995 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    Mean-field message-passing equations in the Hopfield model and its generalizations

    Get PDF
    International audienceMotivated by recent progress in using restricted Boltzmann machines as preprocess-ing algorithms for deep neural network, we revisit the mean-field equations (belief-propagation and TAP equations) in the best understood such machine, namely the Hopfield model of neural networks, and we explicit how they can be used as iterative message-passing algorithms, providing a fast method to compute the local polariza-tions of neurons. In the "retrieval phase" where neurons polarize in the direction of one memorized pattern, we point out a major difference between the belief propagation and TAP equations : the set of belief propagation equations depends on the pattern which is retrieved, while one can use a unique set of TAP equations. This makes the latter method much better suited for applications in the learning process of restricted Boltzmann machines. In the case where the patterns memorized in the Hopfield model are not independent, but are correlated through a combinatorial structure, we show that the TAP equations have to be modified. This modification can be seen either as an alteration of the reaction term in TAP equations, or, more interestingly, as the consequence of message passing on a graphical model with several hidden layers, where the number of hidden layers depends on the depth of the correlations in the memorized patterns. This layered structure is actually necessary when one deals with more general restricted Boltzmann machines

    Review of Neural Network Algorithms

    Get PDF
    The artificial neural network is the core tool of machine learning to realize intelligence. It has shown its advantages in the fields of sound, image, sound, picture, and so on. Since entering the 21st century, the progress of science and technology and people\u27s pursuit of artificial intelligence have introduced the research of artificial neural networks into an upsurge. Firstly, this paper introduces the application background and development process of the artificial neural network in order to clarify the research context of neural networks. Five branches and related applications of single-layer perceptron, linear neural network, BP neural network, Hopfield neural network, and depth neural network are analyzed in detail. The analysis shows that the development trend of the artificial neural network is developing towards a more general, flexible, and intelligent direction. Finally, the future development of the artificial neural network in training mode, learning mode, function expansion, and technology combination has prospected

    The synthesis of artificial neural networks using single string evolutionary techniques.

    Get PDF
    The research presented in this thesis is concerned with optimising the structure of Artificial Neural Networks. These techniques are based on computer modelling of biological evolution or foetal development. They are known as Evolutionary, Genetic or Embryological methods. Specifically, Embryological techniques are used to grow Artificial Neural Network topologies. The Embryological Algorithm is an alternative to the popular Genetic Algorithm, which is widely used to achieve similar results. The algorithm grows in the sense that the network structure is added to incrementally and thus changes from a simple form to a more complex form. This is unlike the Genetic Algorithm, which causes the structure of the network to evolve in an unstructured or random way. The thesis outlines the following original work: The operation of the Embryological Algorithm is described and compared with the Genetic Algorithm. The results of an exhaustive literature search in the subject area are reported. The growth strategies which may be used to evolve Artificial Neural Network structure are listed. These growth strategies are integrated into an algorithm for network growth. Experimental results obtained from using such a system are described and there is a discussion of the applications of the approach. Consideration is given of the advantages and disadvantages of this technique and suggestions are made for future work in the area. A new learning algorithm based on Taguchi methods is also described. The report concludes that the method of incremental growth is a useful and powerful technique for defining neural network structures and is more efficient than its alternatives. Recommendations are also made with regard to the types of network to which this approach is best suited. Finally, the report contains a discussion of two important aspects of Genetic or Evolutionary techniques related to the above. These are Modular networks (and their synthesis) and the functionality of the network itself

    A Study in Image Watermarking Schemes using Neural Networks

    Full text link
    The digital watermarking technique, an effective way to protect image, has become the research focus on neural network. The purpose of this paper is to provide a brief study on broad theories and discuss the different types of neural networks for image watermarking. Most of the research interest image watermarking based on neural network in discrete wavelet transform or discrete cosine transform. Generally image watermarking based on neural network to solve the problem on to reduce the error, improve the rate of the learning, achieves goods imperceptibility and robustness. It will be useful for researches to implement effective image watermarking by using neural network

    Training a Hopfield Variational Autoencoder with Equilibrium Propagation

    Full text link
    On dedicated analog hardware, equilibrium propagation is an energy-efficient alternative to backpropagation. In spite of its theoretical guarantees, its application in the AI domain remains limited to the discriminative setting. Meanwhile, despite its high computational demands, generative AI is on the rise. In this paper, we demonstrate the application of Equilibrium Propagation in training a variational autoencoder (VAE) for generative modeling. Leveraging the symmetric nature of Hopfield networks, we propose using a single model to serve as both the encoder and decoder which could effectively halve the required chip size for VAE implementations, paving the way for more efficient analog hardware configurations.Comment: Associative Memory & Hopfield Networks in 2023 (NeurIPS 2023 workshop
    • …
    corecore