7 research outputs found

    HEC: Collaborative Research: SAM^2 Toolkit: Scalable and Adaptive Metadata Management for High-End Computing

    Get PDF
    The increasing demand for Exa-byte-scale storage capacity by high end computing applications requires a higher level of scalability and dependability than that provided by current file and storage systems. The proposal deals with file systems research for metadata management of scalable cluster-based parallel and distributed file storage systems in the HEC environment. It aims to develop a scalable and adaptive metadata management (SAM2) toolkit to extend features of and fully leverage the peak performance promised by state-of-the-art cluster-based parallel and distributed file storage systems used by the high performance computing community. There is a large body of research on data movement and management scaling, however, the need to scale up the attributes of cluster-based file systems and I/O, that is, metadata, has been underestimated. An understanding of the characteristics of metadata traffic, and an application of proper load-balancing, caching, prefetching and grouping mechanisms to perform metadata management correspondingly, will lead to a high scalability. It is anticipated that by appropriately plugging the scalable and adaptive metadata management components into the state-of-the-art cluster-based parallel and distributed file storage systems one could potentially increase the performance of applications and file systems, and help translate the promise and potential of high peak performance of such systems to real application performance improvements. The project involves the following components: 1. Develop multi-variable forecasting models to analyze and predict file metadata access patterns. 2. Develop scalable and adaptive file name mapping schemes using the duplicative Bloom filter array technique to enforce load balance and increase scalability 3. Develop decentralized, locality-aware metadata grouping schemes to facilitate the bulk metadata operations such as prefetching. 4. Develop an adaptive cache coherence protocol using a distributed shared object model for client-side and server-side metadata caching. 5. Prototype the SAM2 components into the state-of-the-art parallel virtual file system PVFS2 and a distributed storage data caching system, set up an experimental framework for a DOE CMS Tier 2 site at University of Nebraska-Lincoln and conduct benchmark, evaluation and validation studies

    Communication-Aware Load Balancing for Parallel Applications on Clusters

    Get PDF
    Cluster computing has emerged as a primary and cost-effective platform for running parallel applications, including communication-intensive applications that transfer a large amount of data among the nodes of a cluster via the interconnection network. Conventional load balancers have proven effective in increasing the utilization of CPU, memory, and disk I/O resources in a cluster. However, most of the existing load-balancing schemes ignore network resources, leaving an opportunity to improve the effective bandwidth of networks on clusters running parallel applications. For this reason, we propose a communication-aware load-balancing technique that is capable of improving the performance of communication-intensive applications by increasing the effective utilization of networks in cluster environments. To facilitate the proposed load-balancing scheme, we introduce a behavior model for parallel applications with large requirements of network, CPU, memory, and disk I/O resources. Our load-balancing scheme can make full use of this model to quickly and accurately determine the load induced by a variety of parallel applications. Simulation results generated from a diverse set of both synthetic bulk synchronous and real parallel applications on a cluster show that our scheme significantly improves the performance, in terms of slowdown and turn-around time, over existing schemes by up to 206 percent (with an average of 74 percent) and 235 percent (with an average of 82 percent), respectively

    COMPILER TECHNIQUES FOR EFFICIENT COMMUNICATIONS IN MULTIPROCESSOR SYSTEMS

    Get PDF
    Technical advances have brought circuit switching back to the stage of interconnection network design for high performance computing. Although circuit switching has long connection establishment delays and the dedication of connections prevents other communicating nodes from sharing the network, it has simple control logic and significant cost advantage over packet or wormhole switching. With the proper assistance from compilers, circuit switching has the potential of providing significant performance benefits when connections can be established prior to the actual communication. This dissertation presents a novel compilation framework for achieving efficient communications in circuit switching interconnection networks. The goal of the framework is to identify communication patterns in Single-Program-Multiple-Data (SPMD) parallel applications and compile these patterns as network configuration directives. This can significantly reduce the communication overhead on circuit switching interconnection networks. A powerful representation scheme is developed in this research to capture the property of communication patterns and allow manipulation of these patterns. Based on the temporal and spatial localities of communications and the capability of the compiler to identify the communication patterns, we classify communication patterns into three categories - static, persistent, and dynamic. We target static and persistent communications, which are dominant in most parallel applications. To identify communication patterns, we develop a novel symbolic expression analysis. We develop certain compiler techniques for analyzing communication patterns. Since the underlying network capacity is limited, we develop an algorithm to partition the program into phases based on the communication requirements and network capacity. To demonstrate the effectiveness of our framework, we implement an experimental compiler. The compiler identifies the communication patterns from the source code, partitions the program into phases, and inserts the network configuration directives at phase boundaries to achieve efficient communications. The compiler also can generate communication traces, which provides useful information about the communication pattern correlated to the structure of the source code. We develop a multiprocessor system simulator to evaluate our techniques. Our simulation-based performance analysis demonstrates that using our compiler techniques can achieve the same level, or even better level of communication performance than fast packet switching networks while using much less expensive circuit switches

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Communication-Aware Load Balancing for Parallel Applications on Clusters

    No full text
    corecore