This paper is concerned with the concept of equilibrium and quality of
service (QoS) provisioning in self-configuring wireless networks with
non-cooperative radio devices (RD). In contrast with the Nash equilibrium (NE),
where RDs are interested in selfishly maximizing its QoS, we present a concept
of equilibrium, named satisfaction equilibrium (SE), where RDs are interested
only in guaranteing a minimum QoS. We provide the conditions for the existence
and the uniqueness of the SE. Later, in order to provide an equilibrium
selection framework for the SE, we introduce the concept of effort or cost of
satisfaction, for instance, in terms of transmit power levels, constellation
sizes, etc. Using the idea of effort, the set of efficient SE (ESE) is defined.
At the ESE, transmitters satisfy their minimum QoS incurring in the lowest
effort. We prove that contrary to the (generalized) NE, at least one ESE always
exists whenever the network is able to simultaneously support the individual
QoS requests. Finally, we provide a fully decentralized algorithm to allow
self-configuring networks to converge to one of the SE relying only on local
information.Comment: Accepted for publication in Globecom 201