8 research outputs found

    ORDER BASED EMIGRANT CREATION STRATEGY FOR PARALLEL ARTIFICIAL BEE COLONY ALGORITHM

    Get PDF
    Artificial Bee Colony (ABC) algorithm inspired by the foraging behaviors of real honey bees is one of the most important swarm intelligence based optimization algorithms. When considering the robust and phase divided structure of the ABC algorithm, it is clearly seen that ABC algorithm is intrinsically suitable for parallelization. In this paper, we proposed a new emigrant creation strategy for parallel ABC algorithm. The proposed model named order based emigrant creation strategy depends on sending best food source in a subcolony after modifying it with another food source chosen sequentially from the same subcolony at each migration time. Experimental studies on a set of numerical benchmark functions showed that parallel ABC algorithm powered by the newly proposed model significantly improved quality of the final solutions and convergence performance when compared with standard serial ABC algorithm and parallel ABC algorithm for which the best food sources in the subcolonies directly used as emigrants

    Compact Optimization Algorithms with Re-sampled Inheritance

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Compact optimization algorithms are a class of Estimation of Distribution Algorithms (EDAs) characterized by extremely limited memory requirements (hence they are called \compact"). As all EDAs, compact algorithms build and update a probabilistic model of the distribution of solutions within the search space, as opposed to population-based algorithms that instead make use of an explicit population of solutions. In addition to that, to keep their memory consumption low, compact algorithms purposely employ simple probabilistic models that can be described with a small number of parameters. Despite their simplicity, compact algorithms have shown good performances on a broad range of benchmark functions and real-world problems. However, compact algorithms also come with some drawbacks, i.e. they tend to premature convergence and show poorer performance on non-separable problems. To overcome these limitations, here we investigate a possible algorithmic scheme obtained by combining compact algorithms with a non-disruptive restart mechanism taken from the literature, named Re-Sampled Inheritance (RI). The resulting compact algorithms with RI are tested on the CEC 2014 benchmark functions. The numerical results show on the one hand that the use of RI consistently enhances the performances of compact algorithms, still keeping a limited usage of memory. On the other hand, our experiments show that among the tested algorithms, the best performance is obtained by compact Differential Evolution with RI

    An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and Probabilistic Multisearch

    Get PDF
    The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Global Shipping Container Monitoring Using Machine Learning with Multi-Sensor Hubs and Catadioptric Imaging

    Get PDF
    We describe a framework for global shipping container monitoring using machine learning with multi-sensor hubs and infrared catadioptric imaging. A wireless mesh radio satellite tag architecture provides connectivity anywhere in the world which is a significant improvement to legacy methods. We discuss the design and testing of a low-cost long-wave infrared catadioptric imaging device and multi-sensor hub combination as an intelligent edge computing system that, when equipped with physics-based machine learning algorithms, can interpret the scene inside a shipping container to make efficient use of expensive communications bandwidth. The histogram of oriented gradients and T-channel (HOG+) feature as introduced for human detection on low-resolution infrared catadioptric images is shown to be effective for various mirror shapes designed to give wide volume coverage with controlled distortion. Initial results for through-metal communication with ultrasonic guided waves show promise using the Dynamic Wavelet Fingerprint Technique (DWFT) to identify Lamb waves in a complicated ultrasonic signal

    Enhanced compact artificial bee colony

    No full text
    Challenges in many real-world optimization problems arise from limited hardware availability, particularly when the optimization must be performed on a device whose hardware is highly restricted due to cost or space. This paper proposes a new algorithm, namely Enhanced compact Artificial Bee Colony (EcABC) to address this class of optimization problems. The algorithm benefits from the search logic of the Artificial Bee Colony (ABC) algorithm, and similar to other compact algorithms, it does not store the actual population of tentative solutions. Instead, EcABC employs a novel probabilistic representation of the population that is introduced in this paper. The proposed algorithm has been tested on a set of benchmark functions from the CEC2013 benchmark suite, and compared against a number of algorithms including modern compact algorithms, recent population-based ABC variants and some advanced meta-heuristics. Numerical results demonstrate that EcABC significantly outperforms other state of the art compact algorithms. In addition, simulations also indicate that the proposed algorithm shows a comparative performance when compared against its population-based versions
    corecore