24 research outputs found

    Learning and inference with Wasserstein metrics

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 131-143).This thesis develops new approaches for three problems in machine learning, using tools from the study of optimal transport (or Wasserstein) distances between probability distributions. Optimal transport distances capture an intuitive notion of similarity between distributions, by incorporating the underlying geometry of the domain of the distributions. Despite their intuitive appeal, optimal transport distances are often difficult to apply in practice, as computing them requires solving a costly optimization problem. In each setting studied here, we describe a numerical method that overcomes this computational bottleneck and enables scaling to real data. In the first part, we consider the problem of multi-output learning in the presence of a metric on the output domain. We develop a loss function that measures the Wasserstein distance between the prediction and ground truth, and describe an efficient learning algorithm based on entropic regularization of the optimal transport problem. We additionally propose a novel extension of the Wasserstein distance from probability measures to unnormalized measures, which is applicable in settings where the ground truth is not naturally expressed as a probability distribution. We show statistical learning bounds for both the Wasserstein loss and its unnormalized counterpart. The Wasserstein loss can encourage smoothness of the predictions with respect to a chosen metric on the output space. We demonstrate this property on a real-data image tagging problem, outperforming a baseline that doesn't use the metric. In the second part, we consider the probabilistic inference problem for diffusion processes. Such processes model a variety of stochastic phenomena and appear often in continuous-time state space models. Exact inference for diffusion processes is generally intractable. In this work, we describe a novel approximate inference method, which is based on a characterization of the diffusion as following a gradient flow in a space of probability densities endowed with a Wasserstein metric. Existing methods for computing this Wasserstein gradient flow rely on discretizing the underlying domain of the diffusion, prohibiting their application to problems in more than several dimensions. In the current work, we propose a novel algorithm for computing a Wasserstein gradient flow that operates directly in a space of continuous functions, free of any underlying mesh. We apply our approximate gradient flow to the problem of filtering a diffusion, showing superior performance where standard filters struggle. Finally, we study the ecological inference problem, which is that of reasoning from aggregate measurements of a population to inferences about the individual behaviors of its members. This problem arises often when dealing with data from economics and political sciences, such as when attempting to infer the demographic breakdown of votes for each political party, given only the aggregate demographic and vote counts separately. Ecological inference is generally ill-posed, and requires prior information to distinguish a unique solution. We propose a novel, general framework for ecological inference that allows for a variety of priors and enables efficient computation of the most probable solution. Unlike previous methods, which rely on Monte Carlo estimates of the posterior, our inference procedure uses an efficient fixed point iteration that is linearly convergent. Given suitable prior information, our method can achieve more accurate inferences than existing methods. We additionally explore a sampling algorithm for estimating credible regions.by Charles Frogner.Ph. D

    Unsupervised Discovery and Representation of Subspace Trends in Massive Biomedical Datasets

    Get PDF
    The goal of this dissertation is to develop unsupervised algorithms for discovering previously unknown subspace trends in massive multivariate biomedical data sets without the benefit of prior information. A subspace trend is a sustained pattern of gradual/progressive changes within an unknown subset of feature dimensions. A fundamental challenge to subspace trend discovery is the presence of irrelevant data dimensions, noise, outliers, and confusion from multiple subspace trends driven by independent factors that are mixed in with each other. These factors can obscure the trends in traditional dimension reduction and projection based data visualizations. To overcome these limitations, we propose a novel graph-theoretic neighborhood similarity measure for sensing concordant progressive changes across data dimensions. Using this measure, we present an unsupervised algorithm for trend-relevant feature selection and visualization. Additionally, we propose to use an efficient online density-based representation to make the algorithm scalable for massive datasets. The representation not only assists in trend discovery, but also in cluster detection including rare populations. Our method has been successfully applied to diverse synthetic and real-world biomedical datasets, such as gene expression microarray and arbor morphology of neurons and microglia in brain tissue. Derived representations revealed biologically meaningful hidden subspace trend(s) that were obscured by irrelevant features and noise. Although our applications are mostly from the biomedical domain, the proposed algorithm is broadly applicable to exploratory analysis of high-dimensional data including visualization, hypothesis generation, knowledge discovery, and prediction in diverse other applications.Electrical and Computer Engineering, Department o

    Matching sets of features for efficient retrieval and recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 145-153).In numerous domains it is useful to represent a single example by the collection of local features or parts that comprise it. In computer vision in particular, local image features are a powerful way to describe images of objects and scenes. Their stability under variable image conditions is critical for success in a wide range of recognition and retrieval applications. However, many conventional similarity measures and machine learning algorithms assume vector inputs. Comparing and learning from images represented by sets of local features is therefore challenging, since each set may vary in cardinality and its elements lack a meaningful ordering. In this thesis I present computationally efficient techniques to handle comparisons, learning, and indexing with examples represented by sets of features. The primary goal of this research is to design and demonstrate algorithms that can effectively accommodate this useful representation in a way that scales with both the representation size as well as the number of images available for indexing or learning. I introduce the pyramid match algorithm, which efficiently forms an implicit partial matching between two sets of feature vectors.(cont.) The matching has a linear time complexity, naturally forms a Mercer kernel, and is robust to clutter or outlier features, a critical advantage for handling images with variable backgrounds, occlusions, and viewpoint changes. I provide bounds on the expected error relative to the optimal partial matching. For very large databases, even extremely efficient pairwise comparisons may not offer adequately responsive query times. I show how to perform sub-linear time retrievals under the matching measure with randomized hashing techniques, even when input sets have varying numbers of features. My results are focused on several important vision tasks, including applications to content-based image retrieval, discriminative classification for object recognition, kernel regression, and unsupervised learning of categories. I show how the dramatic increase in performance enables accurate and flexible image comparisons to be made on large-scale data sets, and removes the need to artificially limit the number of local descriptions used per image when learning visual categories.by Kristen Lorraine Grauman.Ph.D

