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WASSERSTEIN S-DIVERSITY METRICS OVER GRAPHS:
DERIVATION, EFFICIENT COMPUTATION AND APPLICATIONS



1 GENERAL INTRODUCTION

"No discovery of mine has made, or is likely to make, di-
rectly or indirectly, for good or ill, the least difference to the

amenity of the world"” - G.H Hardy.

The Hardy-Weinberg principle states that in the absence of external evolutionary influ-
ences, gene frequencies in a population of organisms will remain constant from one gener-
ation to the next. Hardy related the mathematical demonstration of this fact in the brief
1908 paper ‘Mendelian proportions in a mized population’ |44]. As a student of the history
of mathematics is already aware, Hardy was not a biologist but rather a famous English
number theorist and great champion of the pursuit of mathematics for its own sake. He
saw his result in genetics as a triviality, but it was certainly this author’s first exposure
to the work of the man. It came as some great shock later in life to learn that the Hardy
of the Hardy-Weinberg principle was precisely the same Hardy that had collaborated with
Ramanujan and authored ‘A Mathematician’s Apology,” from which the above quote is
taken. We note that an understanding of the nature of genetics has transformed both the
world’s understanding of biology as well as its applications. As Hardy’s discovery of this
principle resides in every introductory discussion of the subject, we suspect his quote to

be in error.

The above anecdote highlights the power of bringing a mathematician’s expertise to ques-
tions arising in biology. More specifically, in bringing that expertise to those questions
related to the genetic information contained in organisms or groups of organisms. That is
the precise purpose of this document. In the following we provide a mathematical foun-
dation to usage of the Wasserstein metric, a metric on probability measures over a metric

space, in the context of S-diversity metrics for microbial ecology.



Summary of Content

Supposedly, the problem underlying gene frequency was related to Hardy while in the midst
of a game of cricket. We are not so fortunate as to be considering questions so succinctly
expressed, and so find that understanding the analytic tools in microbial ecology requires
the survey of a great deal of material related to biology, such as the context in which
B-diversity metrics arise and the needs of biologists in their utilization and analysis. We
therefore dedicate the bulk of Section 1.1.1 to this information, assuming no biological

background on the part of our audience.

On the other hand, given that this is a work of mathematics for a mathematically-trained
audience, we do assume knowledge of the foundations of probability, analysis and linear
algebra used throughout. Thus we spend Section 1.2 relating the specific theory of the
Wasserstein metric and the mathematical context in which is arises. This includes a survey
of its use in other, nonbiological, applications, from which we draw inspiration for new uses.
We include a summary of tools for the computation of the Wasserstein metric in the finite

setting to which we later apply it.

In Section 1.3, in preparation for Sections 2 and 3, we relate common results in the theory
of graphs, the metric spaces over which we will be considering the Wasserstein metric.
This is in no small part borne out of a desire to establish a common set of notation
and definitions for the field. In particular, we introduce and discuss de Bruijn graphs, a

mathematical structure utilized in genomics.

In Section 2 we proceed to demonstrate our main results. We prove in Section 2.2.1 an
alternate characterization for the Wasserstein metric between relative abundances assigned
to a phylogenetic tree, and utilize this to demonstrate a useful invariant behind the UniFrac
distance, a well-used S-diversity metric. We produce in Section 2.2.4 a constructive proof

that the UniFrac distance is the 1-Wasserstein metric, and adapt this proof to a highly



4
efficient and rapid algorithm for computing the UniFrac metric between relative abun-
dances. We demonstrate in Section 2.3 how casting the ordination technique known as
Double Principal Coordinate Analysis as the Euclidean distance between images of the
action of linear transformation allows for its efficient computation and comparison to re-
lated metrics. Utilizing the mathematical framework we have established above, in Section
2.4 we derive formulations of the probability density function of the UniFrac metric under
the assumption of Dirichlet distributed relative abundances, a distributional assumption
inspired by biologists use of the Dirichlet-Multinomial distribution in modeling metage-
nomic datasets. For the biologically-minded, we demonstrate in Section 2.5 the utility of

our results on datasets, both real world and synthetic.

Inspired by the utility of the Wasserstein metric, both in the above applications as well as
the field of image analysis, in Section 3 we introduce a novel metric for probability distri-
butions defined on genomic sequence datasets utilizing the Wasserstein metric on vertex-
weighted de Bruijn graphs. In Sections 3.2.2 and 3.2.3 we adapt approximation algorithms
for the computation of the Wasserstein metric, one heuristic algorithm known classically
as the minimum cost method and another which computes an entropically-regularized ver-
sion of the Wasserstein metric. We then apply these algorithms to metagenomic datasets
in Section 3.3 and compare this reference-free metric on metagenomes against others used
commonly in biology. We benchmark our heursitic approximation against other solution
algorithms for the Wasserstein metric in Section 3.3.1 before discussing potential sources

of improvement and future research.

We conclude in Section 4 with a summary of the results we have demonstrated and a brief

outline of potential future work.



1.1 Background Material for Microbial Ecology

1.1.1 Introduction to Microbial Ecology

Microbes are the dominant form of life on Earth. Constituting 350 to 550 billion tons of
biomass [123], microbial life is pervasive in every ecosystem science has ever investigated.
They have been found everywhere from the bottom of the sea-floor [24] to the upper
reaches of the atmosphere [106]. As many as 1000 microbial species exist in the human
body at any moment [117], the composition and distribution of which has been implicated
in diseases as varied as cancer [57] and depression [51]. Microbial life shapes the geology
and atmosphere of our planet [17] and is so ubiquitous and resilient on Earth that our best

hopes for finding life elsewhere in our Solar system lie in microbes [24].

The search for new microbial diversity does not require looking so far afield though. Esti-
mates for the number of distinct microbial species on Earth extend to 1 trillion, of which
99.999% have not been identified [66]. This lack of understanding of microbes is due in no

small part to their invisibility outside of the scope of the tools of science.

