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ABSTRACT 

 
 

 Light fidelity (Li-Fi), developed from the approach of Visible Light Communication 

(VLC), is a great replacement or complement to existing radio frequency-based (RF) networks. 

Li-Fi is expected to be deployed in various environments were, due to Wi-Fi congestion and health 

limitations, RF should not be used. Moreover, VLC can provide the future fifth generation (5G) 

wireless technology with higher data rates for device connectivity which will alleviate the traffic 

demand.    

 5G is playing a vital role in encouraging the modern applications. In 2023, the deployment 

of all the cellular networks will reach more than 5 billion users globally. As a result, the security 

and privacy of 5G wireless networks is an essential problem as those modern applications are in 

people's life everywhere. VLC security is as one of the core physical-layer security (PLS) solutions 

for 5G networks.  Due to the fact that light does not penetrate through solid objects or walls, VLC 

naturally has higher security and privacy for indoor wireless networks compared to RF networks. 

However, the broadcasting nature of VLC caused concerns, e.g., eavesdropping, have created 

serious attention as it is a crucial step to validate the success of VLC in wild.  

     The aim of this thesis is to properly address the security issues of VLC and further 

enhance the VLC nature security. We analyzed the secrecy performance of a VLC model by 

studying the characteristics of the transmitter, receiver and the visible light channel. Moreover, we 

mitigated the security threats in the VLC model for the legitimate user, by 1) implementing more 
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access points (APs) in a multiuser VLC network that are cooperated, 2) reducing the semi-angle 

of LED to help improve the directivity and secrecy and, 3) using the protected zone strategy around 

the AP where eavesdroppers are restricted. According to the model's parameters, the results 

showed that the secrecy performance in the proposed indoor VLC model and the vehicle-to-vehicle 

(V2V) VLC outdoor model using a combination of multiple PLS techniques as beamforming, 

secure communication zones, and friendly jamming is enhanced. The proposed model security 

performance was measured with respect to the signal to noise ratio (SNR), received optical power, 

and bit error rate (BER) Matlab simulation results. 

  

 

  



   

CHAPTER 1 

OVERVIEW 

1.1 Overview of the Thesis 

 

 Visible light communication (VLC) is a promising candidate for future high speed 

broadband communications[1-3]. The VLC technology deploys the intensity modulation of white 

light emitting diodes (LEDs), which can be switched on and off at a very high rate, thus offering 

data communications, and illuminations[4]. VLC provides 10,000 times more bandwidth capacity 

than the radio frequency (RF) technology [5]. LEDs are already utilized widely in everyday 

infrastructures including schools, offices, homes, smartphones, streets and traffic lights. By 

occupying the current lighting infrastructure and changing the wireless communication frequency 

to the visible spectrum, VLC could mitigate the spectrum crunch in the present wireless systems 

using RF. In order to commercialize VLC in the near future, recent approaches have conducted the 

standardization of short-range wireless optical communication using VLC for local and urban area 

networks[6]. Moreover VLC is an interesting technique as it utilize the existing lighting systems 

and work on license free spectrum as a result lower implementation cost. Also it is considered safe 

for the electromagnetic sensitive areas, where RF is not allowed for safety issues. Additionally 

VLC can be applied along with current wireless networks since it receives zero interference. 

The next-generation wireless communication is expected to acquire a vast amount of data, 

including full-motion video (FMV) and high-definition (HD) images. This mission-critical 

information will require a large transmission bandwidth as well as radiation safety, driving the 

need for efficient data transmission techniques, such as VLC. VLC is a branch of optical wireless 

(OW) communication technique that not only provides high bandwidth but also provides radiation 
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safety [7]. Typically, VLC system has been realized as a point-to-point wireless communication 

link between a data source (LED) to modulate and transmit the data to the receiver which can be 

any device that is sensitive to light (photodiode, image sensor, etc.), to demodulate the data for the 

end user. 

 

Figure 1. 5G Modern Applications. 

The new mobile-telecommunication system, fifth-generation 5G is playing a vital role in 

encouraging modern applications, such as internet-of-things (IoT), smart home, smart city, smart 

health care, internet-of-vehicles (IoVs), and industry 4.0 Fig. 1, where a massive number of smart 

devices are connected. Also, 5G will be used for communication in the new power grid system, 

smart grid (SG) as the advanced sensors and measurement systems will have a communication 

network backbone [8]. In 2024, the deployment of all the cellular networks will reach more than 

7 billion users. Current cellular networks will not be sufficient to handle the enormous amount of 

increase in data traffic required [9]. 5G is characterized by 100% availability, up to 10 years 

increase in devices battery life, 90% reduction in network power consumption, and connectivity 

throughput up to 10 giga bit per second (Gbps) [10]. Moreover in [11], they explored the possibility 

of full-duplex 5G communications for monitoring systems in the sphere of ambient assisted living 
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(AAL) which simplifies and automates processes that do not require human interventions. As a 

result, the security and privacy of 5G wireless networks is an essential concern as those modern 

applications are in people's lives everywhere. To mitigate the aforementioned issues, an in-depth 

survey was presented in [12] of the proposals having 5G-enabled IoT as a backbone for 

blockchain-based industrial automation for those applications. Additionally, in another study they 

surveyed the state-of-the-art proposals having tactile internet as a backbone for delay mitigation 

by using 5G networks for future ultra‐reliable low‐latency applications [13]. 

For the last decade VLC has been applied in several scenarios, where it is difficult to utilize 

RF communication, and it was highlighted that OW may offer a consistent solution to the idea of 

intra-vehicle communications, which illuminate the interior of the vehicle with a light source to 

act as a communication link between anything from simple user-vehicular interface devices such 

as window or air conditioning controllers, to more advanced vehicular technologies such as audio-

visual (AV) entertainment units or computer consoles [14].  

Applying a VLC system within a vehicle or Vehicle Adhoc Network (VANET) combines 

multiple advantages like diminishing the highly common RF interference, decreasing the cost due 

to using an unregulated spectrum and not obligatory to design a system around other competing 

RF systems [15,16]. Moreover, energy efficient in terms of reduction in wired devices that are 

mostly copper cabled, and finally a possible improvement to manufacturing efficiency such 

cabling should be removed [17]. 

Light fidelity (Li-Fi) is developed from the approach of VLC. The Li-Fi protocol mainly 

depends on the intensity modulation of white LEDs, which at a very high rate switches on and off, 

thus providing illuminations and data communications [4]. It is important to note that the total 

capacity of the visible light and infrared (IR) spectrum is approximately 2600 times that of the full 
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RF spectrum of 300 GHz and is license-free (see Fig. 2). Due to the rise of machine type 

communication (MTC) and Internet-of-Things (IoT), the demand for the next 20 years will be 

12,000 times the existing bandwidth with the exact similar spectrum efficiency. That will result in 

a 6 THz of bandwidth, which means a 20 times shortage bandwidth. In the RF spectrum as it is 

only 0.3 THz. On the other hand, just 0.8% of the total visible light and IR spectrum is the 6 THz 

of bandwidth. 

 

Figure 2. Radio frequency (RF) spectrum, visible light spectrum, and infrared (IR) 

spectrum [18]. 

The key advantage of VLC wireless networking is human safety. Since wireless routers, 

bluetooth and similar wireless systems radiate electromagnetic energy 24/7 and people absorb 

them continuously. The level of absorption is considered potentially dangerous to humans, 

especially children. The US and Int.cancer registries have proofs that link the increase of the 

number of people diagnosed with the type of brain tumor, glioblastoma multiforme (GBM), to cell 

phone use [19]. Furthermore, the author in [20] mentioned that the brain, renal, liver and thyroid 

cancers are spreading out among US children, and GBM (the brain cancer linked to radiation of 

cell phones) and central nervous system tumors are rising in Americans teenagers, in specifically 

the parts of the brain that absorb most of the microwave radiation emitted by phones. Also, a 2017 

meta-analysis [21] of researches on parotid gland tumors discovered a relation between the risk of 

parotid gland tumors and mobile phone use. Although more evidence is required, the present 
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research result is showing that the use of mobile phones can modify salivary function, cause 

oxidative stress which could affect salivary gland tumor progress. However current evidence does 

not illustrate a relation between mobile phone use and tumor development. As to address such 

small risks, high-quality research with careful exposure assessment is essential [22]. In comparison 

to RF wireless communication, VLC is a safe wireless communication technology because it is 

harmless to the human body, and it avoids electromagnetic interference [16]. Thus it can be used 

in schools, offices, hospitals and in intrinsically safe environments such as oil platforms and 

petrochemical plants where RF is often restricted.  

The lighting and digital modulation technology determine the achievable data rate that can 

reach up to 100 Gbps. The white light is either created by the most commercial phosphor-coated 

blue LED or by mixing the base colors in the red, green, blue (RGB) LEDs. The former LEDs 

consist of a high brightness blue LED with a phosphorous coating that changes blue light into 

yellow and the bandwidth is hardly 2 MHz. However the converting of the phosphor color slows 

down the frequency response, it is still possible to reach the region of 1 Gbps data rates by 

removing the slow yellow components using a blue filter. The later advanced RGB LEDs can 

achieve up to 5 Gbps since they do not use color converting chemical to produce white light. Also, 

[23] has recorded transmission speed with a single micro Gallium Nitride (GaN) LED of 8 Gbps, 

and [24] proved that 100 Gbps are attainable by laser-based lighting.  

Though the worries about cyber security and privacy in the VLC wireless network because 

of the spreading behavior of VLC, VLC access points (APs) form a tiny cell, an optical attocell. 

In contrast to RF antennas with the omnidirectional signal transmission in all directions, a LED 

light source is normally designed to send optical power directionally. Therefore, the transmission 

of the visible light signals is typically concentrated within a limited zone, which normally provides 
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security and privacy. On the other hand, to achieve the same desire the RF mm-wave schemes 

need complicated and expensive antenna beamforming methods. Therefore VLC attocell networks 

qualify to enhance 5G cellular systems cost-effectively [25]. Nevertheless, VLC technology is 

vulnerable to multiple attacks including eavesdropping, hijacking, packet falsification, message 

manipulation, replay attack, and membership falsification, which have endorsed serious attention 

as it is an essential step to prove the success of VLC application in the wild [26]. In addition, VLC 

is considered to be an emerging technology for 5G, and security is an essential requirement for 

5G. In [27] they covered VLC physical layer security (PLS) techniques that can improve the 

security to bring the deployment of the VLC system. In the VLC security research area, PLS is the 

most advanced approach and involves multiple techniques such as VLC beamforming, VLC secure 

communication zones, and VLC friendly jamming [21][22][22][23][24][24][25].  

Although the light is blocked by the wall to sustain particular percentage of privacy, there 

are possible worries to network administrators and legitimate users concerning the privacy of 

information and confidentiality, especially in public, such as schools, airports, train stations, 

libraries, and offices, etc.[24]. The interferences in the VLC system is less than the case of the RF 

system due to line of sight (LOS) and directional communications. While interference from far-

away concurrent transmissions affects RF, VLC suffers from other sources of interference, 

weather, sunlight, and artificial light. A camera-based VLC system can still avoid interferences 

[26] by spatially fliting out unwanted areas without transmitting light. The optical channel 

interference is reduced to LOS transmission only because it is completely blocked by opaque 

objects. 

 Moreover, VLC can play an important role in Intelligent Transportation Systems (ITS) 

and Vehicular Ad Hoc Networks (VANETs) as it can support car communication, Vehicle-to-
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vehicle (V2V), to mitigate traffic fatalities as proposed in [27]. ITS are concerned about traffic 

safety because it is susceptible to all adversaries, as shown in Fig. 3. They work on scaling down 

traffic accidents by sustaining timely and accurate information about traffic jams, road conditions, 

and accidents. In [28] VANETs used dedicated short-range communications (DSRC) for V2V and 

vehicleto-infrastructure (V2I). Also soon, cars will drive through intersections without waiting for 

traffic signals to give them the green light to go. This free-for-all will take place at the union of 

three technologies: V2V technology; self-driving cars; and the IoT, which guarantees to connect 

30 billion sensors and gadgets worldwide [29]. That will result in traffic flowing smoothly and 

safely without the use of any traffic lights. Also, a group of researchers has already implemented 

an algorithm that operates as a conductor to keep traffic humming along like a well-rehearsed 

orchestra [30]. 

 

Figure 3. Autonomous VANET communication Architecture [24]. 

