16,338 research outputs found

    Zone Routing Protocol (ZRP) - A Novel Routing Protocol for Vehicular Ad-hoc Networks

    Get PDF
    © ASEE 2016This Paper discusses the capability of the current routing protocols for Mobile ad hoc networks for Vehicular ad hoc networks. VANET is derived from MANET and it is a network consisting of vehicles which can communicate wirelessly. In high traffic conditions the message should be delivered correctly between the vehicles and the communication using Road Side Units. VANETs are characterized by a dynamic topology with patterned mobility consisting on mobile nodes with sufficient resources and varied time channel behavior. The network traffic requirements differ for VANET. There are many routing protocols for mobile ad hoc networks which can be used for vehicular ad hoc networks. In this paper, we are introducing Zone Routing Protocol which can improve the parameters of VANET i.e. less communication delay and delivering the messages on time compared to AODV and DSR protocols while the vehicles are moving at high speeds. We have used a simulation to demonstrate those improvements

    An Overview of QoS Enhancements for Wireless Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) allow vehicles to form a self-organized network without the need for permanent infrastructure. Even though VANETs are mobile ad hoc networks (MANETs), because of the intrinsic characteristics of VANETs, several protocols designed for MANETs cannot be directly applied for VANETs. With high number of nodes and mobility, ensuring the Quality of Service (QoS) in VANET is a challenging task. QoS is essential to improve the communication efficiency in vehicular networks. Thus a study of QoS in VANET is useful as a fundamental for constructing an effective vehicular network. In this paper, we present a timeline of the development of the existing protocols for VANETs that try to support QoS. Moreover, we classify and characterize the existing QoS protocols for VANETs in a layered perspective. The review helps in understanding the strengths and weaknesses of the existing QoS protocols and also throws light on open issues that remain to be addressed. Keywords: QoS, VANET, Inter-Vehicle Communications, MAC, Routin

    Performance Evaluation of MANET Based Routing Protocols for VANETs in Urban Scenarios

    Get PDF
    Abstract. Vehicular Ad hoc NETworks (VANETs) are self-organizing ad hoc networks that are specifically designed for communication among vehicles where vehicles are themselves the nodes. Although routing protocols have already been analyzed and compared in the past for Mobile Ad hoc Networks (MANETs), simulations and comparisons of routing protocols for VANETs have almost always been done considering random motions with non-urban specific parameters. This paper studies the performance of Ad hoc On-Demand Distance Vector (AODV) and Destination Sequenced Distance Vector (DSDV) which are popular routing protocols in MANETS for routing among vehicular nodes in VANETs. The effects of urban motions on the simulation parameters, their consequences on routing performance are compared between the two protocols in this study. The VANET simulations showed that on-demand based protocol AODV performs better than the table-driven based DSDV protocol for two performance metrics for vehicular nodes moving in urban scenarios

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    EFFICIENT PACKET DELIVERY FRAMEWORK USING GEO-CAST ROUTING APPROACH FOR A VEHICULAR AD-HOC NETWORK (VANET)

    Get PDF
    In recent years, the technology of Vehicular Ad-hoc Networks(VANET's) communication has become more popular, allowing people to share road information with each other and use it while driving.Vehicular Ad-hoc Networks are special type of Mobile Ad-hoc Networks (MANET's) in which nodes are highly motile, so the network topology changes very fast. In order to form the communication there are several routing protocols provide to optimal path for delivery of packets. In this paper, the Geo-cast routing(GPRs) are applied for both urban and highway areas based on traffic environment. The two protocols Coverage Aware Geo-cast Routing(CAGR) in urban vehicular networks and Information Propagation Speed Analysis(IPSA)in highway vehicular networks are discussed.The path formation from source vehicle to destination vehicle based on different criteria are considered. The results  are analyzed using MATLAB