Hooke and Leeuwenhoek’s use of the microscope in Micrographia (1665) transformed our
understanding of biology [36] by showing that there was a invisible world of life around us.
In recent years, a new set of tools has led to a new transformation in our understanding of
the microbial world, that of next-generation or high-throughput sequencing technologies
[99]. Recent advances in technology have made possible the rapid sequencing of the genetic

material from both individual species as well as entire microbial communities.

But these new tools come packaged with new analytic and computational challenges.
Roughly speaking, the genetic information in a single human being is encoded in a string
of 6.4 billion letters from the alphabet {A, C, T, G} [58]. The first instance of determining
that information ended in 2001 after more than 13 years of work and an estimated cost of

1 to 3 billion dollars [22]. At the present moment, an Illumina X10 can sequence 18,000
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human genomes per year at a cost of roughly $1000 per genome [40]. Managing and
interpreting that volume of information demands new mathematical and computational

solutions.

In the following section we discuss fundamentals of metagenomics and phylogenetics so as
to better understand the analytic tools used in these fields. We discuss the measures of
community diversity used by biologists and the manner in which biologists interpret their
use, with an eye toward understanding the needs of biologists so as to motivate both new

analytic tools as well as useful improvements to those tools currently employed.

1.1.2 Overview of the Foundations of Metagenomics

The language of life is written in the four letters {A,T,C,G}. These represent the 4
nucleotides adenine, thymine, cytosine and guanine which form the heritable, information
encoding elements of deoxyribonucleic acid (DNA) or what is known as genetic material.
These nucleotides are known as base pairs (bps), as each of cytosine and adenine only pair
with guanine and thymine, respectively, in the double-stranded structure of DNA. A gene is
a sequence of these base pairs which contains information for the construction of a protein.
The expression of genes, that is the construction of proteins, is mediated by ribonucleic
acid (RNA), itself a molecule similar to DNA but with the information encoding alphabet

{A,U,C, G}, representing adenine, uracil, cytosine and guanine, respectively.

While genes are very important, they are not the entire story of our genetic material.
Or even much of the story, as it turns out. A human being has an estimated 20,000
genes constituting less than 3% of the totality of our genetic material [21]. We call those
segments of the genetic material in an organism which contain genes coding regions and
the remainder noncoding regions. While the exact purpose of the noncoding regions is not
clear, it is clear than it is not ‘junk DNA’ as was once thought. Indeed, more than 80% of

these noncoding regions have now been associated with a variety of biological processes,



mostly related to gene regulation and expression [21].

The totality of the genetic material in an organism is referred to as its genome. While
there is necessarily some variation between genomes for individuals in a species, the vast
majority of the information between genomes is conserved among members of a species.
As an example, total genetic variation in human beings is estimated to be 0.6% of the
total genome [20]. The study of the totality of the genetic information in an organism or

species is known as genomics, in contrast to the study of the genes known as genetics.

The study of a microbial genome begins with the determination of its contents, that is
by sequencing of the genome [26]. The sequencing of a single genome starts by isolating
and replicating genetic material. In the case of microbial life, this involves culturing the
organism, that is, growing the organism in a lab. The methods which follow vary and
evolved in a sequence of ‘generations’ [105|, the first of which was Sanger sequencing.
Sanger sequencing is a ‘chain-terminating’ method which produces continuous fragments
of translated DNA, known as reads, of length 500 to 1000 bps long. The technologies which
followed are generally known as ‘sequencing by synthesis’ methods, and include techniques
such as pyrosequencing. These methods produce reads 50 to 300 bps in length but at a
speed much faster than that of Sanger sequencing. The current generation of sequencing
technology is known as ‘large fragment single molecule’ sequencing, which produces very
long reads, up to 30,000 to 50,000 bps long, but with higher error rates. Each of this tech-
nologies still find application today to the meet the various needs of researchers regarding

cost, speed and accuracy [105].

After sequencing, a researcher is left with a large number of relatively small reads, not a
genome. Thus begins the assembly problem [26], reassembling the reads into larger pieces,
known as contigs, and then into yet larger pieces, known as scaffolds, before merging
into whole genomes. Here is where the necessity of mathematical tools begins. As noted

previously, genomes can be billions of base pairs long, and sequencing technologies produce



8
reads of lengths on the order of 100s or 1000s of base pairs long. Note that since we are
not sequencing the entirety of the genome in one piece, redundancy in our gathering of
genetic information is necessary. The coverage of a sequencing is the expected number of
times any individual base pair is transcribed. The coverage required for accurate assembly
varies by genome length and read length, but is generally 30 to 100 times [26]. Additional
coverage also helps address the error inherent in sequencing technologies, which vary by

technology but are generally on the order of 0.1-1.0% [39].

Solutions to the assembly problem are divided into two principle approaches, based on
the available information. Ideally, someone has already assembled a genome for a related
organism. We can then use this reference genome as a template with which to reassemble
our genome [63]. Alternately, and in at least one case necessarily, there is no reference
genome with which to guide our assembly, and thus we are stuck with the problem of
de novo assembly. That is, of reassembling our reads without a priori knowledge of their

connectivity.

Mathematical techniques with which to solve the de novo assembly problem fall into three
categories [75], overlap-layout-consensus (OLC) methods, de Bruijn graph methods and
greedy algorithms. We defer a more thorough treatment of this subject to Section 1.3.5,
but briefly, OLC and de Bruijn methods represent either reads, or segments of reads,
respectively, as vertices in a graph such that edges in the graph correspond to potential
assemblies of those reads. A full assembly of a genome, or subsection of a genome, is then
a path which traverses each edge of that graph. Greedy algorithms predate the use of de
Bruijn and OLC methods and are generally less efficient [75]. If the de Bruijn and OLC
methods seek a globally optimal solution for assembly, by asking for a path which best
assembles all of the reads, greedy algorithms ask for locally optimal assemblies, by taking
a read and looking for the best extension of the read by matching overlap between reads.

This extension process continues for as long as possible, and then these assembled pieces



of genome are compared against each other for consensus and thus assembly.