1.2 Research Objectives and Goals 

In this dissertation, the aim is to analyze the secrecy performance of a VLC system model 

and further enhance its nature security by using additional security techniques. We studied the 

characteristics of the transmitter, receiver and the visible light channel properties using the light 

emitting diode (LED) Lambertian radiant intensity model. The proposed indoor VLC and outdoor 

V2V VLC model improved the system secrecy performance with higher levels for SNR and BER. 
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We applied combination of multiple PLS techniques as beamforming, secure communication 

zones, and friendly jamming. To mitigate the security threats in the VLC model for the legitimate 

user, we 1) implemented more access points (APs) in a multiuser VLC network that are 

cooperated, 2) reduced the semi-angle of LED to help improve the directivity and secrecy and, 

3) used the protected zone strategy around the AP where eavesdroppers are restricted. 

 

1.3 Publications and Contributions 

Peer Reviewed Journal Papers 

1. Shaaban R, Faruque S. An enhanced indoor visible light communication physical‐layer 

security scheme for 5G networks: Survey, security challenges, and channel analysis secrecy 

performance. International Journal of Communication Systems. 2021 Jan: e4726. 

2. Shaaban R, Faruque S. Cyber security vulnerabilities for outdoor vehicular visible light 

communication in secure platoon network: Review, power distribution, and signal to noise 

ratio analysis. Physical Communication. 2020 Apr 6:101094. 

Peer Reviewed Conference Papers 

1. Shaaban R, Faruque S. Optimized LEDs Positions for Channel Analysis Performance of an 

Intra-Vehicle Visible Light Communication System. In2020 IEEE Radio and Wireless 

Symposium (RWS) 2020 Jan 26 (pp. 302-305). IEEE. 

2. Shaaban, R., Ranganathan, P., and Faruque, S., “Visible Light Communication Security 

Vulnerabilities in Multiuser Network: Power Distribution and Signal to Noise Ratio 

Analysis,” Springer FICC 2019, San Francisco, California, USA, 2019. (Published as a book 

chapter) 

3. Shaaban, R. and Faruque, S., “Optimized optical wireless channel for indoor and intra-vehicle 

communications: power distribution and SNR analysis,” 2018 International Society for Optics 

and Photonics (SPIE OPTO 2018), San Francisco, California, USA, 2018. 
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4. Shaaban, R. and Faruque, S., “A survey of indoor visible light communication power 

distribution and color shift keying transmission,” 2017 IEEE International Conference on 

Electro/Information Technology (EIT 2017), Lincoln, Nebraska USA, 2017. 

 

Contributions 

1. Further enhanced the indoor VLC privacy and secrecy performance for the users by 1) 

implementing more access points (APs) in a multiuser VLC network that are cooperated, 2) 

reducing the semi-angle of LED to help improve the directivity and secrecy and, 3) using the 

protected zone strategy around the AP where eavesdroppers are restricted. 

2. Applied a combination of multiple physical-layer security (PLS) techniques as beamforming, 

secure communication zones, and friendly jamming in the proposed indoor VLC model which 

enhanced the secrecy performance and mitigated the security threats in the VLC network. 

3. Proved the effect of different number of LED's position on the received power within the 

designated area, which directly affects the system performance, the SNR, and probability of 

error. 

4. Focused on vehicular VLC security; however, there are only a few security-related studies on 

vehicular VLC physical layer security. Improved the secrecy performance in an outdoor V2V 

VLC network using PLS techniques to achieve better SNR for the legitimate platoon member 

than the adversary, therefor ensure platoon stability and limit the detection of any adversary. 

 

1.4 Dissertation Organization 

This dissertation is organized as follows, chapter 3 shows the IEEE 802.15.7: visible light 

communication standard, and chapter 4 addresses the security issues of the indoor VLC model 

and proposes the secured indoor VLC model, channel transfer characteristics, transmitter, and 

receiver. Also the simulation results for the secured indoor VLC model are shown in chapter 4. 

Several methods are studied and used to mitigate and improve the VLC physical-layer 

threats and solutions for the new 5G network in chapter 5. In addition, the proposed VLC PLS 
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system model and the simulation results are presented. Then, in chapter 6 the intravehicle VLC 

model is investigated with simulation results and discussion shown in the same chapter. Moreover, 

the secured model for the outdoor vehicular VLC system is proposed in chapter 7 for the vehicular 

communication in VANETs system. Finally, a suggestion of future work areas of research and 

conclusion are presented in chapter 8.   
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CHAPTER 2 

INTRODUCTION 

2.1 Challenges and Motivation 

Due to the fact that visible light cannot penetrate through walls, it has high frequency reuse 

factor hence a high area spectral efficiency and naturally secured. However the broadcasting nature 

of VLC causes concerns in security and privacy in VLC, e.g., eavesdropping [19].As shown in 

Fig. 4, a VLC network includes one sender (Alice), one legitimate receiver (Bob), and one 

eavesdropper (Eve)[31].Communication protocol is susceptible to several attacks as shown in Fig. 

5. The wall can block the light to provide certain degree of privacy but still there are potential 

concerns to legitimate users, particularly in public areas. 

 

Figure 4. Autonomous VANET communication Architecture [24]. 

Also, Traffic safety is the major concern of Intelligent Transportation Systems (ITS) as it 

is highly vulnerable to all attackers, as shown in Fig. 3.The fundamental objective of ITS is to 

scale down traffic accidents by maintain timely and adequate data collection about events like road 

status ,traffic jam ,and accidents. Vehicular Ad Hoc Networks (VANETs) helps to alleviate traffic 

fatalities by vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) [28] based on dedicated 

short range communications (DSRC) and VLC as proposed in [32].  
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Information exchange is offered by (VANETs) using wireless communication between 

vehicles, which will mitigate traffic problems and support self- driving cars [33]. VANET 

applications transmit Cooperative Awareness Messages (CAM) frequently to maintain safe and 

efficient traffic flow, which includes information like timestamp, position, speed and heading. A 

critical privacy threat can result because this information is broadcast publicly [34], especially if 

CAMs are gathered and evaluated.  

Wyner was a pioneer in proposing the wiretap channel [35], an information-theoretic point 

of the physical-layer security and a channel in which an eavesdropper perceives a corrupted version 

of the signal. Further Csiszár and Körner continued the degraded wiretap channel to the non-

degraded broadcast channel [36]. Their crucial work showed that ideal secrecy can be achieved as 

long as the legitimate user has a less attenuated channel than the eavesdropper, and the secrecy 

capacity is the difference between the two user’s information capacities. However the number of 

legitimate information detected by unauthorized eavesdroppers is limited because the physical-

layer security use the randomness of the wireless communication channel noise [37][36]. Their 

work is all concentrated on RF based wireless networks. On the other hand, in VLC [38] proposed 

Figure 5. Communication system block diagram. 
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the fuzzy timing passwords to differentiate between the legitimate user and the eavesdropper. Also 

in [39] screen view angles and leveraged user induced motions was used between smartphones in 

the secure barcode-based visible light communication (SBVLC). Furthermore to secure the 

physical layer, Mostafa et al. suggested the use of VLC-friendly jamming [40], VLC-artificial 

noise [41], and VLC beamforming [42].  

Currently, many technological giants are working on VLC-enabled products [43][44], as a 

lot of research has been conducted to bring VLC to market. A research founder of VLC and 

PureLiFi Ltd. company, Harald Hass initiated a “LiFi-X station” and “LiFi- X Access Point” with 

a data rate of 43 Mbps. In France Oledcom, another indoor VLC company provides VLC modules 

and chips for communication. Also, Fraunhofer-Gesellschaft in Germany achieved 1 Gbps 

wireless local link using high-power LEDs. “WHAT YOU SEE IS WHAT YOU SEND” 

(WYSIWYS) [45], is an assumption for VLC security; due to the signal’s line-of-sight, directivity, 

and non-passing nature. However, there are still general security requirements for VLC networks 

to be secure against several threats and there are potential concerns to legitimate users, particularly 

in public areas. 

During the past years, PLS has endorsed attention and renewed interest as part of multiple 

layer security. PLS depend on Wyner “wiretap channel” model in 1975 and then was developed 

for several channel models of wireless systems [46][47]. In the Gaussian MISO wiretap channel, 

zero-forcing the eavesdropper’s reception using beamforming is optimal at high SNR [48]. In the 

VLC security research area, PLS is the most advanced approach and involves techniques such as 

VLC beamforming, VLC secure communication zones, and VLC friendly jamming. 

Several challenges lie ahead of the development of full wireless networks based on light 

from point to point links. Multiple access techniques are needed to serve multiple users within 
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each cell. Also, the portable devices will require low energy consumption thus the deployment of 

an uplink can have another scheme different from the downlink. The utilization of the IR spectrum 

is the most appropriate method for the uplink because the use of visible light sources can be 

distracting to users. Simultaneously, modulation schemes for a high-rate uplink have to be power 

efficient and spectrum efficient as achieved in two techniques, the enhanced unipolar orthogonal 

frequency division multiplexing (eU OFDM) [49], and the OFDM spectral and energy efficiency. 

One of the greatest misunderstandings is that VLC is a LOS technology. Fig. 6 [50] shows 

a successful video transmission to a laptop where there is no direct LOS link and over a distance 

of about 3 m where the transmitter LED is not directed to the receiver but to the opposite white 

wall. Though a transmission with an error-free link cannot be achievable if the wall is dark and 

signal to noise ratio (SNR) drops below the -6 dB threshold; single-photon avalanche diodes can 

improve the receiver sensitivity in low-light conditions by at least an order of magnitude [51].  

 

Figure 6. Operation of a LiFi link under strict non-line-of-sight (LOS) conditions [50]. 

Another misconception that VLC does not work in the daytime; the electrical filters can 

filter out the constant sunlight because VLC uses frequencies greater than 1 MHz. Moreover, the 

shot noise is another concern as it is hard to remove by optical filters. The author in [52] 

investigated the effect of shot noise qualitatively and discovered that the throughput is adjusted by 
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1.5% and 4.5%. By utilizing optical filters and automatic gain control algorithms, saturation can 

be eliminated. 

The study in [50] achieved a data rate of 1.1 Gbps over a distance of 10 m with a 4.5 mW 

LED of optical output power. Current VLC systems data rates are proliferating quickly. 

Researchers have reported various high-speed data rates, and the OFDM VLC system achieves a 

throughput up to 11.1 Gbps [53]. Despite the application of high-speed VLC systems is limited 

due to offline processing instead of real-time. A real-time VLC system utilized 2ASK-OFDM 

coding and achieved a speed up to 76 Mbps [54]. [55] achieved a throughput of 200 Mbps by 

applying bidirectional rate adaptive OFDM transmission. Besides, the author in [56] realized a 

real-time VLC system with high-speed based on RGB-LEDs to meet the wireless indoor 

multimedia communication (WIMC) guidelines with a data rate beyond 500 Mbps and 100 Mbps 

under poor channel conditions. 

The existence of LEDs in vehicular systems, VLC has been an attractive alternative to 

serve as vehicle-to-X Communications at a low cost [57][58][59][60][61]. The interesting double 

role of the LED light sources on vehicles leads to illumination and communication. Different from 

RF systems, VLC vehicular systems mostly depend on the undistracted LOS transmission due to 

the lack of reflecting fixed surfaces.  

In [62] they found that the coherence time of VLC in all applicable areas is larger with an 

order of magnitude than the RF coherence time. Generally, the VLC link is more stable because 

the channel lasts steadily for a long time and needs less recurring channel estimation. Platooning 

and cooperative adaptive cruise control (CACC) (ETSI[63]) especially use it, as VLC is robust 

enough to provide constant and continuous V2V links; joined with the normal directional flow of 

cars in a platoon, and long coherence time. Also, VLC can serve as an alternative when the channel 
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is disturbed or congested in the RF link. Moreover, they showed that when vehicles are not in the 

same direction the duration for VLC link is less than RF. In other scenarios as long as cars are 

following the same direction, VLC sustained a long period of time link duration, which illustrates 

the use of V2V in platooning, emergency braking, overtaking, etc.[63]. 

