898 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Survey of Applying Ad Hoc Wireless Sensor Actuator Networks to Enhance Context-Awareness in Environmental Management Systems

    Get PDF
    Sensor mesh networking is set to be one of the key tools for the future of Ambient Intelligence (AmI) due to new emerging technologies in Ad hoc Wireless Sensor Networks (AWSNs). AWSNs symbolize the new generation of sensor networks with many promising advantages applicable to most networked environments. Unfortunately, however, these practical technologies have some technical problems and, as a consequence, this fascinating field has created novel and interesting challenges, which in turn, have inspired many ongoing research projects and more are likely to follow. Almost certainly, there will be notable improvements in the management of control/actuator networks as a consequence of enhancing the sensitivity capabilities of systems. With an emphasis on Ad hoc Wireless Sensor Actuator Networks (AWSANs) this study presents a systematic analysis of the different existing techniques to improve such systems. It also discusses, analyzes and summarizes the advantages these technologies offer in certain applications and presents a generic solution, in the form of a case study, for an AmI system to enhance the overall environmental management of a campus based on a hierarchical network using an AWSAN

    A Low-Cost Search-and-Rescue Drone Platform

    Get PDF
    In this work, an unmanned aerial system is implemented to search an outdoor area for an injured or missing person (subject) without requiring a connection to a ground operator or control station. The system detects subjects using exclusively on-board hardware as it traverses a predefined search path, with each implementation envisioned as a single element of a larger swarm of identical search drones. To increase the affordability of such a swarm, the system cost per drone serves as a primary constraint. Imagery is streamed from a camera to an Odroid single-board computer, which prepares the data for inference by a Neural Compute Stick vision accelerator. A single-class TinyYolo network, trained on the Okutama-Action dataset and an original Albatross dataset, is utilized to detect subjects in the prepared frames. The final network achieves 7.6 FPS in the field (8.64 FPS on the bench) with an 800x480 input resolution. The detection apparatus is mounted on a drone and field tests validate the system feasibility and efficacy

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Enabling Cyber Physical Systems with Wireless Sensor Networking Technologies

    Get PDF
    [[abstract]]Over the last few years, we have witnessed a growing interest in Cyber Physical Systems (CPSs) that rely on a strong synergy between computational and physical components. CPSs are expected to have a tremendous impact on many critical sectors (such as energy, manufacturing, healthcare, transportation, aerospace, etc) of the economy. CPSs have the ability to transform the way human-to-human, human-toobject, and object-to-object interactions take place in the physical and virtual worlds. The increasing pervasiveness of Wireless Sensor Networking (WSN) technologies in many applications make them an important component of emerging CPS designs. We present some of the most important design requirements of CPS architectures. We discuss key sensor network characteristics that can be leveraged in CPS designs. In addition, we also review a few well-known CPS application domains that depend on WSNs in their design architectures and implementations. Finally, we present some of the challenges that still need to be addressed to enable seamless integration of WSN with CPS designs.[[incitationindex]]SCI[[booktype]]紙

    A Survey of Multi-ObjectiveDeployment in Wireless Sensor Networks, Journal of Telecommunications and Information Technology, 2010, nr 3

    Get PDF
    The major challenge in designing wireless sensor networks (WSNs) is to find tradeoff between the desired and contrary requirements for the lifetime, coverage or cost while coping with the computation, energy and communication constraints. This paper examines the optimal placement of nodes for a WSN. It is impossible to consider the deployment of the nodes separately from WSNs applications. We highlight the properties of WSNs applications that determine the placement problem. We identify and enumerate the various objectives that should be considered. The paper provides an overview and concentrates on multi-objective strategies, their assumptions, optimization problem formulation and results

    Visible Light Communication Cyber Security Vulnerabilities For Indoor And Outdoor Vehicle-To-Vehicle Communication

    Get PDF
    Light fidelity (Li-Fi), developed from the approach of Visible Light Communication (VLC), is a great replacement or complement to existing radio frequency-based (RF) networks. Li-Fi is expected to be deployed in various environments were, due to Wi-Fi congestion and health limitations, RF should not be used. Moreover, VLC can provide the future fifth generation (5G) wireless technology with higher data rates for device connectivity which will alleviate the traffic demand. 5G is playing a vital role in encouraging the modern applications. In 2023, the deployment of all the cellular networks will reach more than 5 billion users globally. As a result, the security and privacy of 5G wireless networks is an essential problem as those modern applications are in people\u27s life everywhere. VLC security is as one of the core physical-layer security (PLS) solutions for 5G networks. Due to the fact that light does not penetrate through solid objects or walls, VLC naturally has higher security and privacy for indoor wireless networks compared to RF networks. However, the broadcasting nature of VLC caused concerns, e.g., eavesdropping, have created serious attention as it is a crucial step to validate the success of VLC in wild. The aim of this thesis is to properly address the security issues of VLC and further enhance the VLC nature security. We analyzed the secrecy performance of a VLC model by studying the characteristics of the transmitter, receiver and the visible light channel. Moreover, we mitigated the security threats in the VLC model for the legitimate user, by 1) implementing more access points (APs) in a multiuser VLC network that are cooperated, 2) reducing the semi-angle of LED to help improve the directivity and secrecy and, 3) using the protected zone strategy around the AP where eavesdroppers are restricted. According to the model\u27s parameters, the results showed that the secrecy performance in the proposed indoor VLC model and the vehicle-to-vehicle (V2V) VLC outdoor model using a combination of multiple PLS techniques as beamforming, secure communication zones, and friendly jamming is enhanced. The proposed model security performance was measured with respect to the signal to noise ratio (SNR), received optical power, and bit error rate (BER) Matlab simulation results

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Emerging research directions in computer science : contributions from the young informatics faculty in Karlsruhe

    Get PDF
    In order to build better human-friendly human-computer interfaces, such interfaces need to be enabled with capabilities to perceive the user, his location, identity, activities and in particular his interaction with others and the machine. Only with these perception capabilities can smart systems ( for example human-friendly robots or smart environments) become posssible. In my research I\u27m thus focusing on the development of novel techniques for the visual perception of humans and their activities, in order to facilitate perceptive multimodal interfaces, humanoid robots and smart environments. My work includes research on person tracking, person identication, recognition of pointing gestures, estimation of head orientation and focus of attention, as well as audio-visual scene and activity analysis. Application areas are humanfriendly humanoid robots, smart environments, content-based image and video analysis, as well as safety- and security-related applications. This article gives a brief overview of my ongoing research activities in these areas
    corecore