We have described the beginnings of a genomics workflow so as to give context to the
challenges that face the metagenomics researcher. Metagenomics studies the totality of
the genetic material in an entire community of organisms present in an environmental
sample. So now suppose we have gathered a representative environmental sample from a
microbial community, be it from the soil [78], the ocean [126] or the human body [117].
Following the process involved in determining the genome of an individual microorganism,
we ought to isolate an individual species’ genetic material. Unfortunately, this task is
generally not possible, as an estimated more than 90% of species are unculturable under

lab conditions [110].

To address this complication, researchers generally proceed down one of two paths of
metagenomic analysis. The first is whole genome shotgun sequencing in which the com-
bined genetic material is sequenced all at once, using any of the technologies described
above [96, 102|. The other common avenue for metagenomic analysis is 165 rTRNA se-
quencing [56, 122]. The 16S ribosomal RNA (rRNA) is a small component of ribosomal
RNA, roughly 1500 base pairs in length, which has been shown to be highly conserved
in structure and function, both over time and between species, but which also contains
highly variable regions. These conserved sections make it a reliable ‘molecular clock’ [128].
At the same time, highly variable regions allow for species identification [91] which allows
classification and analysis of 165 rRNA gene to be used for the reconstruction of phylo-
genies as similarities in 16S rRNA sequences have been shown to be positively correlated
[82] to similarities in phenotypes in microbial genomes. We defer a more complete dis-
cussion of phylogenetics to Section 1.1.3, but, briefly, a phylogeny is a description of the
interrelated evolutionary history of a group of organisms. This analysis is made possible
by amplicon sequencing [122], in which polymerase chain reactions (PCR) are used to se-

lectively duplicate a segment of genetic material, in this case the 16S rRNA gene, prior to
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sequencing.

There are challenges and benefits to each of these methods. In whole genome shotgun anal-
ysis the assembly problem is more complicated due to a variety of factors [83, 46]. Microbial
species do not occur in uniform abundances, and, as such, there arises nonuniform coverage
in sequencing between species. Additionally, sections of repeated genetic information both
inside a given genome and between genomes make the assembly question ill-posed. There
may be many potential assemblies of sequence reads which ‘jump’ genomes, wherein it
becomes unclear how to reassemble genomes which share conserved genetic information.
Finally, many highly interrelated species may exist together. Small variations between
genomes for such species make agsembly more challenging. Current metagenomic assem-
bly techniques rely on extensions of the ideas outlined above, optimized for the size and
complexity of metagenomes [121]. These factors make whole genome shotgun analysis more
costly and time-intensive than 16S rRNA sequencing. Whole genome shotgun sequencing
does allow for the potential identification of biological function through gene identification,
something not possible in 16S rRNA sequencing. As whole genome shotgun sequencing
utilizes a greater amount of genetic information, it has greater resolving power and is thus

better able to distinguish highly similar species.

Having briefly described the field metagenomics and the methods by which researchers
explore microbial communities, we turn to a more detailed discussion of phylogenetics and

the tools used to study the evolutionary history and interrelatedness of biological species.

1.1.3 Definitions and Methods Related to Phylogenetics

As noted in our discussion of 165 rRNA sequencing, one of the principal uses of metage-
nomic analysis is the construction and understanding of phylogenies or phylogenetic trees,
a concept we define now. Phylogenetics is the study of the shared evolutionary history and

interrelatedness of a group of organisms.
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Definition 1.1.1 (Phylogenetic tree). A phylogenetic tree or phylogeny is a representation
of the pattern of evolution and the sequence of common ancestors for a species or group

of species [130].

A variety of essentially interchangeable terms are used in describing such groupings of
species in the context of microbial ecology, such a taron or operational taxonomic unit

(OTU). Our language will reflect whatever is most common in a given application.

In a phylogenetic tree vertices represent species, either extant or inferred. Extant species
are represented as leaves. A speciation event is a bifurcation at an internal node of the
tree, representing the beginning of a new evolutionary lineage. A clade is the group of all
species which can trace their lineage back to a single speciation event, and thus a single
common ancestor. Traveling back up the tree from the leaves, we travel backwards in time.
The lengths of the edges in a phylogenetic tree generally represent the expected number

of substitutions at each location in the genome of a species [125].

In the case that the rate of substitutions is constant either over time or between lineages,
we say that the molecular clock holds and in this case the number of substitutions can be
used as a surrogate for measurements of time. In this case, we can use this as a means
by which to infer a root or last common ancestor of a group of species. We call such
trees rooted. Figure 1.1 depicts a model rooted phylogenetic tree for a group of organisms.
Phylogenetic tree can certainly be much more complicated that this, containing far more
OTUs and evolutionary relationships. Figure 1.2 depicts a phylogenetic tree containing

approximately 3000 species, constructed from 16S rRNA data.



FIGURE 1.1: A model rooted phylogenetic tree depicting extant species A-E,

in which A-B belong to a clade whose most recent common ancestor is X.

FIGURE 1.2: A phylogenetic tree depicting approximately 3000 species from

the spectrum of Earth’s biology. Source: David M. Hillis, Derrick Zwickl, and

Robin Gutell, University of Texas

12
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Evolutionary relationships between groups of organisms are not directly observable, and so
phylogenetic trees must be inferred. The vast amount of genomic sequence data now avail-
able is a tremendous source of information for determining the evolutionary relationships
between organisms. In particular, as mentioned in Section 1.1.2, 16S rRNA sequencing
has been extremely successful in the inference of phylogenetic trees for microbial life [131]
due to its stability and ubiquity among species, making it a reliable molecular clock. The
two most common groups of methods for reconstructing phylogenetic trees from sequence
data are distance-matrix methods and character-based methods [130]. Distance-matrix

methods are pertinent to future discussion, so we briefly outline a few such methods here.

In distance-matrix methods, a metric on aligned sequences, that is, sequences in which
areas of conserved function have been identified, are used to generate a matrix of all
pairwise distances between genetic sequences, generally using some Markov model as a
basis for the metric [86]. That distance-matrix is then used to generate an optimal tree by

methods such as least squares, minimum evolution and neighbor-joining.