In addition, VLC can improve accurate relative position vehicle estimation because of its 

stability to maintain relative positioning among cars [64]. Platooning, CACC [63], Vulnerable 

Road User (VRU) and Left-Turn Assist are case examples for such use. Satellite-based system 

(e.g., GPS) needs additional sensors for positioning due to the error that can be in meters in open 

space and tens of meters urban multipath scenarios [65]. Thus results in difficulty in most V2X 

lane-level accuracy and any use depending on relative position. However using radar/LIDAR 

systems or camera can make improvements, VLC offers an alternative positioning system that can 

be used in a cost-effective manner. For example, VLC can enhance the estimation and adjustment 

of intervehicle spacing in a platoon or help in car merging in case of CACC. Moreover, it can be 

used to determine the accurate trajectories of Vulnerable Road User (VRU) with respect to the car. 

The mobility between cars interrupts LOS links for VLC which likely cause limitation on the 

communication distance. Also, VLC does not work accurately for non-line of sight (NLOS) cases 

and both experimental [66] and theoretical [67] results show that stable communications take place 

only with a maximum of 50 meters distance. 

Certainly, the major interest of platoon depends on the reduction of V2V spacing, which 

offers road capacity enhancement and fuel consumption reduction by limiting the air drag. 

Therefore, the latency in transmission must be controlled to stay as low as possible because it is 

crucial in platoon systems to reduce car response time and thus V2V spacing. The standard V2V 

gap on highways in the European Truck Platooning network is 0.3s, which is approximately 
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equivalent to 10 m at 130 km/h [68]. The latency in transmission must be below 20 ms, as reported 

by the United States Department of Transportation (USDOT), with around 400 bits packets 

transmission, even with other road members interfering the transmission [69]. Thus VLC has been 

considered as an alternative technology, and in [70] evaluated its compatibility with platooning. A 

simple system is tested with different indoor scenarios and evaluated the transmission latency at 

4.2 ms with headlamps and taillights using commercial off-the-shelf (COTS) LED [71]. In 

addition, up to 30 m, the data rate was 100 Kbps deploying front or back lamps and bit error rate 

(BER) was below 10-6 [71]. 

Communication systems are designed to send information from a source to one or more 

destinations. The general communication system block diagram is shown in Fig. 7. The 

information generated by the source may be of the form of voice, a picture, video or plain text in 

some particular language, then converted into a sequence of binary digits by the source encoder. 

The channel encoder introduces, in a controlled manner, some redundancy in the binary 

information sequence which can be used at the receiver to overcome the effects of noise and 

interference in the transmission of the signal through the channel.  

 

Figure 7. Communication Functional Block Diagram. 
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The output of the channel encoder is passed to the modulator then transmitted through the 

channel which can be wired or wireless medium; such as copper wire, coaxial cable, wave guide, 

fiber optic cable, antennas and laser or LED. Similarly for the receiver, it can be wired, antenna or 

photodetector, in case of optical transmission, which will recover the data that will be demodulated 

and decoded to construct the original data. Our research is focused on the circled part of the 

communication block diagram; considering visible light communication, LED for the transmitter, 

and photodetector for the receiver.   
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CHAPTER 3 

IEEE 802.15.7: VISIBLE LIGHT COMMUNICATION STANDARD 

3.1 Introduction 

Visible light communications (VLC) use the visible spectrum wavelengths of 390–750 nm 

or frequency band of 400–790 THz and offer wireless communication using light-emitting diodes 

(LEDs).It is viable to transmit data using LEDs without an observable effect on the lighting output 

and the human eye, because the human eye notices only the average intensity when light changes 

fast enough. VLC can be used in a various range of short- and medium-range communication 

applications, which include wireless local, personal, and body area networks (WLAN, WPAN, and 

WBANs), vehicular networks, and machine-to-machine communication along with many others. 

In addition to energy efficiency, VLC provide multiple other inherent advantages over radio 

frequency (RF)-based counterparts, like immunity to electromagnetic interference, operation on 

unlicensed bands, additional physical security, and a high reuse factor resulting from a high degree 

of spatial confinement.  

The academic interest in VLC is growing, resulting in a rich literature spanning from 

channel modeling to physical layer design and upper layer issues .Beside of academic interest, 

industrial attention to VLC has caused related standardization activities to avoid fragmentation of 

proprietary vendor solutions in this emerging market. In Japan, the Visible Light Communications 

Consortium (VLCC) (www.vlcc.net) boosted the standardization activities and offered two 

standards known as the visible light communication system standard and the visible light ID 

system standard, which were accepted by the Japan Electronics and Information Technology 

Industries Association (JEITA) in 2007 and became known as JEITA CP-1221 and JEITA CP-

1222, respectively.  Recently, in June 2013, they also proposed an enhanced version of the JEITA 

http://www.vlcc.net)
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CP-1222 named as JEITA CP-1223 visible light beacon system standard. Realizing the potential 

of this emerging technology, the Institute of Electrical and Electronics Engineers (IEEE) produced 

IEEE Standard 802.15.7, which was approved in June 2011 (IEEE, 2011). The standard describes 

a physical layer (PHY) and a medium access control (MAC) layer for VLC and guarantees data 

rates sufficient to accommodate audio and video multimedia services. In this chapter, we first 

provide an overview of this IEEE standard describing the main features of PHY and MAC layers. 

The last section is reserved for the most recent standardization activity, which will modify the 

IEEE Standard 802.15.7. 

3.2 Overview of IEEE standard 802.15.7 

As personal area network (PAN) is the connection of information technology devices 

within a short distance. IEEE Standard 802.15.7 presents visible light communication personal 

area network (VPAN) as its network form. In a VPAN, a coordinator is in charge for starting and 

maintaining a network, and assigning new devices to an existing VPAN. Also VPANs defined 

three different network topologies, peer-to-peer, star, and broadcast. 

 Peer-to-peer topology: The peer-to-peer networking topology is described to 

support communication between two nodes that ordinarily can be used for both 

sending and receiving, and act as both a device and a coordinator. 

 Star topology: For this topology, a coordinator controls the communication 

network and can connect with all the devices within the network. 

 Broadcast: The coordinator sends data which will be received by every device in 

the network. This type of communication is unidirectional, as a result it doesn’t 

involve a destination address. 
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IEEE 802.15.7 standard examined three classes of VLC devices; infrastructure, mobile 

(portable), and vehicle. In Table 1, the main specifications of each class are shown. 

Table 1. VLC Device Classification 

 Infrastructure 
 

Mobile Vehicle 

Fixed coordinator 

Power supply 

Form factor 

Light source 

Physical mobility 

Range 

Data rates 

Yes 

Ample 

Unconstrained 

Intense 

No 

Short/long 

High/low 

No 

Limited 

Constrained 

weak 

Yes 

Short 

High 

No 

Moderate 

Unconstrained 

Intense 

Yes 

Long 

Low 

 

3.3 MAC Layer 

The MAC layer offers two functions accessed through two service access points (SAPs). 

MAC management is accessed through the MAC link management entity SAP (MLME-SAP), 

while MAC data are accessed through the MAC common-part sublayer SAP (MCPS-SAP). The 

MAC layer executes all access to the physical layer and is responsible for the following tasks: 

1. Generating network beacons if the device is a coordinator 

2. Synchronizing to network beacons 

3. Supporting device association and disassociation 
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4. Supporting color function (i.e., a function that provides information, such as device 

status and channel quality to the human eye via color) 

5. Supporting visibility to maintain illumination and mitigate flicker 

6. Supporting dimming (i.e., reducing the radiant power of a transmitter while 

preserving the color of the transmitted light) 

7. Supporting device security 

8. Providing a reliable link between two peer MAC entities 

9. Supporting mobility  

The standard provides systems to start and maintain a VPAN. The device uses channel 

scanning to access the current state of a channel, locate all beacons within its operation 

environment, or detect a specific beacon with which it has lost synchronization. The networks need 

beacons for synchronization or support for low-latency devices. If the network does not require 

synchronization or support for low-latency devices, it can choose to turn off the beacon for 

ordinary transfers. However, network discovery still needs the beacon. Then a channel scan and 

selection of a proper VPAN identifier, which is not used by any other PAN in the same area, 

operation as a coordinator starts. The association/disassociation systems to permit the devices to 

join or leave a VPAN are further explained in the standard. 
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3.4 PHY Layer 

The duties of the physical (PHY) layer are link foundation and termination of a connection 

to a communications medium. According to the IEEE 802.15.7 standard for VLC, the PHY layer 

is responsible for the following tasks: 

 Activation and deactivation of the VLC transceiver 

 Wavelength quality indication (WQI) 

 Clear channel assessment 

 Data transmission and reception 

 Error correction 

 Synchronization 

 Supporting dimming 

Based on the intended data rate and usage environment, the IEEE 802.15.7 standard 

includes a number of various PHY layer types: 

 PHY I: In his type on–off keying (OOK) and variable pulse position modulation 

(VPPM) are used. It handles concatenated coding with Reed–Solomon (RS) and 

convolutional coding (CC). This PHY type is designed for outdoor low data-rate 

applications with rates in the tens to hundreds of Kbps. 

 PHY II: Similar to PHY I, PHY II uses OOK and VPPM but with higher optical 

clock rates intending to achieve higher data rates in the tens of Mbps. But It only 

supports RS coding. This PHY type is for indoor operation with moderate data rate 
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applications. PHY I and PHY II also support a run-length limited (RLL) code to 

maintain DC balance, clock recovery, and flicker mitigation. 

 PHY III: This type is designed for applications with multiple light sources and 

detectors. It operates using CSK and RS coding. The desire of this type is to achieve 

data rates in the order of the tens of Mbps.  

All operating modes are listed in Table 2.Any IEEE 802.15.7-compliant device must assign 

at least one of the PHY I and PHY II types. For coexistence a device using the PHY III type should 

also implement PHY II mode. Also the PHY types may work in the existence of dimming. As 

OOK under dimming condition maintains constant range and variable data rate by embedding 

compensation time. However, VPPM under dimming maintains constant data rate and variable 

range by altering the pulse width. More specifications on the optical clock rates, data rates, and 

error correction codes for each PHY type are illustrated in Table 2. As shown in Table 2, multiple 

optical rates are presented for all PHY types in order to assist a broad class of LEDs for different 

applications. The MAC layer chooses the optical rate used for communication during device 

discovery. 

3.5 Recent Activities in IEEE standardization 

The IEEE 802.15 working group (WG) created a study group to determine if an amendment 

to the standard is needed. The group discussions and suggestions from industry and academia 

indicated a project authorization request which states:  

This amendment explains a physical layer (PHY) using light frequencies over the spectral 

range of 10,000 nm (infrared [IR]) to 190 nm (near ultraviolet [UV]) and any MAC changes 

exactly required to aid this PHY. 
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Table 2. VLC Device Classification 

 FEC  

 Modulation RLL Code Optical 
Clock r 

Outer Code 
(rs) 

Inner 
Code (cc) Data Rate 

PHY I 

OOK Manchester 200 KHz 

(15,7) 1/4 11.67 Kbps 
(15,11) 1/3 24.44 Kbps 
(15,11) 2/3 48.89 Kbps 
(15,11) None 73.3 Kbps 
None None 100 Kbps 

VPPM 4B6B 400 KHz 

(15,2) None 3556 Kbps 
(15,4) None 71.11 Kbps 
(15,7) None 124.4 Kbps 
None None 266.6 Kbps 

PHY II 

VPPM 4B6B 

3.75MHz (64,32) None 1.25 Mbps 
(160,128) None 2 Mbps 

7.5 MHz 
(64,32) None 2.5 Mbps 

(160,128) None 4 Mbps 
None None 5 Mbps 

OKK 

8B10B 

15 MHz (64,32) None 6 Mbps 
(160,128) None 9.6 Mbps 

30 MHz (64,32) None 12 Mbps 
(160,128) None 19.2 Mbps 

60 MHz (64,32) None 24 Mbps 
(160,128) None 38.4 Mbps 

120 MHz 
(64,32) None 48 Mbps 

(160,128) None 76.8 Mbps 
None None 96 Mbps 

PHY III 

4-CSK 12 MHz (64,32) None 12 Mbps 
8-CSK (64,32) None 18 Mbps 
4-CSK 

24 MHz 

(64,32) None 24 Mbps 
8-CSK (64,32) None 36 Mbps 

16-CSK (64,32) None 48 Mbps 
8-CSK None None 72 Mbps 

16-CSK None None 96 Mbps 

 

Transmitting devices carry such sources as displays, commonly found on cameras and mobile 

devices, and other LED based sources such as flashes, flashlights, LED tags, and LED/laser 

sources. (IEEE P802.15.7r1, 2016) 
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As IEEE Standards Association accepted the project authorization request, the IEEE 

802.15 WG are able to work on a new standard which is open to almost any type of VLC 

communication. For prospective standard proposals (Janget al, 2015), a technical requirements 

document has been prepared for guidance, which uses the term optical wireless communication 

(OWC) and classifies OWC into: 

 Image sensor communications 

 Low-rate photodiode communications 

 High-rate photodiode communications 

Considering the definition of low speed and high speed, the throughput threshold data rate 

is 1 Mbps as measured at the PHY layer output of the receiver. Any throughput less than 1 Mbps 

rate is considered low rate and higher than 1 Mbps is considered high rate. The group decided the 

feasible applications that can be served by each communication type. Image sensor 

communications enable OWCs using an image sensor as a receiver. Main applications of image 

sensor communications are listed as: 

  Offline to online marketing/public information system/digital signage 

  Internet of Things (device-to-device/Internet of light [IoL]) 

  Location-based services/indoor positioning 

  Vehicular communication/vehicular positioning 

  Underwater communication 

 Point-to-(multi)point/relay communication 
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Low-speed photodiode receiver communications, which is a wireless light ID system using 

various LEDs with a low-speed photodiode receiver, can be used in the below applications: 

 Underwater/seaside communication 

 Point-to-(multi)point/communication 

 Digital signage 

 Internet of Things (device-to-device/Internet of light [IoL]) 

 LOS authentication 

 Identification based services 

The high-speed photodiode receiver communications is high-speed, bidirectional, 

networked, and mobile wireless communications using light with a high-speed photodiode 

receiver. Main applications for high-speed photodiode receiver communications are: 

 Indoor office/home applications (conference rooms, general offices, shopping 

centers, airports, railways, hospitals, museums, aircraft cabins, libraries, etc.) 

