5,340 research outputs found

    Synthesis of variable dancing styles based on a compact spatiotemporal representation of dance

    Get PDF
    Dance as a complex expressive form of motion is able to convey emotion, meaning and social idiosyncrasies that opens channels for non-verbal communication, and promotes rich cross-modal interactions with music and the environment. As such, realistic dancing characters may incorporate crossmodal information and variability of the dance forms through compact representations that may describe the movement structure in terms of its spatial and temporal organization. In this paper, we propose a novel method for synthesizing beatsynchronous dancing motions based on a compact topological model of dance styles, previously captured with a motion capture system. The model was based on the Topological Gesture Analysis (TGA) which conveys a discrete three-dimensional point-cloud representation of the dance, by describing the spatiotemporal variability of its gestural trajectories into uniform spherical distributions, according to classes of the musical meter. The methodology for synthesizing the modeled dance traces back the topological representations, constrained with definable metrical and spatial parameters, into complete dance instances whose variability is controlled by stochastic processes that considers both TGA distributions and the kinematic constraints of the body morphology. In order to assess the relevance and flexibility of each parameter into feasibly reproducing the style of the captured dance, we correlated both captured and synthesized trajectories of samba dancing sequences in relation to the level of compression of the used model, and report on a subjective evaluation over a set of six tests. The achieved results validated our approach, suggesting that a periodic dancing style, and its musical synchrony, can be feasibly reproduced from a suitably parametrized discrete spatiotemporal representation of the gestural motion trajectories, with a notable degree of compression

    Communicating through motion in dance and animal groups

    Get PDF
    This study explores principles of motion based communication in animal and human group behavior. It develops models of cooperative control that involve communication through actions aimed at a shared objective. Moreover, it aims at understanding the collective motion in multi-agent models towards a desired objective which requires interaction with the environment. In conducting a formal study of these problems, first we investigate the leader-follower interaction in a dance performance. Here, the prototype model is salsa. Salsa is of interest because it is a structured interaction between a leader (usually a male dancer) and a follower (usually a female dancer). Success in a salsa performance depends on how effectively the dance partners communicate with each other using hand, arm and body motion. We construct a mathematical framework in terms of a Dance Motion Description Language (DMDL). This provides a way to specify control protocols for dance moves and to represent every performance as sequences of letters and corresponding motion signals. An enhanced form of salsa (intermediate level) is discussed in which the constraints on the motion transitions are described by simple rules suggested by topological knot theory. It is shown that the proficiency hierarchy in dance is effectively captured by proposed complexity metrics. In order to investigate the group behavior of animals that are reacting to environmental features, we have analyzed a large data set derived from 3-d video recordings of groups of Myotis velifer emerging from a cave. A detailed statistical analysis of large numbers of trajectories indicates that within certain bounds of animal diversity, there appear to be common characteristics of the animals' reactions to features in a clearly defined flight corridor near the mouth of the cave. A set of vision-based motion control primitives is proposed and shown to be effective in synthesizing bat-like flight paths near groups of obstacles. A comparison of synthesized paths and actual bat motions culled from our data set suggests that motions are not based purely on reactions to environmental features. Spatial memory and reactions to the movement of other bats may also play a role. It is argued that most bats employ a hybrid navigation strategy that combines reactions to nearby obstacles and other visual features with some combination of spatial memory and reactions to the motions of other bats

    The spatiotemporal representation of dance and music gestures using topological gesture analysis (TGA)

    Get PDF
    SPATIOTEMPORAL GESTURES IN MUSIC AND DANCE HAVE been approached using both qualitative and quantitative research methods. Applying quantitative methods has offered new perspectives but imposed several constraints such as artificial metric systems, weak links with qualitative information, and incomplete accounts of variability. In this study, we tackle these problems using concepts from topology to analyze gestural relationships in space. The Topological Gesture Analysis (TGA) relies on the projection of musical cues onto gesture trajectories, which generates point clouds in a three-dimensional space. Point clouds can be interpreted as topologies equipped with musical qualities, which gives us an idea about the relationships between gesture, space, and music. Using this method, we investigate the relationships between musical meter, dance style, and expertise in two popular dances (samba and Charleston). The results show how musical meter is encoded in the dancer's space and how relevant information about styles and expertise can be revealed by means of simple topological relationships

    Toward a computational theory for motion understanding: The expert animators model

    Get PDF
    Artificial intelligence researchers claim to understand some aspect of human intelligence when their model is able to emulate it. In the context of computer graphics, the ability to go from motion representation to convincing animation should accordingly be treated not simply as a trick for computer graphics programmers but as important epistemological and methodological goal. In this paper we investigate a unifying model for animating a group of articulated bodies such as humans and robots in a three-dimensional environment. The proposed model is considered in the framework of knowledge representation and processing, with special reference to motion knowledge. The model is meant to help setting the basis for a computational theory for motion understanding applied to articulated bodies

    Computers and the Mechanics of Communication

    Get PDF

    The Translocal Event and the Polyrhythmic Diagram

    Get PDF
    This thesis identifies and analyses the key creative protocols in translocal performance practice, and ends with suggestions for new forms of transversal live and mediated performance practice, informed by theory. It argues that ontologies of emergence in dynamic systems nourish contemporary practice in the digital arts. Feedback in self-organised, recursive systems and organisms elicit change, and change transforms. The arguments trace concepts from chaos and complexity theory to virtual multiplicity, relationality, intuition and individuation (in the work of Bergson, Deleuze, Guattari, Simondon, Massumi, and other process theorists). It then examines the intersection of methodologies in philosophy, science and art and the radical contingencies implicit in the technicity of real-time, collaborative composition. Simultaneous forces or tendencies such as perception/memory, content/ expression and instinct/intellect produce composites (experience, meaning, and intuition- respectively) that affect the sensation of interplay. The translocal event is itself a diagram - an interstice between the forces of the local and the global, between the tendencies of the individual and the collective. The translocal is a point of reference for exploring the distribution of affect, parameters of control and emergent aesthetics. Translocal interplay, enabled by digital technologies and network protocols, is ontogenetic and autopoietic; diagrammatic and synaesthetic; intuitive and transductive. KeyWorx is a software application developed for realtime, distributed, multimodal media processing. As a technological tool created by artists, KeyWorx supports this intuitive type of creative experience: a real-time, translocal “jamming” that transduces the lived experience of a “biogram,” a synaesthetic hinge-dimension. The emerging aesthetics are processual – intuitive, diagrammatic and transversal

    The individuality of metrical engagement: describing the individual differences of movements in response to musical meter

    Get PDF
    Evidence behind theories about musical meter and rhythm is based on averages across empirical sets of data. Theory is also commonly forged from general observations of music practices. Ethnomusicology describes rhythm and dance based on patterning characterizations inside cultures. Without neglecting the value of that knowledge, so far we know very little about how individuals´ bodies respond to music. Derivation of common laws from controlled experimentation may have obfuscated the understanding of differences between individuals, their music, movements and dance. How large are these differences as expressed, and how our bodies map these idiosyncrasies are questions that still need answers. In this paper we look into a detailed account of differences between individuals by looking at their free movement responses to music. Using the state-of-the-art of motion capture technologies and a set of analytical techniques we uncover the embodied metric organization, exposing the idiosyncrasies between different people.Trabajo publicado en M. Aramaki, R. Kronland-Martinet, S. Ystad (eds.) (2015). Music, Mind, and Embodiment. Proceedings of the 11th International Symposium on Computer Music Multidisciplinary Research (CMMR). Marseille: The Laboratory of Mechanics and Acoustics.Facultad de Bellas Arte
    • …
    corecore