Letting D be such a matrix of observed pairwise distances between sequences, let, for any
given phylogenetic tree, D be a matrix of pairwise distances derived from an assumed
molecular clock in the tree. Least squares seeks a tree which minimizes the sum of the
squares of differences between the expected molecular clock distance in the tree and the

observed distance between sequences. That is it seeks a tree such that

Q=> > (D(i,j) —D(ij))
v g
is as small as possible. Minimal evolution seeks a tree in which branch lengths are minimal,

again deriving distances from an expected molecular clock.

The most popular method [130] is neighbor-joining [34]. Neighbor-joining begins with a

graph in which all taxa are joined to a common node. It then chooses a pair of taxa ¢ and
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7 which minimizes the quantity

Q= (r—2)D(,5) = > (D k) + D(, k)

k

where r is the number of taxa adjacent to our initial node. The taxa i and j are then
agglomerated into a common taxa descending from an inserted additional taxa u. Distances

from u to each of ¢ and j are then computed via the formula

D(i,u) = % - D(i, ) + M > _(D(i,k) = D(j. k))
k

The taxa ¢ and j are then removed from the distance matrix and list of taxa, being replace

by w. Distances from w to the remaining taxa k are computed via the formula
1 . . 1 . .
D(u,k) = 5[D(i, k) - D(j, )] + 5[D(, k) ~ DG, w)].

The algorithm terminates when all of the taxa we began with are resolved from the initial

node.

The construction of phylogenetic trees highlight the utility of metrics between genomes.
We see that, by the very notion of a species or OTU in a genetic context, groups of
species whose genomes are more related are defined to be more evolutionarily related. We
turn from a discussion of how species are the same, that is how they are interrelated, to
a discussion of the ways in which biologists define groups of species or communities of

organisms to be different. That is, metrics of community diversity.
1.1.4 Survey of Methods in Community Dissimilarity Measurements

Omne of the chief applications of metagenomic analysis via high-throughput sequencing
is the ability to conduct large-scale surveys of the spatiotemporal diversity of microbial
communities [88]. The ability to reconstruct phylogenies for communities of organisms
from a specific location, at a specific time, via analysis of 165 rRNA or whole genome

shotgun datasets gives researchers the ability to understand the phylogenetic composition
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and relative abundance of species in a community and how those quantities affect and are

affected by environmental factors.

Ecologists define measures of the richness of an ecological community in terms of «-
diversity, the site specific composition of biological communities, S-diversity, the variation
in species composition between sites in an environment, and ~y-diversity, the variability
found in an entire ecosystem [124]. Metagenomics has given ecologists access to datasets
describing the richness found in hundreds [69] and thousands [16] of environmental sam-
ples, which has led to the increased importance and application of analytic measures of

such diversity.

Our chief interest lies in measures of S-diversity, but we will briefly touch on measures of
a-diversity for context. Before continuing our discussion, we define an important term for

casting ecological questions in a mathematical context, that of relative abundance.

Definition 1.1.2 (Relative abundance). Given a environmental sample A, let S4 denote
the set of species or OTUs present in A. For each i € Sy let n; denote the number of
specimens of 7 in A. Then the relative abundance p4(i) of i in A is

Palt) ===~

ZjESA nj
and the relative abundance of A is the vector p 4, indexed in some order. When comparing
samples A and B, we will generally take the index set to be the species or OTUs found in

the union of A and B.

The simplest measure of a-diversity is species richness |71], which is merely the number
of species or OTUs (see Section 1.1.3) present in a community. In Whittaker’s initial
definition of the term «-diversity he takes this as “the most generally appropriate” [124]
formulation, though it takes into account no information on species abundance. Measures
of a-diversity which account for species abundances generally take the form of a reciprocal

weighted mean, or some function of that quantity, as follows.
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Definition 1.1.3 (order ¢ diversity). For a community of S species, where species i € S

has relative abundance p(i), the order q diversity 1D is

iD= 1/ q_l/; pa(i).

Taking ¢ = 0 we get species richness, ¢ = 2 yields what is known as the Simpson indez,
taking ¢ = 1 and applying the natural logarithm yields the Shannon indez. Each correlates

with an effective number of species [115].

On the other hand, S-diversity measures are far more varied [88, 7], given the wide variety
of ways one might construct for comparing things which are not the same. Measures of
B-diversity can be described as quantitative or qualitative, and phylogenetic or nonphylo-
genetic [80]. Phylogenetic measures account for the interrelatedness of species in defining
differences between communities, inferred from some phylogeny, while nonphylogenetic do
not. Quantitative measures account for the difference in relative abundance in species
or OTUs between communities, while qualitative measure account only for the absence or
presence of species or OTUs. In many cases [88], the same analytic tools can be considered
in each context by recasting a dataset of abundances as binary absence-presence values
or a dataset of absence-presence data as proportions of the total species accounted. We

follow the literature in describing the most common applications of these tools.

Nonphylogenetic examples of S-diversity measures include Bray-Curtis dissimilarity [11],
Jaccard Index [98], Sgrenson index, modified Gower measure 3|, Hellinger Distance (see

Definition 1.2.5) and x? distance (see Defintion 1.2.6). We describe each briefly.

Definition 1.1.4 (Bray-Curtis). The Bray-Curtis dissimilarity BCa p between sample

specimen counts A and B is defined as

2|AN B

BCap=1— 5,
|A| + | B|

where the intersection |A N B| above is defined as the sum over all species present of the

minimum of the number of specimens counted from each sample.
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Definition 1.1.5 (Jaccard). The Jaccard index Ja p between samples A and B is

_ ‘SAQSB|
|SA| + ‘SB| — ‘SA ﬂSB|

Ja.B
where S4, Sp denote the set of species or OTUs recorded in each sample.

Definition 1.1.6 (Sgrenson). The Sgrenson index Sa p between samples A and B is

o |SA ﬂSB‘

S R s e ol I
AB IS+ 1S5

using the notation of Definition 1.1.5.

Note that the Jaccard and Sgrenson indices are qualitative measures of g-diversity which
adhere to the relationship Sa g < Ja,p, while Bray-Curtis is the quantitative version of

the Sgrenson index.

Definition 1.1.7 (Modified Gower). Define [4 by

logyo(z) +1 r#0
L (z) =
0 z=0.