 Data center/industrial establishments, secure wireless (manufacturing cells, 

factories, hangers, etc.) 

 Vehicular communications (vehicle-to-vehicle, vehicle-to-infrastructure) 

 Wireless backhaul (small cell backhaul, surveillance backhaul, LAN bridging)  

The group was assigned another task to determine if a channel model is necessary to 

compare different standard proposals. The group decided that all proposals which include the PHY 

algorithms for the high-rate PD communications must use the channel impulse responses provided 
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in TG7r1 Channel Model Document for High-rate PRD Communications (Jang et al. 2015) for the 

specific scenario that they intend to address in their proposal. The exact channel impulse responses 

are provided in TG7r1 CIRs Channel Model Document for High-rate PD Communications (Uysal 

et al. 2016).  
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CHAPTER 4 

INDOOR VISIBLE LIGHT COMMUNICATION SECURITY 

4.1 Introduction  

Premier RF studies that define the secrecy performance in multiuser wireless networks 

from an information theoretic view depend on the secrecy graph model to study the node 

connectivity [72], [73] and the maximum secrecy rate [74]. Besides, the secrecy capacity scaling 

laws in a wireless network were indicated in [75] to study the secrecy rate per source-destination 

pair. Other than the network theory information, latter works used mathematical tools from 

stochastic geometry to study the secrecy performance in multiuser wireless networks [76],[77].  

In contrast to RF communication, VLC uses intensity modulation and direct detection 

(IM/DD) due to the use of low-cost light-emitting diodes (LEDs) and photodiodes (PDs) as the 

optical transmitter and receiver, respectively. The signal in VLC is modulated using the LED 

intensity, but it must follow the dynamic range of typical LEDs and practical illumination 

guidelines [78][79][80][81]. The outcomes on the secrecy capacity achieved for RF networks 

cannot be directly used in VLC networks. As LEDs have a nonlinear electrical-to-optical transfer 

characteristic, this nonlinearity can be well restored by pre-distortion means [82]. It is important 

to attain the VLC channel information capacity with average, peak and non-negative constraints 

before figuring the secrecy capacity in VLC network, because the secrecy capacity is associated 

with the communication channel capacity information [36][37].  

Even though still the definite information capacity of VLC channel is anonymous. Despite 

some bounds have been evaluated, still the information capacity is unknown for a simple case like 

SISO. As in [42] studied lower and upper bounds on the secrecy capacity of the amplitude-

constrained Gaussian wiretap channel regarding one transmitter, one legitimate user and one 
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eavesdropper. Also [42], applied beamforming to enhance the secrecy capacity for the MISO VLC 

channel. Subsequently, the ideal beam former design issue subject to amplitude constraints was 

additionally examined in [83]. However, for the MISO case, the effect of the channel correlation 

on VLC security is totally ignored by previous work. The procedure of VLC system secrecy using 

one access point (AP) in a single cell was studied in [84]. However the arbitrary action of legitimate 

users and eavesdroppers, specifically the interaction between them, have not been exactly 

evaluated when considering the multiuser VLC network secrecy performance.  

Table 3. VLC Secrecy Enhancement Techniques 

Paper  Method 

Mostafa [42] 
Studied the secrecy capacity lower and upper bounds. Applied 
beamforming to enhance the secrecy capacity for the multiple-input 
single-output (MISO) VLC channel. 

Wyner [37] Showed that a non-negative secrecy rate can only be achieved when the 
legitimate user achieves a higher SNR than the strongest eavesdropper. 

Araki [38] Fuzzy timing passwords, which used different time delay to differentiate 
between the legitimate user and the eavesdropper. 

Zhang [39] Screen view angles and leveraged user induced motions was used 
between smartphones in the secure barcode-based visible light 
communication (SBVLC). 

Mostafa 
[40][41] 

To secure the physical layer VLC-friendly jamming, VLC-artificial 
noise, and VLC beamforming was used. 

Liu [25][86] Studied the effect of using more APs and their cooperation results in 
enhancing the secrecy performance of VLC networks. The effect of 
reflected paths and channel correlation on VLC security was modeled 
and analyzed. 

Romero-Zurita 
[87] 

Used a strategy named the “protected zone” to enhance the secrecy 
performance of legitimate user in VLC networks. 
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Moreover to the best of the author’s knowledge the previous work neglected the light reflection 

which is not feasible in indoor model.  Also it was proved that eavesdroppers can deduce legitimate 

information by using a small part of the reflected signal [85].    

The work in [25] studied the performance of physical-layer secrecy in a three dimensional 

multiuser VLC network by using mathematical tools from stochastic geometry. The impact of 

reflected paths and channel correlation on VLC security was modeled and analyzed in [86]. 

Summary of different VLC network privacy enhancement methods are shown in Table 3.  

4.2 Indoor VLC System Model 

To simulate visible light indoor communication system model using LED lights, we define 

room 1 with the APs represented by four LEDs evenly distribution on the ceiling of the room as 

seen in Fig. 8, while room 2 used six APs with the locations shown in Table.4.Also, we consider 

a downlink VLC transmission scenario of a multiuser network with the existence of both legitimate 

user and eavesdroppers in a three dimensional space. 

 
Figure 8. Representation of a room with four LEDs and their footprint. 

 In this chapter, the white LEDs emit high frequency light waves which has the modulated 

signals that are transmitted to the receiver through the air, lighting at the same time to complete 
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the wireless transmission of data. The VLC APs are attached to the room ceiling, and their 

positions are in Table.4. Similarly, mobile users are assumed to be at a fixed height.  

A. Transmitter 

The channel transfer function for white LED light source directly pointing in the direction 

of optical receiver is given by [88]: 

 퐻  =  푅(∅) cos(휑)   0 ≤ 휑 ≤ 휑
        0                                휑 > 휑

                                      (3.1) 

where 퐴  denotes the effective detector area of the PD, h is the distance between the 

transmitter and the receiver, φ is the angle of incidence. The PD at each user is assumed to be 

facing vertically upwards with a field of view (FOV) of  휑  .The VLC Aps are assumed to have a 

Lambertian radiation profile R(∅) known as: 

푅(∅) = 푐표푠 (∅)              (3.2) 

푛 =  −푙푛2/ln (cos∅  )            (3.3) 

where n is Lambertian emission coefficient, associated with semi-angle at half power ∅  of the 

LED.  

B. Receiver  

The total received power for only LOS channel for only LOS channel expressed as: 

푃 = ∑ 푃 ∗ 퐻        (3.4) 

The receiver is consisted of photodiode, concentrator and optical filter, as a consequence 

the received power for LOS channel is: 
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Table 4. Indoor Simulation Parameters  

Parameters for a VLC downlink 

Room 1 Size  5×5×3 m3 

Source 

Location (4 LEDs) (1.25,1.25,3),(1.25,3.75,3),
(3.75,1.25,3),(3.75,3.75,3) 

Semi angle at half power 
(FWHM) 35º 

Transmitted power (Per LED) 20mW 

Number of LEDs per array 60*60 (3600) 

Room 2 Size 35×5×3 m 

Source 

Location (6 LEDs) 
(1.6,1.25,3),(1.6,3.75,3), 
(2.5,1.25,3), (2.5,3.75,3) 

(4.1,1.25,3), (4.1,3.75,3) 

Semi angle at half power 
(FWHM) 15º 

Transmitted power (Per LED) 20mW 

Number of LEDs per array 60*60 (3600) 

Receiver 

Receive Plane above the floor 0.85 m 

Active area (퐴 ) 1 cm2 

FOV 60º 

Amplifier Bandwidth 퐵  50 MHz 

Concentrator Gain 푔 6.0 

Photodiode responsivity 푟 0.4 A/W 
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Amplifier noise density 푖    5 푝퐴 √퐻푧⁄  

Ambient noise power 푃  19.272 W 

Noise bandwidth factor 퐼  0.562 

Optical filter’s transmission 
coefficient 푇 1.0 

푃 = 푃 × 푔 × 푇                     (3.5) 

where 푔 is the concentrator gain, 푇 is the optical filter’s transmission coefficient. 

4.3 Simulation Results Discussion and Summary 

A. Optical Power Distribution 

In this section, we used a MATLAB implementation to validate our proposed model. Two 

typical rooms are considered with a size of 5×5×3 m3, the network parameters used for simulation 

setup are described in Table 4.  

First we consider the scenario where the legitimate users are served by four APs, as 

depicted in Fig. 9(a).Therefore, malicious eavesdroppers can be as close as possible to the 

legitimate user, as shown in room 1 top view Fig. 9(c). It can be seen that, when the semi angle at 

half power is large, 35°; and using few APs, four in the first room can efficiently reduce the secrecy 

at the legitimate user. However, when reducing the semi angle to 15°, further increasing the APs 

within the second room to six, Fig. 9(b), the secrecy performance of the legitimate user obviously 

increased, as shown in room 2 top view Fig. 9 (d).As the received power is highly concentrated in 

the zone around the legitimate user, 1 m of diameter, and it decreases as long as you move away 

from the specified zone, so eavesdroppers cant reconstruct the signal with power levels lower the 

4 mW. 
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Therefore using both methods, reducing the semi angle at half power of the LED and 

applying more APs in the VLC indoor system, will automatically form a protected zone around 

the legitimate users to enhance the privacy and secrecy of the users in VLC networks. The AP will 

stop the communication and the AP will alert the legitimate user, if any eavesdropper get in the 

protected zone, as this action will be made aware to the AP. The operation of the protected zone 

in VLC networks can be utilized with motion sensors that are already built in current energy 

efficient lighting devices [87]. A secrecy protected zone is determined by its center, its associated 

AP position, and a security radius, which is the smallest horizontal distance between the AP and 

any undetected eavesdroppers. 

B. Signal to Noise Ratio Analysis 

The authors of [25] proved that in order to have better secrecy performance it can be 

reached when the legitimate user has a higher SNR than the strongest eavesdropper. By analyzing 

the SNR and using the parameter in Table 4, the simulation results of the SNR for the two rooms 

is shown in Fig. 10. 

 

       

   (a) Room 1             (b) Room 2 
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                           (c)  Room 1                            (d) Room 2 

Figure 9. Optical power distribution in received optical plane for a FWHM of (a) 35° 
with four APs, (b) 15°with six APs and (c) , (d) are top view for room 1 and room 2 respectively. 

The photodetector will convert light signals to electrical signals and the SNR is indicated as: 

푆푁푅 =          (3.6) 

where 휎  is the total noise variance and 푖 is the photodiode’s output current and are shown as : 

휎 = 휎 + 휎           (3.7) 

푖 = 푃 × 푟             (3.8) 

휎 = 2(푃 + 푃 ) × 푞 × 푟 × 퐵      (3.9) 

. 

                                 
(a) Room 1      (b) Room 2 

Figure 10. SNR or receiver for a FWHM of (a) 35° with four APs , (b) 15°with six APs . 



