158,158 research outputs found

    Clouds of Small Things: Provisioning Infrastructure-as-a-Service from within Community Networks

    Get PDF
    Community networks offer a shared communication infrastructure where communities of citizens build and own open networks. While the IP connectivity of the networking devices is successfully achieved, the number of services and applications available from within the community network is typically small and the usage of the community network is often limited to providing Internet access to remote areas through wireless links. In this paper we propose to apply the principle of resource sharing of community networks, currently limited to the network bandwidth, to other computing resources, which leads to cloud computing in community networks. Towards this vision, we review some characteristics of community networks and identify potential scenarios for community clouds. We simulate a cloud computing infrastructure service and discuss different aspects of its performance in comparison to a commercial centralized cloud system. We note that in community clouds the computing resources are heterogeneous and less powerful, which affects the time needed to assign resources. Response time of the infrastructure service is high in community clouds even for a small number of resources since resources are distributed, but tends to get closer to that of a centralized cloud when the number of resources requested increases. Our initial results suggest that the performance of the community clouds highly depends on the community network conditions, but has some potential for improvement with network-aware cloud services. The main strength compared to commercial cloud services, however, is that community cloud services hosted on community-owned resources will follow the principles of community network and will be neutral and open

    Prototyping Incentive-based Resource Assignment for Clouds in Community Networks

    Get PDF
    Wireless community networks are a successful example of a collective where communities operate ICT infrastructure and provide IP connectivity based on the principle of reciprocal resource sharing of network bandwidth. This sharing, however, has not extended to computing and storage resources, resulting in very few applications and services which are currently deployed within community networks. Cloud computing, as in today's Internet, has made it common to consume resources provided by public clouds providers, but such cloud infrastructures have not materialized within community networks. We analyse in this paper socio-technical characteristics of community networks in order to derive scenarios for community clouds. Based on an architecture for such a community cloud, we implement a prototype for the incentive-driven resource assignment component, deploy it in a testbed of community network nodes, and evaluate its behaviour experimentally. Our evaluation gives insight into how the deployed prototype components regulate the consumption of cloud resources taking into account the users' contributions, and how this regulation affects the system usage. Our results suggest a further integration of this regulation component into current cloud management platforms in order to open them up for the operation of an ecosystem of community cloud

    Towards an open cloud marketplace: vision and first steps

    Full text link
    As one of the most promising, emerging concepts in Information Technology (IT), cloud computing is transforming how IT is consumed and managed; yielding improved cost efficiencies, and delivering flexible, on-demand scalability by reducing computing infrastructures, platforms, and services to commodities acquired and paid-for on-demand through a set of cloud providers. Today, the transition of cloud computing from a subject of research and innovation to a critical infrastructure is proceeding at an incredibly fast pace. A potentially dangerous consequence of this speedy transition to practice is the premature adoption, and ossification, of the models, technologies, and standards underlying this critical infrastructure. This state of affairs is exacerbated by the fact that innovative research on production-scale platforms is becoming the purview of a small number of public cloud providers. Specifically, the academic research communities are effectively excluded from the opportunity to contribute meaningfully to the evolution not to mention innovation and healthy mutation of cloud computing technologies. As the dependence on our society and economy on cloud computing increases, so does the realization that the academic research community cannot be shut out from contributing to the design and evolution of this critical infrastructure. In this article we provide an alternative vision that of an Open Cloud eXchange (OCX) a public cloud marketplace, where many stakeholders, rather than just a single cloud provider, participate in implementing and operating the cloud, thus creating an ecosystem that will bring the innovation of a broader community to bear on a much healthier and more efficient cloud marketplace

    Gossip-based service monitoring platform for wireless edge cloud computing

    Get PDF
    Edge cloud computing proposes to support shared services, by using the infrastructure at the network's edge. An important problem is the monitoring and management of services across the edge environment. Therefore, dissemination and gathering of data is not straightforward, differing from the classic cloud infrastructure. In this paper, we consider the environment of community networks for edge cloud computing, in which the monitoring of cloud services is required. We propose a monitoring platform to collect near real-time data about the services offered in the community network using a gossip-enabled network. We analyze and apply this gossip-enabled network to perform service discovery and information sharing, enabling data dissemination among the community. We implemented our solution as a prototype and used it for collecting service monitoring data from the real operational community network cloud, as a feasible deployment of our solution. By means of emulation and simulation we analyze in different scenarios, the behavior of the gossip overlay solution, and obtain average results regarding information propagation and consistency needs, i.e. in high latency situations, data convergence occurs within minutes.Peer ReviewedPostprint (author's final draft

    A Community-based Cloud Computing Caching Service

    Get PDF
    Caching has become an important technology in the development of cloud computing-based high-performance web services. Caches reduce the request to response latency experienced by users, and reduce workload on backend databases. They need a high cache-hit rate to be fit for purpose, and this rate is dependent on the cache management policy used. Existing cache management policies are not designed to prevent cache pollution or cache monopoly problems, which impacts negatively on the cache-hit rate. This paper proposes a community-based caching approach (CC) to address these two problems. CC was evaluated for performance against thirteen commercially available cache management policies, and results demonstrate that the cache-hit rate achieved by CC was between 0.7% and 55% better than the alternate cache management policies
    • …
    corecore