Let n4,p denote the number of species or OTUs found in either of a pair of samples A and
B. Then the Modified Gower MG 4 p measure between samples A and B with relative

abundances p4 and pp is

MGap = >t ‘l+(p?z(j);_ I+ (pp(i))]

Hellinger and x? are described in Section 1.2.4 and are computed on vectors of relative

abundances.

Phylogenetic examples of S-diversity measures include community distance, community

distance-nearest taxon distance [112], PhyloSor [13] and UniFrac [68, 67].

In the following we assume familiarity with the material related to graph theory detailed

in Section 1.3. For microbial community samples A and B let T' = (V, E, p) be a rooted
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phylogenetic tree which has been constructed for the combined communities (see Section
1.1.3). Let [ be a weight function for the edges of T'. Let dp be the induced path length
metric in T between species or OTUs in A and B. Let p4,pp be the vectors of relative
abundance. Let S4,Sp be the species or OTUs present in each of A and B, let S4 p the
species or OTUs present in their union, and let n4,np and n4 g the number of elements

in each set.

Definition 1.1.8 (Community distance). The community distance CD 4 p between sam-

ples A and B is defined as

CDan= 0 30 3 drlind)

n
A 1€S4 jJESB

Definition 1.1.9 (Community Distance-Nearest Taxon). The community distance-nearest

taron CDNT4 g between samples A and B is defined as

1 s .
CDNTyp = -~ Z min{j € Sg|dr(i,j)}.
€S

Each of the above is qualitative as described but can be adapted to a quantitative measure

by weighting the summands involved by their corresponding relative abundances.

Our next measure of S-diversity was given by Rao [97] in an attempt to give a unifying
mathematical framework similar to that of Defintion 1.1.3 for measures of diversity between

communities.

Definition 1.1.10 (Diversity Index). Let d be any symmetric measure of difference be-
tween species or OTUs. Then for samples X and Y containing species Sx and Sy with

relative abundance vectors py and py we define the diversity index hxy to be

hxy =Y Y px(i)py()d(i, ).

1€ESx JESY

Definition 1.1.11 (Dissimilarity Index). The dissimilarity index Dj between samples A

and B for a given measure of difference d is given by

1
Dh(A,B) = hA,B — 5 (hA7A + hB,B)«
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The following terminology will be useful in the definition of the following phylogenetic
[B-diversity measures. We say an edge e in T belongs to sample A in the case that H NSy
is nonempty while H N Sp is empty for the branch H of T' (Definition 1.3.8) defined by the
deletion of e. We say an edge belongs to both if H NS4 p is nonempty and say it belongs

neither otherwise.

Definition 1.1.12 (PhyloSor). Let E4,Ep and E 4 p be the set of edges belonging to A,B
and both, respectively. Then, given our weight function [, the PhylSor PS4 p diversity

measure between A and B is given by

2 : ZEEEA’B l(e)

PS = .
B ZeEEA l(e) + ZeEEB l(e)

Note that PhyloSor is qualitative. It is the phylogenetic application of the idea behind
the Sgrenson index, where species or OTU absence-presence is weighted by evolutionary

distance.

Finally, we discuss UniFrac, a phylogenetic S-diversity measure which has formulations
which are qualitative, unweighted UniFrac, as well as quantitative, weighted UniFrac. We

retain the notation used in the definition of PhyloSor in our description of each.

Definition 1.1.13 (Unweighted UniFrac). Let E4 and Ep be the set of edges belonging
to A and B, respectively. Then the unweighted UniFrac metric U F} p between A and B

is given by

ZeeEA I(e) + ZeeEB I(e)
ZeeEAUEB I(e) .

UFjp =

That is, UniFrac measures the fraction of a phylogeny which is unique to each of the
communities. Figure 1.3 shows the identification of edges belonging uniquely to each of
two samples. We define weighted UniFrac similarly. For an edge e let H, be the branch

defined by e. Let p4, pp be the relative abundances for samples A and B.
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Definition 1.1.14 (Weighted UniFrac). The weighted UniFrac metric UF4 p between
samples A and B is given by

UFap=)_U(e)-]| Y (pa(v) —pp(v)l-

eck vEH,

mO

O
EE

Om
Ol

FIGURE 1.3: A depiction of edge identification on a phylogenetic tree T' used
in the computation of UniFrac between samples A and B. The presence of a
species or OTU in sample A is indicated by a red box, that of sample B in

blue. Edges identified with each of A and B are colored correspondingly.

In the example depicted, let the tree be ultrametric (Definition 1.3.5) of depth 3. Suppose
the upper two OTUs terminate in edges of length 1, and thus the length of edges which
belong to sample A is 4. Suppose that the bottom two edges are of length 0.5 and that
these edges belong to a clade which arises from a edge of length 1, so that the edges which
belong to sample B is 2. The edge which contains OTUs from both is then necessarily 1.5

and thus the total length of edges belonging to either is 9. In this case UFjp= 6/9.

While the property of being ultrametric is not necessary in the defintion of Unikrac, in
either its quantitative or qualitative forms, the existence of disparities in branch lengths
yield over-weighting of quickly evolving taxa, that is, those with longer edge lengths [68].

In such cases it may be advisable to compute normalized versions of UniFrac as follows.
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Let dr be the distance function in 7', and define D by

D= ZdT(v,p) ~(Pa(v) + Pp(v)).

veT

Thus D is the weighted average distance between OTUs from A and B to the root p.

Definition 1.1.15 (Normalized UniFrac). Given samples A and B, with UniFrac dis-
tances UF p and UFy p, define the normalized UniFrac distances WZB and UF 4 g by

UFyp=UFY /D and UFsp =UFap/D.

