31,164 research outputs found

    FULLY INTEGRATED HIGH-FREQUENCY CLOCK GENERATION AND SYNCHRONIZATION TECHINIQUES

    Get PDF
    Department of Electrical EngineeringThis thesis presents clock generation and synchronization techniques for RF wireless communication. First, it deals with voltage-controlled oscillators (VCOs) for local oscillators (LO) in transceivers, and secondly delay-locked loops for synchronization. For the high-performance LO, VCO is one of the key blocks. LC VCOs and ring VCOs are commonly-used types. Their characteristics are varied for different frequency bands. In this thesis, two types of VCOs, LC VCO and ring VCO, are presented with specific applications. For the multi-clock generator which could be used for carrier aggregation or frequency hopping, ring-type digitally controlled oscillator (DCO) was designed covering 900-1200 MHz with -165 dB FOM. For the multi-band frequency synthesizer which could be used for 5G communication with backward compatibility, three LC VCOs are designed which frequency range of 25-30 GHz for 5G, 5.2-6.0 GHz for LTE, 2.7-4.2 GHz for 2G-3G communication, respectively. For the clock synchronization in RF communications, a delay-locked loop (DLL) using a digital-to-analog converter (DAC) based band-selecting circuit (BSC) was presented to achieve a wide harmonic-locking-free frequency range. The BSC used the proposed exponential digital-to-analog converter (EDAC) to generate a collection of initial control voltages which follow a sequence of geometric with satisfying the condition for preventing harmonic locking problem. Therefore, the BSC can cover a much wider frequency range which is free from harmonic locking problem compared to initial band selection techniques using conventional, linear DAC (LDAC) that have a set of control voltages of arithmetic sequence. In this thesis, the DLL was implemented in a 65-nm CMOS process, and it had a measured frequency range from 100 to 1500 MHz which range is free from harmonic locking. The measure rms jitter and 1-MHz phase noise at 1000 MHz were 1.99 ps and ?28 dBc/Hz, respectively. The DLL consumes 5.5 mW and its active area was 0.052 mm2.clos

    Efficient and long-lived quantum memory with cold atoms inside a ring cavity

    Full text link
    Quantum memories are regarded as one of the fundamental building blocks of linear-optical quantum computation and long-distance quantum communication. A long standing goal to realize scalable quantum information processing is to build a long-lived and efficient quantum memory. There have been significant efforts distributed towards this goal. However, either efficient but short-lived or long-lived but inefficient quantum memories have been demonstrated so far. Here we report a high-performance quantum memory in which long lifetime and high retrieval efficiency meet for the first time. By placing a ring cavity around an atomic ensemble, employing a pair of clock states, creating a long-wavelength spin wave, and arranging the setup in the gravitational direction, we realize a quantum memory with an intrinsic spin wave to photon conversion efficiency of 73(2)% together with a storage lifetime of 3.2(1) ms. This realization provides an essential tool towards scalable linear-optical quantum information processing.Comment: 6 pages, 4 figure

    Operating LISA as a Sagnac interferometer

    Full text link
    A phase-locking configuration for LISA is proposed that provides a significantly simpler mode of operation. The scheme provides one Sagnac signal readout inherently insensitive to laser frequency noise and optical bench motion for a non-rotating LISA array. This Sagnac output is also insensitive to clock noise, requires no time shifting of data, nor absolute arm length knowledge. As all measurements are made at one spacecraft, neither clock synchronization nor exchange of phase information between spacecraft is required. The phase-locking configuration provides these advantages for only one Sagnac variable yet retains compatibility with the baseline approach for obtaining the other TDI variables. The orbital motion of the LISA constellation is shown to produce a 14 km path length difference between the counter-propagating beams in the Sagnac interferometer. With this length difference a laser frequency noise spectral density of 1 Hz/Hz\sqrt{\rm Hz} would consume the entire optical path noise budget of the Sagnac variables. A significant improvement of laser frequency stability (currently at 30 Hz/Hz\sqrt{\rm Hz}) would be needed for full-sensitivity LISA operation in the Sagnac mode. Alternatively, an additional level of time-delay processing could be applied to remove the laser frequency noise. The new time-delayed combinations of the phase measurements are presented.Comment: 8 pages, 2 figure

    Magneto Acoustic Spin Hall Oscillators

    Full text link
    This paper introduces a novel oscillator that combines the tunability of spin Hall-driven nano oscillators with the high quality factor (Q) of high overtone bulk acoustic wave resonators (HBAR), integrating both reference and tunable oscillators on the same chip with CMOS. In such magneto acoustic spin Hall (MASH) oscillators, voltage oscillations across the magnetic tunnel junction (MTJ) that arise from a spin-orbit torque (SOT) are shaped by the transmission response of the HBAR that acts as a multiple peak-bandpass filter and a delay element due to its large time constant, providing delayed feedback. The filtered voltage oscillations can be fed back to the MTJ via a) strain, b) current, or c) magnetic field. We develop a SPICE-based circuit model by combining experimentally benchmarked models including the stochastic Landau-Lifshitz-Gilbert (sLLG) equation for magnetization dynamics and the Butterworth Van Dyke (BVD) circuit for the HBAR. Using the self-consistent model, we project up to \sim 50X enhancement in the oscillator linewidth with Q reaching up to 52825 at 3 GHz, while preserving the tunability by locking the STNO to the nearest high Q peak of the HBAR. We expect that our results will inspire MEMS-based solutions to spintronic devices by combining attractive features of both fields for a variety of applications
    corecore