant performance gains to rarely labeled categories and outperforms previous work on COCO and PASCAL VOC by a large margin.Comment: Submitted to NIPS202

    Global Aggregation then Local Distribution in Fully Convolutional Networks

    Full text link
    It has been widely proven that modelling long-range dependencies in fully convolutional networks (FCNs) via global aggregation modules is critical for complex scene understanding tasks such as semantic segmentation and object detection. However, global aggregation is often dominated by features of large patterns and tends to oversmooth regions that contain small patterns (e.g., boundaries and small objects). To resolve this problem, we propose to first use \emph{Global Aggregation} and then \emph{Local Distribution}, which is called GALD, where long-range dependencies are more confidently used inside large pattern regions and vice versa. The size of each pattern at each position is estimated in the network as a per-channel mask map. GALD is end-to-end trainable and can be easily plugged into existing FCNs with various global aggregation modules for a wide range of vision tasks, and consistently improves the performance of state-of-the-art object detection and instance segmentation approaches. In particular, GALD used in semantic segmentation achieves new state-of-the-art performance on Cityscapes test set with mIoU 83.3\%. Code is available at: \url{https://github.com/lxtGH/GALD-Net}Comment: accepted at BMVC 201

    Fine-Grained Attention for Weakly Supervised Object Localization

    Full text link
    Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we propose a novel residual fine-grained attention (RFGA) module that autonomously excites the less activated regions of an object by utilizing information distributed over channels and locations within feature maps in combination with a residual operation. To be specific, we devise a series of mechanisms of triple-view attention representation, attention expansion, and feature calibration. Unlike other attention-based WSOL methods that learn a coarse attention map, having the same values across elements in feature maps, our proposed RFGA learns fine-grained values in an attention map by assigning different attention values for each of the elements. We validated the superiority of our proposed RFGA module by comparing it with the recent methods in the literature over three datasets. Further, we analyzed the effect of each mechanism in our RFGA and visualized attention maps to get insights.Comment: 16 pages, 11 figure

    Real-time Semantic Segmentation with Fast Attention

    Full text link
    In deep CNN based models for semantic segmentation, high accuracy relies on rich spatial context (large receptive fields) and fine spatial details (high resolution), both of which incur high computational costs. In this paper, we propose a novel architecture that addresses both challenges and achieves state-of-the-art performance for semantic segmentation of high-resolution images and videos in real-time. The proposed architecture relies on our fast spatial attention, which is a simple yet efficient modification of the popular self-attention mechanism and captures the same rich spatial context at a small fraction of the computational cost, by changing the order of operations. Moreover, to efficiently process high-resolution input, we apply an additional spatial reduction to intermediate feature stages of the network with minimal loss in accuracy thanks to the use of the fast attention module to fuse features. We validate our method with a series of experiments, and show that results on multiple datasets demonstrate superior performance with better accuracy and speed compared to existing approaches for real-time semantic segmentation. On Cityscapes, our network achieves 74.4%\% mIoU at 72 FPS and 75.5%\% mIoU at 58 FPS on a single Titan X GPU, which is~\sim50%\% faster than the state-of-the-art while retaining the same accuracy.Comment: project page: https://cs-people.bu.edu/pinghu/FANet.htm
    corecore