In this section we have addressed a variety of ways in which biologists compare groups
of organisms, in particular the formulation of S-diversity metrics. Each of the metrics
discussed thus far require the construction of an underlying phylogenetic tree in comparing
groups of organisms. We turn next to metrics that do not have this requirement, so-called

reference-free metrics in metagenomics.
1.1.5 Survey of Methods in Reference-free Metagenomic Comparison

The methods for comparing communities of microbial organisms outlined in Section 1.1.4
share one common constraint, they require the determination of precisely which species or
OTUs are present in a sample before making comparisons between communities. A dataset
of sequence reads needs to be transformed into a list of species or OTUs and, hopefully, rel-
ative abundances. This generally requires that those sequences be assembled and aligned.
These are generally referred to as binning methods [73], wherein community composi-
tion and relative abundance are derived from placing contigs into ‘bins’ which have been
assigned to species or OTUs via the use of reference databases. Such methods are power-
ful but suffer from the difficulties related to sequence alignment and assembly described
in Section 1.1.2. Here we describe reference-free methods for genomic and metagenomic

comparison, which do not rely on sequence alignment and assignment to species or OTUs.
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The first of such methods are variations on the notation of factor frequencies. In these
methods an information-theoretic framework is adapted wherein k-mer frequencies (see
Section 1.3.4 for notation and definitions related to theory of words) from sequence reads
are analyzed directly by application of a variety of tools. In the description that follows,
let A be B metagenomic samples and let W4 and Wp be collections of sequence reads

from each, respectively.

The simplest such tool is the dinucleotide odds ratio [54], derived for genomic comparison.

Definition 1.1.16 (Dinucleotide Odds Ratio). Given symbols X and Y, let XY denote

their concatenation. Define the dinucleotide odds ratio pxy to be

_ freqw,(XY)
PXY = rreqw (X) - freqw, (Y)

for each ordered pair (X,Y) from {A,C, T, G}

The 16 dinucleotide odds ratios measure the deviation from uniformly random expectation
of the occurrence of 2-mers, strings of symbols from {A, C, G, T} of length 2, in a genome
based on letter frequency. This discriminant, when applied to genes from a variety of
organisms, has been shown [54, 50] to be a sort of ‘genomic signature’ capable of both

identifying taxa and characterizing the evolutionary distance between taxa.

Applying more robust tools from information theory has led to the use of the Jensen-
Shannon divergence djg (Definition 1.2.4) based upon the Kullback-Leibler divergence.
These methods have been applied successfully to factor frequencies of k-mers as a dis-
tance metric for phylogenetic tree construction in mammals [104] and Hepatitis viruses by
neighbor-joining (See Section 1.1.3 for information related to phylogenetic trees and their

construction).

Sims et al. [104] also explored the ideal range of values for k£ in such metrics, giving

lower and upper bounds as follows, albeit in differing notation. Let G be a collection
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of sequence reads from a genome. They establish lnin = max,en fg(n), where fg is
the complexity function for the set G (Defintion 1.3.11), as the minimum value to achieve
maximum discrimination power for Jensen-Shannon based factor frequency methods. They
empirically approximate the value for a genome of length n as lnin = log,(n), and give
explicit computations for rat mitochondrial genomes (n=16 kBps) and human chromosome
1 (n=230 MBps) as lmin = 7 and lmin = 14, respectively. This lower bound is somewhat
obvious, the discriminating power of a metric only improves as it is able to consider more

distinct features.

Their upper bound is derived as follows. We first extend the idea behind the dinucleotide
odds ratios to more general k-mers. Let ¢ = wa ... w_1) be a word of length (k—2) in the
genetic alphabet. Let p = ws...wy and let s = wy ... w;_1) be words of length (k — 1)
containing i as a prefix and suffix, respectively. Then the expected frequency j(rZ]w of the

k-mer w = wyws ... wy, given the observed (k — 2)-mer and (k — 1)-mer frequencies, is

Freg, = fregs - freay
freg;
Let ﬁak(G) be the vector of expected k-mer frequencies for a genome G, given the
observed frequencies freq*=Y(G) and freq*=?)(G). Then dKL(fv:eqk(G), fred® (@) is a
measure of the additional information gained by considering k-mer frequencies, relative to
the information already contained in the distributions of (k — 1) and (k — 2)-mers. Let €
be small and positive, and set Imax = minpen{n | dKL(ﬁZ]n(G), freq™(G)) > €}. That is,
a measure based in analyzing k-mers stops gaining discriminating power when considering
larger values of k£ no longer garners new information regarding factor frequencies. They
empirically approximate this in their application to phylogenetic tree construction via
neighbor-joining to be the least k£ such that the phylogenetic tree generated ceases to

change. For rat mitochondrial genomes (n=16 kBps) they determined lpax = 14.

An alternate, purely experimental approach, was taken to determining optimal k-mer sizes
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in [129]. Wu et al. analyzed synthetic sequences in which a fixed ‘mother’ sequence was
generated under the assumption of uniform and independent nucleotide distribution and
‘son’ sequences were derived by mutating the mother sequence at each base with fixed
probability p = 0.01,0.02,...,0.99,1.00. Here the goal was to determine which size k-
mer best balanced capturing the similarity transmitted from mother to son with the noise
introduced by mutation. They experimentally derived optimal %k values of 7, 8 and 9
for comparison of sequences of length approximately 700-2500, 2500-5000 and 5000-6100,

respectively.

Having discussed a variety of measures of diversity used in microbial ecology, including
their formulation, scope and parameter values, we turn briefly to their analysis. Fach of
the above returns a number or collection of numbers when used to describe the diverity
observed in differing microbial communities. When used to compare many such samples,
ecologists are faced with many, many such numbers. We next discuss how ecologist give
significance to individual measurements and interpret large collections of pairwise mea-

surements for the purpose of generating hypotheses.

1.1.6 Survey of Techniques in Ecological Data Analysis

As we have stated, the revolution in high-throughput metagenomic sequencing has led to
the generation of tremendous amounts of data containing new insights into how microbial
communities are composed, interrelated and varying in both time and space. Uncovering
those insights, detecting the biological signals inside large datasets, requires not only an-
alytic tools for interpreting metagenomic datasets directly, but also tools for interpreting
and understanding the measurements, models and inferences built from those datasets.
Here we briefly describe the means by which microbial ecologists answer the following two
questions. Given a model or metric, how do I understand the significance or sensitivity

to error of the results? Given a large collection of measurements relating communities of
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organisms, how do I detect structure or order in a dataset so as to infer structure or order
in biological communities? Understanding and addressing the ways in which biologists use

data motivates the construction and improvement of the tools which generate data.