    A Survey of Natural Language Generation

    Full text link
    This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.Comment: Accepted by ACM Computing Survey (CSUR) 202

    Deep Interpretability Methods for Neuroimaging

    Get PDF
    Brain dynamics are highly complex and yet hold the key to understanding brain function and dysfunction. The dynamics captured by resting-state functional magnetic resonance imaging data are noisy, high-dimensional, and not readily interpretable. The typical approach of reducing this data to low-dimensional features and focusing on the most predictive features comes with strong assumptions and can miss essential aspects of the underlying dynamics. In contrast, introspection of discriminatively trained deep learning models may uncover disorder-relevant elements of the signal at the level of individual time points and spatial locations. Nevertheless, the difficulty of reliable training on high-dimensional but small-sample datasets and the unclear relevance of the resulting predictive markers prevent the widespread use of deep learning in functional neuroimaging. In this dissertation, we address these challenges by proposing a deep learning framework to learn from high-dimensional dynamical data while maintaining stable, ecologically valid interpretations. The developed model is pre-trainable and alleviates the need to collect an enormous amount of neuroimaging samples to achieve optimal training. We also provide a quantitative validation module, Retain and Retrain (RAR), that can objectively verify the higher predictability of the dynamics learned by the model. Results successfully demonstrate that the proposed framework enables learning the fMRI dynamics directly from small data and capturing compact, stable interpretations of features predictive of function and dysfunction. We also comprehensively reviewed deep interpretability literature in the neuroimaging domain. Our analysis reveals the ongoing trend of interpretability practices in neuroimaging studies and identifies the gaps that should be addressed for effective human-machine collaboration in this domain. This dissertation also proposed a post hoc interpretability method, Geometrically Guided Integrated Gradients (GGIG), that leverages geometric properties of the functional space as learned by a deep learning model. With extensive experiments and quantitative validation on MNIST and ImageNet datasets, we demonstrate that GGIG outperforms integrated gradients (IG), which is considered to be a popular interpretability method in the literature. As GGIG is able to identify the contours of the discriminative regions in the input space, GGIG may be useful in various medical imaging tasks where fine-grained localization as an explanation is beneficial

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Semantically enhanced document clustering

    Get PDF
    This thesis advocates the view that traditional document clustering could be significantly improved by representing documents at different levels of abstraction at which the similarity between documents is considered. The improvement is with regard to the alignment of the clustering solutions to human judgement. The proposed methodology employs semantics with which the conceptual similarity be-tween documents is measured. The goal is to design algorithms which implement the meth-odology, in order to solve the following research problems: (i) how to obtain multiple deter-ministic clustering solutions; (ii) how to produce coherent large-scale clustering solutions across domains, regardless of the number of clusters; (iii) how to obtain clustering solutions which align well with human judgement; and (iv) how to produce specific clustering solu-tions from the perspective of the user’s understanding for the domain of interest. The developed clustering methodology enhances separation between and improved coher-ence within clusters generated across several domains by using levels of abstraction. The methodology employs a semantically enhanced text stemmer, which is developed for the pur-pose of producing coherent clustering, and a concept index that provides generic document representation and reduced dimensionality of document representation. These characteristics of the methodology enable addressing the limitations of traditional text document clustering by employing computationally expensive similarity measures such as Earth Mover’s Distance (EMD), which theoretically aligns the clustering solutions closer to human judgement. A threshold for similarity between documents that employs many-to-many similarity matching is proposed and experimentally proven to benefit the traditional clustering algorithms in pro-ducing clustering solutions aligned closer to human judgement. 4 The experimental validation demonstrates the scalability of the semantically enhanced document clustering methodology and supports the contributions: (i) multiple deterministic clustering solutions and different viewpoints to a document collection are obtained; (ii) the use of concept indexing as a document representation technique in the domain of document clustering is beneficial for producing coherent clusters across domains; (ii) SETS algorithm provides an improved text normalisation by using external knowledge; (iv) a method for measuring similarity between documents on a large scale by using many-to-many matching; (v) a semantically enhanced methodology that employs levels of abstraction that correspond to a user’s background, understanding and motivation. The achieved results will benefit the research community working in the area of document management, information retrieval, data mining and knowledge management

    Data Mining

    Get PDF
    The availability of big data due to computerization and automation has generated an urgent need for new techniques to analyze and convert big data into useful information and knowledge. Data mining is a promising and leading-edge technology for mining large volumes of data, looking for hidden information, and aiding knowledge discovery. It can be used for characterization, classification, discrimination, anomaly detection, association, clustering, trend or evolution prediction, and much more in fields such as science, medicine, economics, engineering, computers, and even business analytics. This book presents basic concepts, ideas, and research in data mining
    corecore