6,113 research outputs found

    Bi-Objective Community Detection (BOCD) in Networks using Genetic Algorithm

    Full text link
    A lot of research effort has been put into community detection from all corners of academic interest such as physics, mathematics and computer science. In this paper I have proposed a Bi-Objective Genetic Algorithm for community detection which maximizes modularity and community score. Then the results obtained for both benchmark and real life data sets are compared with other algorithms using the modularity and MNI performance metrics. The results show that the BOCD algorithm is capable of successfully detecting community structure in both real life and synthetic datasets, as well as improving upon the performance of previous techniques.Comment: 11 pages, 3 Figures, 3 Tables. arXiv admin note: substantial text overlap with arXiv:0906.061

    Detecting Multiple Communities Using Quantum Annealing on the D-Wave System

    Full text link
    A very important problem in combinatorial optimization is partitioning a network into communities of densely connected nodes; where the connectivity between nodes inside a particular community is large compared to the connectivity between nodes belonging to different ones. This problem is known as community detection, and has become very important in various fields of science including chemistry, biology and social sciences. The problem of community detection is a twofold problem that consists of determining the number of communities and, at the same time, finding those communities. This drastically increases the solution space for heuristics to work on, compared to traditional graph partitioning problems. In many of the scientific domains in which graphs are used, there is the need to have the ability to partition a graph into communities with the ``highest quality'' possible since the presence of even small isolated communities can become crucial to explain a particular phenomenon. We have explored community detection using the power of quantum annealers, and in particular the D-Wave 2X and 2000Q machines. It turns out that the problem of detecting at most two communities naturally fits into the architecture of a quantum annealer with almost no need of reformulation. This paper addresses a systematic study of detecting two or more communities in a network using a quantum annealer

    Evolutionary Algorithms for Community Detection in Continental-Scale High-Voltage Transmission Grids

    Get PDF
    Symmetry is a key concept in the study of power systems, not only because the admittance and Jacobian matrices used in power flow analysis are symmetrical, but because some previous studies have shown that in some real-world power grids there are complex symmetries. In order to investigate the topological characteristics of power grids, this paper proposes the use of evolutionary algorithms for community detection using modularity density measures on networks representing supergrids in order to discover densely connected structures. Two evolutionary approaches (generational genetic algorithm, GGA+, and modularity and improved genetic algorithm, MIGA) were applied. The results obtained in two large networks representing supergrids (European grid and North American grid) provide insights on both the structure of the supergrid and the topological differences between different regions. Numerical and graphical results show how these evolutionary approaches clearly outperform to the well-known Louvain modularity method. In particular, the average value of modularity obtained by GGA+ in the European grid was 0.815, while an average of 0.827 was reached in the North American grid. These results outperform those obtained by MIGA and Louvain methods (0.801 and 0.766 in the European grid and 0.813 and 0.798 in the North American grid, respectively)

    Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data

    Get PDF
    Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However, commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of the network partitioned into disjoint communities and provide no information of the relationship between communities. Here, we present methods to robustly detect coregulated and functionally enriched gene communities and demonstrate their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection algorithm to the network of interactions identified with the context likelihood of relatedness (CLR) method, we show that a hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO) terms, consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1 was not uploaded but is available by contacting the author. 27 pages, 5 figures, 15 supplementary file
    • …
    corecore