While the field of metagenomics is new, the desire to understand the distribution and
evolution of species abundance is not and has led to many theories [84] regarding the the
relative abundance of species in communities. Under the recent ‘Unified Neutral Theory of
Biodiversity’ [10, 84| relative abundances of species are described by Dirichlet-multinomial
distributions. This, in addition to the analytic tractability and simplicity of the Dirichlet-
multinomial distribution, has led to its frequent use in modeling metagenomic datasets

[85, 6]. We first define the multinomial distribution.

Definition 1.1.17 (Multinomial Distribution). Let Xi, Xo,...,X,, be a sequence of n
independent trials, each with k& mutually exclusive and exhaustive possible outcomes. For
each i € {1,...,k}, say outcome i occurs with fixed probability p;. Then the number of
occurrences for each of the k possible outcomes after our n trials is a random variable

given by the multinomial distribution.

The multinomial distribution is a discrete probability distribution with parameters n > 0
k

and {p1,...,px} such that ) 7, p; = 1 supported on the set (z1,z2,...,2) such that

each z; € {0,...,n} and ), z; = n. The probability mass function for the multinomial

distribution is given by

n!

X X
f(xlw"axk;naplv'”?pk): | 'pll"”pkk
Il ..

. Tp!

for the parameters described above.

In applications to metagenomics, the p; represent the assumed fraction of OTU ¢ in the
communities genomic information, as sampled in a collection of sequence reads. This
information is not generally known beforehand, thus the vector of p; is more often assumed

to be a random variable itself. If we assume that the p; are Dirichlet distributed, we
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arrive at the Dirichlet-multinomial distribution. We proceed with a few relevant definitions
related to the Dirichlet-multinomial distribution and its formulation. We first recall the

definition of the Gamma function T'(z) and the Beta function B(«).

Definition 1.1.18 (Gamma function). For a z € C with nonnegative real part, we define

the Gamma function I'(z) by

Definition 1.1.19 (Multivariate Beta function). For a = (ay,...,ay), with each a; > 0,

the multivariate beta function B(«) is given by

n
o
Bla) = iz (@)
I'(3im o)
We are now prepared to give a formal defintion of the Dirichlet distribution and the related

Dirichlet-multinomial distribution.

Definition 1.1.20 (Dirichlet Distribution). The Dirichlet distribution is a probability
distribution with parameters @ = (aq,..., ) defined on the open (n — 1)-dimensional

simplex in R™ such that the probability density funciton is

1 17 ae
f(x17'”7$n;a17”.7an):_B(O[)il:!x?l 1.

Definition 1.1.21 (Dirichlet-Multinomial Distribution). The Dirichlet-multinomial dis-
tribution is a compound probability distribution describing a random variable z =
(z1,...,2k) such that z is distributed by the multinomial distribution with parameters

P1,...,pr drawn from the Dirichlet distribution.

In addition to comparison against such probabilistic models describing metagenomic
datasets, Monte Carlo permutation tests [41] are often [114, 132, 116] used in measur-

ing the significance of metrics in metagenomic studies. The idea is very straightforward.
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Given a measurement between two communities or samples A and B of sizes m and n,
respectively, we wish to know whether the measured difference between A and B is greater
than would be expected due to chance. So we repeatedly select random samples or com-
munities S; and Sy of sizes m and n, generally 1000s or 10,000s of such pairs, and measure
the difference between them. This estimates the distribution of the measurement, and
the fraction of simulated pairs which fall above the distance between A and B gives an

indication of the significance.

We next address the ways in which analytic measures are used in metagenomics, particu-
larly with respect to exploratory data analysis. Here researchers are interested in seeing
large scale structure in a dataset so as to formulate scientific hypotheses. The broad term
for such tools in statistics are ordination techniques. The idea is to organize a set of ob-
jects or observations such that object which lie close together with respect to some easily
observed distance, such as the Euclidean metric in the plane, are more related. Two of
the most utilized such tools, particularly in microbiology, is that of principal component

analysis (PCA) and principal coordinate analysis (PCoA) (95, 136].

PCA takes as input a dataset of m observations x1,Xs,...,X;, of a multivariate random
variable with n quantitative components, that is x; = (21,22, ...,%n,;) foreach 1 < j <
n. PCA seeks to produce the coefficients ¢; = (¢;1,¢i2,...,¢in), for each 1 <i <n, of a

set of n uncorrelated linear combinations of the components of the x;, known as principal
components, such that
13 R . .
C1-X; = E Clyi " Tiyj
i
has maximum variance, and that each subsequent ¢; captures as much of the remain-

ing variance as possible while remaining uncorrelated. We follow [52] in deriving these

components. We first recall a minor result necessary for our work.

Proposition 1.1.1 (Covariance of a linear transformation of a multivariate random vari-

able). Say = = (z1,22,...,Ty) is a multivariate random variable such that each x; has
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finite variance and T is a linear transformation, then
cov(Tz) = T'ST

where cov(x) = 3.

Proof. Let E(x) = m. Then the covariance matrix of x is defined as cov(x) = E((x —

m)(x —m)?). Thus we have, by the linearity of the expectation, that

cov(Tx) = E((Tx — E(Tx))(Tx — E(Tx))")
= E((Tx — TE(x))(Tx — TE(x))")
= E((T(x — m))(T(x — m))")
= E(T(x — m)(x —m)")T")
= TE((x — m)(x —m)")T"

=TYT!

as required. O

Returning to our consideration of PCA, let ¥ be the known covariance matrix, or a sample
covariance matrix .S which estimates 3., for the n components of our multivariate random
variable. Let ¢1 be the vector which maximizes var(c} - x) = ¢t Xc;. As written, the value
is not finite for nonconstant x, thus we constrain ¢; to have unit norm, that is ¢{¢; = 1.
The multivariate optimization problem of maximizing ¢} ¥c; subject to cfc; = 1 can be

solved by use of Lagrange multipliers. That is, maximize
ciYec; — Mcley — 1)
for Lagrange multiplier .
Taking the derivative with respect to ¢; and setting this equal to zero we see that

2¥c1 —2Xc1 =0
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so that

(2 — Al)cy = 0.