    A Multi-agent Approach for Routing on Vehicular Ad-Hoc Networks

    Get PDF
    AbstractVehicular Ad-Hoc Network is a special form of mobile ad -hoc networks (MANETs) which is a vehicle to vehicle and vehicle roadside wireless communication network. VANET is a new standard that integrates Wi-Fi, Bluetooth and other mobile connectivity protocols. The essential requirement of VANET is that it should be able to communicate in any environment irrespective of traffic densities and vehicle locations. Vehicular communications are made in fluctuating environment and should work both in urban and rural areas. Considering the large number of nodes participating in these networks and their high mobility, debates still exist about the feasibility of routing protocols. Analyzes of traditional routing protocols for MANETs demonstrated that their performance is poor in VANETs. The main problem with these protocols in VANETs environments is their route instability. Consequently, many packets are dropped and the overhead due to route repairs or failure notifications increases significantly, leading to low delivery ratios and high transmission delays. This paper introduces a multi-agent system approach to solve the problems mentioned above and improve Vehicular ad-hoc network routing

    Simulation of Vehicular Ad-hoc Network Routing Protocols with a Performance Analysis

    Get PDF
    Vehicular Ad-hoc Network (VANET), a subset of Mobile Ad-hoc networks (MANETs), is one of the emerging technologies of Road Transportation system. In recent years, the aspect of Vehicular Ad-hoc Network (VANET) is becoming an interesting research area as it is characterized as self-configured wireless network. The design of routing protocols in VANETs is play a vital role and necessary issue for the Vehicle to Vehicle Communication Technology. The existing routing protocols of MANETs are suitable for VANET with changes in configuration of protocol. The routing protocols fall into two major categories of topology-based and position-based routing. We discussed different kinds of existing routing protocols with two major categories, the advantages and limitations of each which will helps to enhance the existing routing protocols for the suitability of Vehicular Ad-hoc Networks. We implemented three existing routing protocols and the testing results stated that the performance of each in aspects of various parameters such as Packet Delivery Ratio, Throughput and End-End Delay using Network Simulator

    Smart Vehicles, Technologies and Main Applications in Vehicular Ad hoc Networks

    Get PDF
    Vehicular Ad hoc NETworks (VANETs) belong to a subcategory of traditional Mobile Ad hoc NETworks (MANETs). The main feature of VANETs is that mobile nodes are vehicles endowed with sophisticated “on-board” equipments, traveling on constrained paths (i.e., roads and lanes), and communicating each other for message exchange via Vehicle-to-Vehicle (V2V) communication protocols, as well as between vehicles and fixed road-side Access Points (i.e., wireless and cellular network infrastructure), in case of Vehicle-to-Infrastructure (V2I) communications. In this chapter we will introduce the state-of-the-art of recent technologies used in vehicular networks, specifically for smart vehicles, which require novel functionalities such as data communications, accurate positioning, control and decision monitoring

    Location-aware service discovery on IPv6 GeoNetworking for VANET

    Get PDF
    Conference is technically co-sponsored by IEEE Communications Society and co-organized by the Technical Sub-Committee on Vehicular Networks and Telematics (VNAT)International audienceService discovery is an essential component for applications in vehicular communication systems. While there have been numerous service discovery protocols dedicated to a local network, mobile ad-hoc networks and the Internet, in vehicular communication systems, applications pose additional requirements; They need to discover services according to geo- graphical position. In this paper, we propose a location-aware service discovery mechanism for Vehicular Ad-hoc NETwork (VANET). The proposed mechanism exploits IPv6 multicast on top of IPv6 GeoNetworking specified by the GeoNet project. Thanks to the GeoBroadcast mechanism, it efficiently propagates service discovery messages to a subset of nodes inside a relevant geographical area with encapsulating IPv6 multicast packets. We implemented the mechanism using CarGeo6, an open source implementation of IPv6 GeoNetworking. Our real field evaluation shows the system can discover services with low latency and low bandwidth usage in VANETs
    corecore