78,052 research outputs found

    Power quality improvement using passive shunt filter, TCR and TSC combination

    Get PDF
    Power system harmonics are a menace to electric power systems with disastrous consequences. The line current harmonics cause increase in losses, instability, and also voltage distortion. With the proliferation of the power electronics converters and increased use of magnetic, power lines have become highly polluted. Both passive and active filters have been used near harmonic producing loads or at the point of common coupling to block current harmonics. Shunt filters still dominate the harmonic compensation at medium/high voltage level, whereas active filters have been proclaimed for low/medium voltage ratings. With diverse applications involving reactive power together with harmonic compensation, passive filters are found suitable [41]. Passive filtering has been preferred for harmonic compensation in distribution systems due to low cost, simplicity, reliability, and control less operation [42]. The uncontrolled ac-dc converter suffers from operating problems of poor power factor, injection of harmonics into the ac mains, variations in dc link voltage of input ac supply, equipment overheating due to harmonic current absorption, voltage distortion due to the voltage drop caused by harmonic currents flowing through system impedances, interference on telephone and communication line etc. The circuit topologies such as passive filters, ac-dc converter, based improved power quality ac-dc converters are designed, modeled and implemented. The main emphasis of this investigation has been on a compactness of configurations, simplicity in control, reduction in rating of components, thus finally leading to saving in overall cost. Based on thesis considerations, a wide range of configurations of power quality mitigators are developed, which is expected to provide detailed exposure to design engineers to choose a particular configuration for a specific application under the given constraints of economy and desired performance. For bidirectional power flow applications, the current source converter is designed and simulated with R-L load. The necessary modeling and simulations are carried out in MATLAB environment using SIMULINK and power system block set toolboxes. The behavior of different configurations of passive tuned filters on power quality is studied. One of the way out to resolve the issue of reactive power would be using filters and TCR, TSC with combination in the power system. Installing a filter for nonlinear loads connected in power system would help in reducing the harmonic effect. The filters are widely used for reduction of harmonics. With the increase of nonlinear loads in the power system, more and more filters are required. The combinations of passive filters with TCR and TSC are also designed and analyzed to improve the power quality at ac mains. This scheme has resulted in improved power quality with overall reduced rating of passive components used in front end ac-dc converters with R-L load

    Design of a Power Quality Monitoring System Based on IOIO and Android Application

    Get PDF
    This study describes the design of the complete electrical sensing system, comprising of an IOIO Microcontroller Unit which connects to an Android Smartphone and the GSM network that can be adopted for power quality monitoring by the electric distribution networks (in this case the Tanzania Electric Supply Company , TANESCO was used as a case study) in order that the primary power faults parameters can be communicated to respective control centres and electronically stored for further analysis. This system is designed to improve the accessibility of power-quality information and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The prototype was implemented using the Input-Output (IOIO) board, an Android SmartPhone, the Global System for Mobile Communications (originally Groupe Spécial Mobile – GSM) network and a cell phone, as control centre. The study focused on how to communicate an alert of an event that cause fault in the electric distribution line to a control centre . Currently, TANESCO’s distribution network has no fault parameter being communicated (relayed) to control centre. Control centres rely on the information from customers. Say there is low voltage at customer end, unless customer informs customer’s service desk, the fault go unreported. Communication of faults at distribution networks is imperative because its absence leads to disruption and damage to electrical appliances and equipment coupled to the power system, and hence, to economic losses and even danger to life and health of service staff. Keywords: IOIO board, PQ, PLC, GSM, GPS, SCADA. Android Smartphon

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Low-energy standby-sparing for hard real-time systems

    No full text
    Time-redundancy techniques are commonly used in real-time systems to achieve fault tolerance without incurring high energy overhead. However, reliability requirements of hard real-time systems that are used in safety-critical applications are so stringent that time-redundancy techniques are sometimes unable to achieve them. Standby sparing as a hardwareredundancy technique can be used to meet high reliability requirements of safety-critical applications. However, conventional standby-sparing techniques are not suitable for lowenergy hard real-time systems as they either impose considerable energy overheads or are not proper for hard timing constraints. In this paper we provide a technique to use standby sparing for hard real-time systems with limited energy budgets. The principal contribution of this work is an online energymanagement technique which is specifically developed for standby-sparing systems that are used in hard real-time applications. This technique operates at runtime and exploits dynamic slacks to reduce the energy consumption while guaranteeing hard deadlines. We compared the low-energy standby-sparing (LESS) system with a low-energy timeredundancy system (from a previous work). The results show that for relaxed time constraints, the LESS system is more reliable and provides about 26% energy saving as compared to the time-redundancy system. For tight deadlines when the timeredundancy system is not sufficiently reliable (for safety-critical application), the LESS system preserves its reliability but with about 49% more energy consumptio

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems
    corecore