        

37 
 

퐵 = 퐼 푅        (3.10) 

휎 = 푖 퐵               (3.11) 

where 휎  is the shot-noise variance, 휎 is the amplifier noise variance, 푟 is the photodiode 

response rate, 푃  is the ambient light’s noise power, 퐵  is the noise bandwidth, 퐼 is noise 

bandwidth factor, 푅  is data rate, 푖  and 퐵  are the amplifier noise density and the amplifier 

bandwidth, respectively. When the semi half angle is decreased from 35° to 15°and by using six 

APs rather than four APs, the SNR outside the circular protected zone at each AP dropped from 

95 dB to 75 dB, as shown in Fig. 10 (a) and (b). This result is in agreement with what have been 

proved, increasing the density of APs can defiantly enhance the secrecy and privacy performance 

of the legitimate user in VLC networks. As it shows a significant decrement in SNR of the 

eavesdroppers located outside the protected zone and instead increasing the SNR of the legitimate 

user.  

4.4 Previous Work 

       

(a)       (b) 
Figure 11. Spatial distribution of the SNR without beamforming (a), Secrecy rate 

achievable via zero-forcing beamforming (b). 
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The authors in [42] derived closed-form lower and upper bounds on the secrecy capacity 

of the amplitude-constrained wiretap channel. Then, they utilized beamforming to obtain 

achievable secrecy rates for the MISO channel. They showed that zero-forcing is an appropriate 

strategy for secure transmission over MISO VLC channels. Although suboptimal, zero-forcing is 

preferable as it is an achievability strategy that eliminates the need to use secrecy codes which 

involve stochastic encoding. Fig. 11 (a) shows the spatial distribution of the SNR at the receiver’s 

height without beamforming. As can be seen, the SNR reaches its maximum value, 39.40 dB, at 

the room center, and decays to 24.97 dB at the corners. In Fig. 11 (b), Bob’s location is fixed and 

the secrecy rate is shown as a function of Eve’s location within the entire room area. As expected, 

the secrecy rate significantly decreases when Eve is close to Bob. Once Eve is relatively far, e.g., 

more than about 2.5 m, the secrecy rate is almost independent of Eve’s exact location.  

 

Figure 12.  Secrecy outage probability versus VLC AP density. 

The author in [25] fixed the density of eavesdroppers (λe = 0.2), the secrecy outage 

probability at the typical legitimate user is evaluated at different values of the AP density, as 

shown in Fig. 12. It can be seen that, when λa is small, increasing the density of VLC APs can 
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efficiently reduce the secrecy outage probability at the legitimate user. However, when λa is large, 

further increasing the density of VLC APs only slightly reduces the secrecy outage probability. 

When λa is increased from 1 to 10, the secrecy outage probability only drops by 0.1. Also, it is 

shown that a lower bound on the secrecy outage probability exists even if the density of VLC 

APs approaches infinity. 
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CHAPTER 5 

INDOOR VLC PHYSICAL LAYER SECURITY 

5.1 Physical Layer Security Solutions 

During the past years, PLS has endorsed attention and renewed interest as part of multiple 

layer security. PLS depend on Wyner “wiretap channel” model in 1975 and then was developed 

for several channel models of wireless systems [46][47]. In the Gaussian MISO wiretap channel, 

zero-forcing the eavesdropper’s reception using beamforming is optimal at high SNR [89] . In 

the VLC security research area, PLS is the most advanced approach and involves techniques such 

as VLC beamforming, VLC secure communication zones, and VLC friendly jamming. 

A. VLC beamforming: 

There is an obvious difference between the normally used beamforming methods in RF 

and those in VLC since in RF the exact data bit’s energy is directed to a target zone to increase 

the signal gain. However, in VLC the illumination is kept at a uniform level and only the data 

signal is directed [99]. In [22], a VLC MIMO system maintains constant illumination and directs 

the data to the legitimate receiver to decrease the eavesdropping possibility by using hidden-

channel methods and beamforming to allow security and channel access. Mostafa and Lampe 

[31] make an extended theoretical analysis of a robust beamforming technique, where Alice 

(transmitter) has unknown information about Bob’s (legitimate receiver) and Eve’s 

(eavesdropper) channels. In [41] they prove that secrecy rates can be enhanced by applying 

beamforming and null-steering if  Eve’s CSI is known or by using artificial noise to maintain 

secure transmission if Eve’s CSI is unknown.  
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Table 5.  VLC Physical Layer Security Techniques   

Paper  Method 

Yin [24] 
Studied the achievable secrecy rate for the MISO VLC wiretap channel and 
showed that the truncated generalized normal distributions provide 
significant gains in secrecy rates under beamforming schemes compared to 
the normal distribution and Gaussian distributions. 

Liang [47] 
Proposed a random time reversal scheme for both SISO-VLC and MISO-
VLC system which takes advantage of both the VLC's multi-path 
redundancy characteristics and time diversity to secure transmission. 
Automatically focusing the transmitted signal on the legitimate user while 
interfering with the eavesdropper's channel by time reversal and random 
choice techniques. 

Khisti [90] 
Showed that building an eavesdropper-free protected zone around the AP 
significantly improves the secrecy performance of legitimate users. 

Yu [48] 
The experimental results showed that by applying a physical-layer secure 
coding scheme based on polar codes for indoor VLC wiretap channels the 
secrecy capacity can be achieved for transmitting secret information with 
guaranteed security and reliability. 

Al-Khori 
[91] 

Achieved higher secrecy capacity in a hybrid RF/VLC network with multiple 
relays with jamming capabilities by using a novel joint relay-jammer 
selection scheme conditioned on the minimum outage and maximum SNR 
and beamforming vectors were applied in the formulation of the power 
minimization problem. 

Soderi [92] 
Proposed an innovative scheme in which red, green, blue (RGB) light-
emitting-diodes (LEDs) and three color-tuned photo-diodes (PDs) are used 
to secure a VLC by using a jamming receiver in conjunction with the spread 
spectrum watermarking technique. 

Wang [93] 
Improved the security of VLC with simultaneous lightwave information and 
power transfer (SLIPT) and random terminals along with employing the 
protected zone. 

Cho [94] 
Studied beamforming schemes and a simpler LED selection scheme to 
enhance the secrecy performance in VLC systems. 

Mostafa 
[83] 

Designed both the optimal and robust secrecy beamformers for the indoor 
MISO visible light communication system for both cases of perfect 
eavesdropper channel state information (CSI) and imperfect eavesdroppers 
CSI.  

Shen [95] 
Maximized the SNR of the legitimate user by using both transmit 
beamforming and jamming techniques to enhance communication secrecy 
for a MISO VLC system. 

Yesilkaya 
[96] 

Enhanced PLS in a VLC system by two new PLS techniques based on 
generalized space shift keying (GSSK) modulation with spatial constellation 
design (SCD) and NOMA. 
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Arfaoui 
[97] 

Proposed a low-complexity precoding scheme and a low-complexity design 
of the precoding matrix. Based on the generalized singular value 
decomposition (GSVDs) of the legitimate receiver channel matrices and the 
eavesdropper, which enhanced the secrecy performance of the system. 

Liang [98] 
Conducted a security zone in the room and proposed a PLS approach based 
on optical beamforming to achieve secure transmissions. 

The work in [23] shows that the perfect secrecy rates of a MISO VLC Gaussian wiretap 

achieve the truncated generalized normal distribution by artificial noise and beamforming. The 

author in [23] designs a secure beamforming method optimal for  scenarios lacking the CSI of 

the eavesdropper. 

B. VLC secure communication zones: 

The secure zone is defined by its center joined with the access point (AP) position and a 

security radius, the minimum horizontal distance to any potential eavesdroppers from the AP 

location. It uses the motion sensors which are already built into modern lighting equipment [24]. 

Only users located in the protected zone are allowed to decode the transmitted signals. Mostafa 

and Lampe are pioneers in the protected zone VLC work [31]. The secrecy is measured using the 

secrecy rates and capacities, which are the maximum rates of a secure link (source-destination), 

while the signal is totally unknown to the eavesdropper. The author also uses null-steering and 

artificial noise to conduct positive secrecy rates and numerically evaluates them. Liu et al.’s 

proposed model is able to have Bob reconstruct the message perfectly while Eve can’t decode the 

legitimate message and Eve’s bit error rate (BER) simulation results are greater than the threshold 

[100]. Also in [101], the author studies a 3D VLC model with multiple APs and eavesdroppers 

and shows that when neighbor APs are cooperating they can increase the secrecy rate around the 

AP in the secure zone. 
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C. VLC friendly jamming: 

The purpose of friendly jamming is to increase Eve’s (eavesdropper’s) interference level 

by adding artificial noise (jamming signals) to the transmitted signal. Therefore Eve’s ability to 

decode the legitimate data is limited and the secrecy rates are increased, especially when Eve’s 

CSI is unknown to the transmitter [41]. In [102] a friendly jamming scenario is proposed with 

typical amplitude and LED nonlinearity constraints which achieve a positive secrecy rate. The 

scenario in [103] has a room with nine LEDs, Alice (transmitter) uses the center LED for 

legitimate data, while the rest are used to jam Eve which show the secrecy rates for Bob 

(legitimate user) and Eve. 

5.2 VLC PLS Proposed System Model 

 
Figure 13. Footprint of a room with five LEDs. 

We will study the indoor VLC model using LED lights, as shown in Fig. 13. Our work will 

focus on enhancing the secrecy rate by adding artificial noise to the channel, decreasing the semi 

angle of LED to create a secured zone around the legitimate user, and finally using a differential 

receiver to cancel any unwanted signals, such as jamming signals or ambient noise. The first 
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5×5×3 m3 room normally has four light fixtures attached to the ceiling and another room with 

five APs that use the Cartesian coordinate system to identify their locations and the center at 

(0,0). In the second room, the source at the center is used by Alice for data transmission, while 

the remaining 4 sources are used for jamming. To simulate a multiuser VLC system, we will 

consider both rooms with the downlink scenario in a 3-D space that has a legitimate channel in 

the existence of eavesdroppers. Since reflected signals are weaker compared to the line of sight 

(LOS) signal [104], a simplified model will consider the LOS component only, using the 

parameters in Table 6. 

A. Mathematical model 

The legitimate user has a better secrecy rate when they achieve higher SNR than any 

malicious attacker [101]. Therefore, the proposed model will depend on the SNR to reach the 

optimal secrecy performance. In order to calculate the SNR, the received optical power and the 

channel gain transfer function are shown in the mathematical model in chapter 3 using the new 

parameters in Table 6. 

B. Differential Optical Receiver 

 
Figure 14. Differential optical receiver, illustrating sunlight cancellation; Ip1 and Ip2 are 

photocurrents due to ambient light and optical signal, respectively [105]. 

The differential optical receiver used by the legitimate user can cancel the ambient noise 

and any unwanted signals (jamming signals), two photodetectors are cross-coupled as shown in 

Fig. 14. The legitimate signal, sent to one receiver, becomes the dominant signal when all other  
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Table 6. PLS Indoor Simulation Parameters   

Parameters for a VLC downlink 
Room 1 Size  5×5×3 m3 

Source 

Location (4 LEDs) (1.25,1.25,3),(1.25,3.75,3), 
(3.75,1.25,3), (3.75,3.75,3) 

Semi angle at half power (FWHM) 35º 
Transmitted power (Per LED)  20mW 
Number of LEDs per array 60*60 (3600) 

Room 2 Size  5×5×3 m3 

Source 

Location (5 LEDs) (1.25,1.25,3), (1.25,3.75,3), (0,0,3), 
(3.75,1.25,3), (3.75,3.75,3) 

Semi angle at half power (FWHM) 15º 
Transmitted power (Per LED) 20mW 
Number of LEDs per array 60*60 (3600) 

Receiver 

Receive Plane above the floor 0.85 m 
Active area (퐴 ) 1 cm2 
 FOV 60º 
Amplifier Bandwidth 퐵  50 MHz 
Concentrator Gain 푔 6.0 
Photodiode responsivity 푟 0.4 A/W 
Amplifier noise density 푖    5 푝퐴 √퐻푧⁄  
Ambient noise power 푃  19.272 W 
Noise bandwidth factor 퐼  0.562 
Optical filter’s transmission coefficient 푇 1.0 

signals are canceled out, then demodulated and decoded by means of code correlation [105]. As a 

result, the shot-noise will instead be expressed as: 

휎 = 2푃 × 푞 × 푟 × 퐵      (4.1) 

5.3 Simulation Results Discussion and Summary 

In this section, we produced our results using Matlab to simulate our proposed model with 

the parameters described in Table 6. Both rooms are typical in dimensions 5×5×3 m3 and are 

deployed for the simulation setup. For the first room, Alice (transmitter) is supplied by four APs 

with 60×60 LEDs per array with 20 milliWatts (mW) optical power per LED, as depicted in 

Fig.15 (a) which was previously investigated in [24]. Bob (legitimate user) and Eve 
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(eavesdropper) are located 0.85 m above the floor. However, for the second room (proposed 

scheme), Alice will use a fifth AP added in the center of the room for data transmission, as shown 

in Fig.15 (b), while the four remaining sources are used for adding artificial noise (jamming) to 

the eavesdropper’s channel, as shown in Fig.15 (c). The proposed footprint configuration is 

employed to enhance the secrecy performance of the legitimate user. Moreover, Bob's receiver 

will be equipped with a differential optical receiver to cancel the unwanted signal in the second 

room scenario.  

 
                                    (a)                                                                 (b) 

 
(c)  

Figure 15. Received optical power distribution plane for a FWHM of (a) 35º with four APs (room 
1) (b) 15º for 5th AP (user’s AP in room 2), and (c) 15º for the four jamming APs in room 2. 
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It can be noticed that when using four APs for data transmission in room 1 with the semi angle at 

half power is large, 35⁰; the attacker can easily reconstruct the signal and decode the data with a 

power level around 6 mW as we previously studied in [24] Fig.15 (a). 

However, in room 2, the semi angle is reduced to 15⁰ to apply beamforming so the data is 

steered in the direction of Bob's receiver using the AP in the center, (Fig.15 (b)), and jamming 

the attacker's receiver by adding artificial noise using the other four APs (Fig.15 (c)). Therefore, 

compared to our previous studies in [24] a secure transmission is established by creating a 

protected communication zone around the user and reducing the chances for the attacker to 

decode the data stream as his interference level is increased. Moreover, the user’s optical receiver 

employs a differential optical receiver which improves the dominant signal and cancels out the 

unwanted noise. In Fig.15 (b) the user’s optical received power reached 15 mW, while the 

eavesdropper’s received power barely reached 4 µW in Fig.15 (c).  

The protected communication zone operation can be established by using the motion 

sensors that are currently built into energy-efficient lighting devices [87]. The AP will alert the 

legitimate user and stop the communication when it detects any attacker in the secured zone. 

Therefore, as the received power is directed in the secured zone, 1 m in diameter, the secrecy for 

the legitimate user is increased in the second room compared to the one in the first room. The 

power levels decrease as one moves away from the targeted zone so the eavesdropper can’t 

reconstruct the data transmitted with power levels below 4 mW, as shown in Fig.15 (b). 

In the SNR simulation results (Fig. 16) the spatial distribution of SNR in room 1 is shown 

in Fig.16 (a) when the 4 APs are used for data transmission. The SNR ranged from 85-98 dB with 

an average of 90 dB in most areas of room 1. However, for room 2 when a fifth AP is added and 
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is the only AP used for data transmission, the SNR at the corners is below 50 dB and the 

maximum SNR is located in the center (target zone) and exceeds 100 dB as can be seen in Fig.16 

(b). Also for the eavesdropper located outside the protected zone, the artificial noise greatly 

affected the SNR levels, which barely reached 30 dB (Fig.16 (c)), thereby increasing the 

interference level of the eavesdropper. This scenario is promising since the SNR for the legitimate 

user is higher than that of the eavesdropper, which decreases the eavesdropper’s ability to decode 

the legitimate data. 

 

 
                                   (a)                                                                 (b) 

 
(c)  

Figure 16. SNR of receiver for a FWHM of (a) 35º with four APs (room 1) (b) 15º for 5th AP 
(user’s AP in room 2), and (c) 15º for the four jamming APs in room 2. 
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5.4 Previous Work 

In [41], they proposed improving the confidentiality of VLC links via physical-layer 

security techniques. They numerically evaluated achievable secrecy rates for three typical VLC 

scenarios. For the SISO case, achievable secrecy rates are negligible. When beamforming is 

applicable at the transmitter, secrecy rates can be significantly improved via null-steering if the 

eavesdropper’s CSI is available. With the lack of the eavesdropper’s CSI, secure transmission is 

still possible via artificial noise transmission in the receiver’s null space. 

(a)            (b) 

Figure 17. Eve’s SNR as function of Eve’s location for the SISO case (a). Bob’s SNR as a 
function of Eve’s location for the MISO case with null-steering. (Bob is located at the room 

center) (b). 

Fig. 17 (a) shows the spatial distribution of Eve’s SNR within the room area when all the 

light fixtures are modulated by the same signal. As can be seen, Eve’s SNR ranges between 37.30 

dB at the room corners and 50.93 dB directly underneath any of the four fixtures with an average 

of 47.18 dB. Notice that Eve’s SNR is higher than 43 dB in 91% of the room area. Such scenario 

is not promising from a security perspective since the probability that SNRE ≤ SNRB is low 
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making secure communication on a physical-layer basis not practical for the SISO case. Fig. 17 

(b) shows Bob’s SNR as a function of Eve’s location when the zero-forcing beamformer is 

applied. It is obvious that utilizing Eve’s CSI via null-steering significantly increases the 

achievable secrecy rate compared to the SISO case. 

The work in [48] proposed a physical-layer secure coding scheme based on polar codes for 

indoor visible light communication wiretap channels. Results show that the secrecy capacity can 

be asymptotically achieved for transmitting secret information with guaranteed security and 

reliability. As can be seen in Fig. 18 (a), the distribution of secrecy capacity for Bob at position 

(0, 0) against Eve at random position is calculated as shown in Fig. 18 (b). The theoretical secrecy 

capacity increases versus the distance between Bob and Eve. The practical secrecy capacity 

achieved using the proposed coding scheme is demonstrated with several positions of Eve. 

 

Figure 18. The distribution of (a) SNR and (b) secrecy capacity. 
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Figure 19. (a) the average SNR of EDs with beamforming and LED selection, (b) the 
average SNR of EDs with beamforming and repetition coding, (c) the ratio of the average SNRs 

of EDs generalized by beamforming. 

The authors in [94] studied beamforming schemes and a simpler LED selection scheme to 

enhance the secrecy performance in VLC systems. Fig. 19 shows the average SNR of 

eavesdroppers (EDs) as a function of the User (UE) location. The bottom surfaces in (a) and (b) 

denote the results for the beamforming (identical). The top surfaces denote LED selection and 

repetition coding, respectively. In (c), the ratio of the average SNRs of EDs are given in which 

the top surface denotes the ratio of repetition coding and beamforming, and the bottom surface 

denotes the ratio of LED selection and beamforming, respectively. Four transmitters are located 

at (±1, ±1). By using the beamforming scheme, they can minimize the average SNR of EDs (or 

indeed the worst case SNR of EDs) and maximize the SNR of the UE with only statistical 

information about ED locations. The LED selection scheme is not superior to the beamformer in 

the respect of secrecy performance; however, when the UE is located near to one of the 

transmitters, LED selection provides a good practical solution to enhancing secrecy performance 

without high computational complexity. 

In [98] the PLS scheme based on optical beamforming for the indoor VLC system is 

investigated. First, an optimization problem that maximizes the received signal power in the 
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security zone is formulated to make the eavesdroppers in the insecurity zone cannot receive the 

signal with enough power for decoding. Second, they proposed a cuckoo search with adaptive 

searching and population mutation (CSASPM) algorithm with two improved factors to solve the 

formulated optimization problem. Simulations results show that CSASPM effectively obtains the 

improvement of received signal power in the security zone. Fig. 20 (a) and 20 (b) show the 3D 

received signal power distributions obtained by the uniform beamforming weights and the 

proposed CSASPM, respectively.  

Figure 20. Received signal power distributions. (a) 3D power distributions obtained by uniform 
beamformers. (b) 3D power distributions obtained by CSASPM. (c) 2D power distributions 

obtained by uniform beamformers. (d) 2D power distributions obtained by CSASPM. 
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Moreover, the two dimensional (2D) forms of the received signal powers are shown in Fig. 

20 (c) and 20 (d), respectively, for a more intuitive presentation. As can be seen, the received 

signals in the defined security zone obtained by CSASPM algorithm are much stronger than the 

signals in the insecurity zone, especially compared to the received signals with uniform 

beamformers.  
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CHAPTER 6 

INTRAVEHICLE VISIBLE LIGHT COMMUNICATION 

6.1 Introduction 

Recently it was highlighted that optical wireless communication (OWC) may provide a 

compatible solution to the concept of intra-vehicular communications. For example irradiating 

the interior of the vehicle with infra-red (IR) radiation to serve as a communication link between 

anything from simple user-vehicular interface devices such as window or air conditioning 

controllers, to more advanced vehicular technologies such as audio-visual (AV) entertainment 

units or computer consoles [24]. The advantages to implementing an OWC system within a 

vehicle or Vehicle Ad-hoc Network (VANET) [106],[107] include mitigating against the highly 

prevalent radio frequency interference and a reduction in costs due to utilizing unregulated 

spectrum and not having to design a system around other competing RF systems. There is also a 

potential to save energy in terms of reduction in wired devices that are typically copper cabled 

and finally a potential to improve manufacturing efficiency should such cabling be removed.  

Vehicular VLC provides lower complexity and therefore lower cost, primarily because 

LEDs are already installed in vehicles and street lights. Positioning technology based on VLC is 

more precise than RF-based ones, and the error in the order of tens centimeters. Moreover, DSRC 

is more exposed to longer delays, excessive packet collisions, and poor reception rate, particularly 

during rush hours [99]. To sustain safe and efficient traffic flow, VANET applications send 

Cooperative Awareness Messages (CAM) frequently. A CAM (aka Basic Safety Message (BSM) 

or beacon) consists of various data information like timestamp, position, speed, and heading. 

Since this information is broadcast publicly and these CAMs can be analyzed and collected, a 

serious privacy threat can happen [108].  
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In [27] they showed major security issues affecting VANETs which were classified into: 

application layer, system layer, and network layer. Also, they developed a ‘‘SecVLC’’ protocol 

using a hybrid communication simulation using DSRC and VLC, which reduced the effect of 

attacks on platoon stability. As SecVLC used to share a secret key between moving vehicles. In 

addition, when the platoon is attacked they suggested the utilization of adaptive cruise control 

(ACC) mode instead of CACC to prevent the possible collision. Since in CACC cars access each 

other’s information and make driving decisions autonomously. 

6.2 Vehicular System Model 

However, before any OWC based intra-vehicle communication system is prototyped or 

developed, it is typically customary for a designer to complete some form of channel analysis. 

Previously, researchers have designed the intra-vehicle communication channel analysis with an 

invisible light source, infra-red (IR), using the Phong reflection model. Furthermore, in our 

previous work, a visible LED, 1W of source power was used to enhance the received power and 

SNR [105]. It was the first kind of such an analysis to present the received power based upon a 

single IR LED source situated upon the ceiling of a Sports Utility Vehicle (SUV). It showed that 

several areas of the vehicle are illuminated with sufficient IR power, that intravehicular OWC is 

viable.  The purpose of this study is to show how LED's allocation and positioning can improve 

intra-vehicle VLC performance.  
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Figure 21. Front-facing view of the deployment structure [110]. 

For modeling, the VLC system is designed to be applied within a SUV with an internal 

dimension structure of 3.5×1.6×1.5 m3 as shown in Fig. 21, with the driver side wall, windscreen 

and ceiling removed. Previously invisible IR LED was used in modelling of intravehicular OWC 

system, which resulted in the use of a strong specular IR reflection model, Phong reflection model 

[109]. The results showed that the rear passengers can, from the linearly scalable 1W source, 

achieve 49μW of received power as shown in Fig. 22 [109]. 

 
Figure 22. Received power in μW for the rear passenger seats [110]. 
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In addition to a power up to 16μW can be received on the headrests of the front seats, where 

there might be audio visual (AV) entertainment units and computer consoles installed as shown 

in Fig. 23 [109]. 

 
Figure 23. Received power in μW for the front passenger seats [110]. 

In our previous paper [105], the received power level and SNR are improved by changing 

the FWHM of a visible LED source by utilizing the Lambertian radiant intensity model. The 

position vector of the transmitter source is located centrally upon the vehicle ceiling [1.6, 0.8, 

1.5].  

The received optical power distribution and SNR simulation results developed based on 

the equations in chapter 3, prove that the proposed model power distribution received for the rear 

and front seats improved to 7 mW and 8 mW, respectively as shown in Fig. 24. The power level 

results validate that the use of visible source with the optimized characteristics is 100 times more 

than that of the IR LED. Using IR radiation before, the lower section of the back seat is exposed 

to a power ranging between 19μW and 43 μW rather than 4 mW to 7 mW. Users can comfortably 

exploit personal electronic devices such as mobile phones, laptops, hand-held computer consoles, 

etc. in these locations.  
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Figure 24. Optimized received power in mW for the rear and front passenger seats [106]. 

This work pursues our research goals in designing and modeling an efficient and practical 

intra-vehicle VLC system, where we have tested and analyzed the channel estimation for an intra-

vehicle VLC system [105], studied and enhanced the secrecy performance in an indoor multiuser 

VLC network [105]. The aim of this study is to optimize the LED’s positioning and allocation in 

an intra-vehicle VLC system and notice how they affect the system design and performance. 

6.3 Intra-Vehicle LEDs Locations Analysis 

In this section, we have used MATLAB to simulate and analyze the effect of different 

number of LED's position on the received power, which directly affects the system performance. 

A. Two Sources of Power 

 
Figure 25. Two LED received power in mW for the rear and front passenger seats. 

We have deployed two LED arrays with the number of LEDs per array = 50 to supply 2 W 

of source power. The received optical power distribution and SNR simulation results are 

formulated upon the parameters in Table 7 and the equations in chapter 3. Along with using the 
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SUV dimensions in section 5.2. As can be seen from Fig. 25, the power distribution received for 

the rear and front seats improved to 11 mW, compared to the 7 mW and 8 mW received 

respectively by applying one source of power. The power level results prove that the use of two 

visible sources with the optimized characteristics used in the previous model is enhanced more 

than that of the previous system. As the minimum power level around the passenger and driver 

seats is not less than 7 mW, unlike the 4 mW received in the previous model. 

Table 7. Intra-Vehicle Simulation Parameters 

System Parameters for a VLC Link 
Vehicle Size  3.5×1.6×1.5 m3 

Source 

Location (2 LEDs) (1.25,0.8,1.5) 
(2.25,0.8,1.5) 

Semi angle at half power 
(FWHM) 30º 

Transmitted power (Per LED)  20mW 
Number of LEDs per array 50 
Center luminous intensity 300-910 lx 

Receiver 

Receive Plane above the floor 0.5 m 
Active area (퐴 ) 1 cm2 
 FOV 70º 
Amplifier Bandwidth 퐵  50 MHz 
Concentrator Gain 푔 6.0 
Photodiode responsivity 푟 0.4 A/W 
Optical filter’s transmission 
coefficient 푇 1.0 

 

The received power shown in Fig. 25 near the passenger's head throughout the rear 

passenger seats and front seats have high power which is suitable for wireless IR headphones or 

hands-free voice equipment and any portable devices. Also, the lower section of the back seat has 

7 mW of power where mobile phones, laptops, or other personal electronic devices can 

comfortably be used in these locations. Simple vehicular-passenger interface panels; window, 
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air-conditioning, heating or AV controllers are easily applicable as the received power ranges 

from 3 mW to 5 mW. The SNR out got also enhanced by using two sources of power. A 67~ 97.2 

dB is obtained, as shown in Fig. 26, validating the advantages of the VLC intra-vehicle proposed 

model. As the utilization of two sources enhanced the discovered results of SNR. 

B. Three Sources of Power 

The problem with the previous layout was that the maximum received power within the 

vehicle was concentrated around the center as a result of the combined power of the two LED 

sources. 

 

Figure 26. SNR of the receiver. 

To improve this power gap, a three LED layout was used to move the previous two sources 

further away from the center while adding one source in the middle for the front seats. As for the 

rear passenger seats will be served by two separate sources of power. After applying different 

layouts for several simulations, the results showed that the optimal locations for the three sources 

are (2.75, 1, 1.5), (0.75, 1, 1.5) for the rear seats and (1.75, 0.6, 1.5) in the middle for the front 

seats. 

6.4 Simulation Results Discussion and Summary 

It is clear from Fig. 25 that the corners of the vehicle are the darkest areas. Even though 

the probability of having a receiver at the absolute corner is almost zero, the received power levels 
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of the system need to be at an acceptable level for the rear passengers and any simple vehicular-

passenger interface application. As can be seen from Fig. 27, there is a minor increase in the 

maximum power compared to the two source layout 14mW instead of 11 mW, however, the 

minimum power levels at the sides and near the corners increased from 4 mW to 8 mW 

approximately. The received power throughout the rear passenger seats and front seats have high 

power which is suitable for any portable devices. 

Also in Fig. 28, the minimum SNR level near the corner reached 80 dB instead of 70 dB 

in the previous layout while maintaining the same maximum level of 100 dB. Moreover, the SNR 

has a direct effect on the performance of the VLC system. Since the probability of error for an 

On-Off Keying modulation scheme is given by:  

푝(푒) = 푄(√푆푁푅)     (5.1) 

which shows that the layout design of LEDs is an important factor while designing a VLC system. 

 
Figure 27. Three LEDs received power in mW for the rear and front passenger seats. 
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Figure 28. The SNR of receiver for the rear and front passenger seats. 

The results show that choosing the LED's locations and numbers are necessary to determine 

the amount of the received power within the designated area, which directly affects the SNR and 

probability of error. 
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CHAPTER 7 

OUTDOOR VEHICULAR VISIBLE LIGHT COMMUNICATION SECURITY 

7.1 Introduction 

Currently, V2V is an area of excessive research but for industry, security is not the prime 

focus of research [65].VANETs systems as seen in Fig. 29 are susceptible to different attacks 

such as replay attack and packet falsification. Firstly, the attacker in the replay attack pretends to 

be a legitimate user and eavesdrops and saves the packet’s information that is previously 

transmitted by users. Afterward, it deceives the platoon users and retransmits the packets as if 

they are just created. This corrupts the system stability because those packets have out-of-date 

information. Secondly, in packet falsification, the intruder acts as a platoon leader and listens to 

the communication channel among vehicles constantly. As soon as a packet is received, it 

retransmits it while changing the information. Also, the adversary uses an automotive diagnostic 

tool to evaluate the data packet’s information as shown in a modern automobile experimental 

security analysis [110]. For example, an attacker can alternate the speed of platoon which may 

cause an accident. 

 

Figure 29.  Demonstration of Intelligent transportation system. 
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Privacy schemes in VANET depend basically on changing pseudonyms frequently in a 

hidden mix-contexts to avoid likability of CAMs. Unobserved mix-contexts are performed by 

applying a silent period before a pseudonym change. Changing pseudonyms without using 

unobserved mix-contexts will not restrict vehicle tracking [111]. Summary of different privacy 

and safety schemes are shown in Table 8. 

VLC can mitigate the threats by utilizing the impermeability and directivity of LEDs. On 

the other hand, applying VLC only in the platoon may disturb the stability of platoon because the 

surroundings affect VLC [112]. Seyhan Ucar in [112] proposed SP-VLC, an IEEE 802.11p 

Table 8. V2V VLC Secrecy Enhancement Techniques 

Paper  Method 

Amoozadeh 
[113] 

Used a physical layer secret key generation technique to exploit 
randomness of the road surface and the driving behavior, 128bits 
encryption key is generated based on real world vehicle trajectory big-
data to prove the concept. 

Freudiger 
[114] 

Proposed the use of VLC for vehicle safety applications, creating a 
smart automotive lighting system. The system provides an all-in-one 
low-complexity and low-cost solution. 

Blinowski 
[99] 

Presented an implementation of secure V2V communication by using 
Blockchain as a V2V message transport, since it provides a secure, 
verifiable, shared, open and distributed ledger. 

Yu [48] 
Developed MixGroup to change pseudonym by efficiently using the 
sparse meeting chances among vehicles. 

Lefèvre 
[115] 

Proposed an intersection collision avoidance (ICA) system and studied 
a silent period method in terms of missed and avoided collisions and 
showed that the ICA system with silent periods can work in less than 
two seconds. 

Agarwal 
[99][116] 

Developed and proposed a hybrid communication V2V system using 
DSRC and VLC to reduce the effect of attacks and provide secure 
platoon maneuvers. The results proved a detection rate below 10%. 
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communication protocol, and VLC-based hybrid security system, intending to provide secure 

platoon maneuvers and stability and secure platoon maneuvers under different data packet attacks 

like channel overhearing, injection,  jamming, and maneuver attacks. He also showed a maneuver 

attack based on different scenes identification where a malicious actor sends a fake packet. SP-

VLC can switch to VLC only and secure platoon maneuvering by using the secret key 

establishment, jamming detection, message authentication, and data transmission. The results 

compared the eavesdroppers’ decoding rate for packets transmitted via DSRC, VLC and SecVLC 

as a function of vehicle distance.  The adversary using DSRC achieves a detection rate near 100% 

within 300 m of the transmitting vehicle. While using VLC the adversary receiver is limited by 

the direct link of VLC however, the eavesdropper still has a 70% detection rate when located 

within 6 m. The results provided that the detection rate is limited below 10% [65].  

However, there are only a few security-related studies on vehicular VLC. Thus, this chapter 

focuses on the secrecy performance in an outdoor V2V VLC network using the Lambertian 

radiant intensity VLC channel analysis properties, by enhancing the received optical power in an 

outdoor V2V VLC network and analyzing the hybrid V2V VLC for LOS and diffused channel 

model. To achieve the optimal V2V VLC link for urban environments, the proposed platform 

will depend on the received optical power, SNR, and BER to improve the secrecy performance 

by achieving better SNR for the legitimate platoon member than the adversary, to ensure platoon 

stability and to limit the detection of any adversary. Also, we will improve the secrecy 

performance for legitimate platoon member by changing the LED semi-angle and implementing 

the protected zone strategy between the platoon members where intruders are banned to help 

improve the secrecy. 
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7.2 V2V VLC System Model 

The Communication diagram for V2V VLC transmission model is shown in Fig. 30. Using 

non-return-to-zero (NRZ) on-off keying (OOK) to modulate the signal, which will be 

demodulated and decoded to recover the original data. To simulate VLC in practical driving 

scenarios, we designed 1.6 meters for the car width, a common car size, and the receiver is 

installed on the bumper of the front car 0.8 meters above the floor level with a field of view 

(FOV) of 55 º, as shown in Fig. 30. Also on the transmitter side, the following car has the LED 

headlamps fixed 0.8 meters above the floor with an inter-distance of 1.2 meters. Today most of 

the LEDs in the market are surface-emitting LEDs, which has the intensity directly proportional 

to the cosine of the angle from which it is received, as it follows Lambert's cosine law [66]. 

Therefore the horizontal plane of the received optical power distribution follows a Lambertian 

radiation pattern and the simulation parameters are shown in Table 9. The VLC link range for 

vehicular system depends on the adjacent vehicle’s position and the half-power angle ∅  of the 

LED, which is the angle where the effective transmission power is half of the maximum power. 

A. LOS Channel Analysis 

The white LED light source directed to the optical receiver has a LOS channel transfer 

function as shown in chapter 3. The PD on each vehicle is facing the headlights with a FOV of휑 . 

 
Figure 30. V2V communication Architecture using two vehicles. 

 



        

67 
 

Table 9. V2V VLV Simulation Parameters 

System Parameters for a VLC Link 

Vehicle Size  1.6×4.7×2 m3 

Source 

Location (2 LEDs) (0.25,0,0.8), (1.45,0,0.8) 

Number of LEDs per array 50*50 (2500) 

Transmitted power (Per LED)  20 mW 

Semi-angle at half power (FWHM) 10º 

Receiver 

FOV 55º 

Active area (퐴 ) 1 cm2 

Receive Plane above the floor 0.8 m 

Amplifier Bandwidth 퐵  50 MHz 

Ambient noise power 푃  19.272 W 

Photodiode responsivity 푟 0.4 A/W 

Amplifier noise density 푖    5 푝퐴 √퐻푧⁄  

Concentrator Gain 푔  6.0 

Noise bandwidth factor 퐼  0.562 

Optical filter’s transmission 

coefficient 푇 
1.0 

 

We can drive the LOS total received power by (3.4). As a consequence the LOS received 

power is shown as in (3.5). 



        

68 
 

 

B. Diffuse Channel Analysis 

The reflections resulting from the surrounding cars and road medium cause V2V VLC 

multipath propagation which don't observably impact the performance [117]. Therefore, in this 

study, we will investigate the diffuse reflection; in the Lambertian model, we can ignore the 

ground reflection and only consider the ambient noise and road reflections impacts. Modulating 

the signal with a chosen frequency allows us to filter out most ambient interferences as mentioned 

before to prevent saturating the PD.  

For the diffused reflection, the Light reflection intensity [118],[116] is calculated in (6.1): 

                                                               퐼 = 휌 ,                                                   (6.1) 

where 푃  are LED's total power, A is the area of the reflecting surface, 휌 is the reflectivity of 

surfaces. The received power of the diffused channel can be derived as: 

                                                      푃 = A × 퐼 ,                                            (6.2) 

In this case, the total received power in Eqn (3.5) is changed to: 

                                                          푃 = (푃 + 푃 ) × 푔 × 푇 .          (6.3)  

7.3 V2V Model Simulation Results  

The simulation validated our proposed model by using MATLAB. Two normal vehicles 

are designed with a size of 1.6×4.7×2 m3, the V2V VLC system parameters used for simulation 

setup are described in Table 9. Here, we consider the scenarios in two dominant conditions: traffic 

mode and stop mode. Based on USDOT reports, the minimal distance between two following 
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vehicles is 2 m and the average gap between vehicles in traffic mode is 8 m for urban 

environments at vehicle speeds less than 100Km/h [113]. Also, the simulation shows that the 

distance and the semi-angle at half power of LED are the two dominant factors affecting the 

received power. Since the LED bulbs in the headlights are used for communication and 

illumination, the LED luminance range should be moderate to meet the specific requirements 

outlined by the Federal Motor Vehicle Safety Standards (FMVSS) of US, 60 Watt maximum for 

low beam and 70 Watt maximum for high beam, to avoid disturbing the nearby drivers. 

Therefore, the simulation results are shown at two different distances: 2 m, 8 m; and the 

semi angle at half power is adjusted to 10 º instead of 20 º for a slightly focused communication 

link for a low beam LED. When the semi angle at half power is increased to 20 º, with a gap 

distance of 8 m, the distribution of the received optical power at a vertical plane reached a 

maximum of 0.95 mW. However, when reducing the gap to 2 m, the received optical power 

exceeded 9 mW at the PD receiver’s position, as shown in Fig. 31(a, b), respectively. 

 
         (a)                     (b) 

Figure 31. Received Optical power distribution of the headlights (projected on a vertical plane) 
for a FWHM of 20 º (a) traffic mode and (b) stop mode. 
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    (a)                                                                    (b)  

Figure 32. Received Optical power distribution of the headlights (projected on a vertical plane) 
for a FWHM of 10 º (a) traffic mode and (b) stop mode. 

The zone around the receiver's position has a highly concentrated received power which 

decreases in the areas away from the targeted zone. On the other hand, Fig. 32 (a,b) shows when 

the semi angle at half power is reduced to 10 º; with a gap of 8 m, the received optical power 

distribution achieved almost 3.5 mW of power at the vertical plane and 30 mW with a gap 

distance of 2 m, respectively.  

As a result, adjusting the semi angle at half power of LED improved the V2V VLC system 

communication link and can enable a wider range of stable and robust V2V link. Fig. 33 (a,b) 

shows the hybrid received optical power simulation results for both the traffic mode and stop 

mode respectively, with considering LOS channel and diffused channel simultaneously. 

Therefore, the traffic mode received power is almost doubled and the received power in the 

stop/following mode almost achieved 40 mW, which assures the certainty of considering the 

diffused channel in the V2V VLC systems. 
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       (a)                                                                         (b)  

Figure 33. Hybrid Received Optical power distribution of the headlights (projected on a vertical 
plane) for a FWHM of 10 º (a) traffic mode and (b) stop mode. 

7.4 Vehicular VLC Security 

In V2V VLC, a platoon has a leader that manages the system and platoon followers to 

follow the leader by controlling the speed. Platoon management protocols aim to keep the system 

stable and to platooning maneuvers such as entrance, merge, leave and split. Most of the previous 

studies assumed the presence of secure communication among vehicles while designing platoon 

management protocols. However, the absence of security protocol results in system instability. 

The goal in this section is to analyze the secrecy performance in a V2V VLC network to ensure 

stability and maneuvers security against maneuver attacks, data packet injection, eavesdropping, 

and jamming. In this security model, we will improve the secrecy performance for legitimate 

platoon member by changing the semi-angle of LED and by using the protected lane between 

vehicles.  

The “protected zone” strategy [119] alerts the platoon leader and legitimate platoon 

members when a malicious actor is detected in the protected zone and temporarily stop the 

communication. A secrecy V2V VLC protected zone is efficiently utilized by built-in motion 
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sensors in vehicles and can be defined by the lateral range of the typical lane width, 3.6 meters 

[120]. To raise the secrecy performance, the legitimate platoon member has to achieve better 

SNR than the adversary [101]. By applying the parameters in Table 9, the simulation results for 

the SNR and BER analysis with a semi angle of 7°, for both scenarios, traffic mode and stop 

mode, are shown in Fig. 34 and 35. The SNR is derived in chapter 3. Moreover, the SNR has a 

direct effect on the performance of the VLC system, since the probability of error for an On-Off 

Keying modulation scheme is given by: 

                                                        푝(푒) = 푄(√푆푁푅) .                 (6.4) 

 
Figure 34. Received Optical power distribution of the headlights in traffic mode when projected 

on a vertical plane for a FWHM of 7 º. 
                                                       

7.5 Simulation Results Discussion and Summary 

At first, when we examined the traffic mode for the legitimate platoon member following 

the platoon leader and the space gap is 8 m; we found that it is easier for the malicious actor to 

cause system instability. Therefore, it can damage membership by applying data packet injection, 

eavesdrop, and jam the communication link. As shown in the vertical plane view Fig. 31(a), when 

the semi angle at half power is large, 20°, the secrecy at the legitimate platoon member can 
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efficiently be reduced. As the received optical power reached a maximum of 1 mW which will 

result in poor SNR results. However, when the semi angle is reduced to 7°, it can be noticed that 

there is an obvious increase in the secrecy performance, as shown in the vertical plane view Fig. 

34. As a received power of 7 mW is extremely centered and directed in the protected lane between 

the platoon members, and it decreases as long as you move away from the specified zone, so 

eavesdroppers can’t reconstruct the signal with power levels lower the 4 mW. Therefore using 

both mechanisms, reducing the semi angle at half power of the LED and applying the protected 

zone strategy in the V2V VLC system, will result in platoon member privacy and secrecy 

improvement and will ensure secure platoon maneuvering in V2V VLC networks.  

While when we consider the stop mode scenario, with a space gap of 2 m, the 

communication link is normally directed towards the leading vehicle. As a result, we can only 

apply the protected zone strategy to ensure privacy and secrecy. 

Moreover, when the semi half-angle in the traffic mode is decreased from 20° to 7° and by 

applying the protected zone strategy; the SNR within the protected lane region increased from 80 

dB to 96 dB while keeping the SNR below 78 dB outside the protected zone, as shown in Fig. 35 

(a) and (b). Also in the stop mode with a semi half angle of 7°, the SNR for the legitimate platoon 

user exceeded 100 dB while the SNR for any malicious actor is below -60 dB. The results approve 

that the privacy and secrecy of the users in a V2V VLC network are defiantly improved when 

decreasing the semi half-angle. As it presents an obvious reduction in the attacker SNR levels 

outside the protected lane and rather rising the legitimate user SNR levels and therefore the BER 

will improve as shown in equation (6.4).  
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  (a)                                                                       (b) 

 
         (c)                                                                        (d) 

 
                   (e)                                                           (f) 

Figure 35. SNR and BER of the receiver (projected on a vertical plane) for a traffic mode with 
(a, d) a FWHM of 20 º, (b, e) a FWHM of 7 º and (c, f) for stop mode with a FWHM of 7 º. 
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Fig. 35 (d), (e), and (f) show the simulated bit error rate (BER) for V2V VLC 

communication based on the model described in section 6.2. Fig. 35 (d) shows BER < 10-2 in the 

protected zone while Fig. 35 (e) shows BER < 10-4 after decreasing the semi half-angle to 7°, 

leaving the BER > 10-1 outside the targeted zone as there is a weak signal reception. In case of 

the stop mode with a semi half-angle of 7°, the BER for the platoon member is below 10-5. 
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CHAPTER 8 

CONCLUSION 

In this thesis, we have presented the key concepts, underlying principles of 5G physical-

layer threats and solutions in the new 5G network. In particular, visible light communication as 

one of the main PLS solutions in 5G IoT networks and explored the VLC security threats for the 

indoor and vehicular applications. Several methods were used and studied to modify the SNR 

and power distribution levels for the legitimate user and weaken the malicious signals. 

In chapter 4, a new VLC model was proposed for indoor environments that enhances the 

security in VLC technologies. We implemented six APs rather than four in a typical 5×5×3 m3 

multiuser VLC network (office) which are cooperated. Then we reduced the semi-angle of LED 

to 15° instead of 35° to further help improve the secrecy performance by directing the power in 

the specified zone for the legitimate user. Finally analyzed the SNR along with performing the 

protected zone around the AP where eavesdroppers are restricted to strengthen the legitimate user 

signal and weaken the other signals outside the protected zone. As the eavesdropper signal 

strength dropped from 95 dB to 75 dB, validating our work and improvement to the network 

secrecy performance 

Chapter 5 provided a physical-layer secure model for indoor visible light communication 

systems. The proposal was based on VLC beamforming and generating artificial noise to enhance 

the secrecy performance in the VLC system with significant gains of SNR compared to the work 

in chapter 4. First, we steered the transmitted data to create a secure communication zone by 

decreasing the semi-half angle of the LED. Then we added artificial noise to the wiretap channel 

to jam the attacker. Finally, the legitimate user employed the differential receiver to cancel out 

any unwanted signal and strengthen the legitimate signal. The simulation results showed that the 
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secrecy performance significantly increased as the user’s SNR exceeded 100 dB while the 

malicious user’s SNR barely reached 30 dB outside the target zone, which increased his 

interference level. Also the legitimate user’s optical received power reached 15 mW while the 

eavesdropper’s received power barely reached 4 µW, therefore the eavesdropper can’t reconstruct 

the data transmitted. 

Chapter 6 studied the effect of LEDs position for an intravehicular scenario on the 

performance of a visible light communication system. The results showed that choosing the 

LED's locations and numbers are necessary to determine the amount of the received power within 

the designated area, which directly affects the SNR and probability of error. 

In chapter 7, we presented an enhanced V2V VLC model for outdoor vehicular 

communication that improves the received power distribution and security in V2V VLC system. 

We have created a realistic driving scenario with two typical cars of size 1.6×4.7×2 m3 in a V2V 

VLC network. Then we changed the LED semi-angle to 10 degrees rather than 20 degrees to 

improve more the received power, and by targeting a specific area to direct the power for the 

legitimate platoon member and using a semi-angle of 7 degrees, the secrecy showed better 

performance. Moreover, applied the protected lane where attackers are banned and evaluated the 

SNR and the BER. The intruder signal strength dropped to 78 dB and -60 dB with BER > 10--1 

while the signal strength for the legitimate vehicle reached 96 dB and 100 dB with BER< 10-4 

and can reach 10-7 for both traffic mode and stop mode respectively. 
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In the future, VLC can work as a complementary technology to the RF 5.9 GHz DSRC 

technology in vehicular wireless communication as each of them is suitable for a scenario when 

the other is vulnerable. And human health is important and more studies on visible light effect 

using VLC on human safety are encouraged as done on RF technology. This thesis emphasizes 

that VLC is a promising way of communication. There are numerous approaches that can be used 

in real time applications which will renovate the present and future living styles. 

To the best of our knowledge, light polarization and security are a new concern in VLC 

and there has been no work done yet in this area. However, the VLC system can use light 

polarization as an alternative method to transmit data, as data polarization has been used to encode 

data or hidden data. Polarization depends mainly on LOS communication rather than non-LOS, 

or reflected signal, which decreases the polarization factor. As a result, it is not easy to eavesdrop 

on polarized signals or apply any other attack to change or jam them. In the future, light 

polarization can play an important role in VLC physical layer security. 
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