Thus ¢; is a eigenvector with corresponding eigenvalue A. To determine our choice of

eigenvector, recall that we wish to maximize
tz _at —
ciXc;p =cjAc; = A

and thus we take the largest possible eigenvalue for 3. Note that since the covariance ma-
trix is always positive semi-definite, the eigenvalues are all non-negative. It can be shown
[52] that ¢ is the unit norm eigenvector corresponding to the second largest eigenvalue,

and so on.

Alternately [31], we can consider our m multivariate quantities as an m xn matrix M whose
columns are the observations, and we may perform the same eigenvalue decomposition on

a related matrix to yield our principal components.

Definition 1.1.22. Given M above, define M, by subtracting from each column its mean.

We then define the Gram matriz G = MM,

The Gram matrix of inner products defined above differs from our covariance matrix by

transposition and scaling, and yields the same principal components as above [31].

PCA is frequently used in biology for ordination of taxa or OTU distribution by selecting
the first few, say 2 or 3, principal components and plotting the dataset in these trans-
formed coordinates. In these applications it is less than ideal [95], as we are maximizing
the retained variation in the Euclidean distance given by embedding the dataset in lower
dimensions. If the Euclidean distance between taxa or OTU distributions is not mean-
ingful, then there may be little meaning in preserving it. Our next ordination technique,
PCoA, is similar but seeks to maximize the retained variance given by some hopefully

more meaningful metric.
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PCoA, also known as metric multidimensional scaling takes as input an n X n matrix D
of metric similarity, or dissimilarity, measures between n objects of interest and seeks to
embed the those n objects into low dimensional Euclidean space, typically of dimensions
2 or 3, in such a way as to preserve relationships between objections. We follow [61] in
giving a brief description of the method. Given a matrix of pairwise distances D, we first

transform D into the related matrix A by

A(i.§) = —5 D).

Defining Aii,.,A.,j and A as, respectively, the row, column and overall means for the

elements of A, we then we then define the matrix A so that

A(i,j) = A(i,j) — A;. — A+ A.

It can be shown [61] that these transformations preserve the encoded metric information
in D. The principal coordinates are then the eigenvectors of A, the first cooridinate

corresponding to the largest eigenvalue and so on.

PCoA is frequently used in examining the sets of pairwise distances generated from the
community or genomic metrics discussed in Sections 1.1.4 and 1.1.5, such as UniFrac.
An example of PCoA as applied to the Human Microbiome Project data utilizing the

Bray-Curtis metric for pairwise distances is given in Figure 1.4 [65].

One framework for the application of PCoA is an adaption of Rao’s Dissimilarity Index,
Definition 1.1.11, for the generation of the underlying distance matrix. This application
of the Dissimilarity Index, utilizing a measure of OTU or species difference given by the
metric distance in a phylogenetic tree, was developed into an ordination method given
in [89] as Double Principal Coordinate Analysis. The ‘double’ in the title refers to the
inclusion of two sorts of data, relative abundance and OTU dissimilarity. In the language
we have adapted this is a phylogenetically-aware S-diversity metric packaged together with

PCoA for ordination.
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FIGURE 1.4: An example of Principal Coordinate Analysis (PCoA) for the

purpose of dataset ordination in microbial ecology. In this plot pairwise dis-

tances between microbiome samples from a variety of body locations were gen-

erated utilizing Bray-Curtis and then the dataset was projected onto the first

two principal coordinates. Such plots are used for exploratory data analysis

[65].

Definition 1.1.23 (Double Principal Coordinate Analysis). Let samples A and B assigned

to a phylogenetic tree T' be given. Let p4 and pp. Let dr be the induced path-length

metric in T and let Dy, be the Dissimilarity Index defined from pairwise distances given by

dr. Then DPCoA is ordination using PCoA given a distance matrix M generated pairwise

distances using Dj,.

There is a direct connection between PCoA and PCA in the case where our D matrix is

given by the Lo distances between points. Let M an n X m matrix whose columns are

Xi for 1 < k < n. Let D be the m x m matrix of Ly distances between columns of M.
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Abusing notation, let D? denote the component-wise squared matrix of distances and let

D denote the mean value of D. Then, applying the parallelogram law, we have that [31]
D*(i, j) = ||xi — ;I3
= (xi,%i) + (xj,%;) — 2 (i, X;)
= (xi,%i) + (xj,%;) — 2 (i, X;)

:<Xi—ﬁ,xi—ﬁ>—|—<xj‘—ﬁ,Xj—D>—2-<XZ‘—D,Xj—ﬁ>

Letting G denote the Gram matrix given above, we see that
G(Zaj) = <Xi - D,Xj - ﬁ>

so that

That is

Note that this is precisely the transformation, though in compacted form, utilized in PCoA
to produce the Gram matrix whose eigenvectors form the principal coordinates. That is,

PCoA is PCA when the distance is Lo.

In the above we have covered some of the mathematical tools and techniques used by
biologists in interpreting metrics between biological communities. We next turn to a purely
mathematical discussion regarding metrics in probability spaces that will ultimately help in

understanding the mathematical foundations to the biological analyses we have discussed.



33

1.2 Introduction to the Wasserstein Metric

1.2.1 Introduction to the Wasserstein Metric

One of the first moments in the education of a mathematics student in which they see the
real power of their field is optimization. In calculus you discover that you don’t need to
guess endlessly to determine how large a pasture you can build adjacent to your barn with

200 feet of fencing, a simple application of the derivative does the trick.

The utility of optimization, finding minima and maxima for a given function on a given
domain, is endless, and, unfortunately, often far more difficult than encountered fencing
in that pasture. Consider the following example, an example which will motivate much of
our remaining discussion. Imagine that an otherwise level field has been excavated, holes
dug and dirt piled randomly. How much work is required to fill the holes back in? Is
there a plan which describes how to go about filling in the holes most efficiently? This is
an example of an important class of problems [120] known broadly as optimal transport
and the measure of the optimal amount of work required, however work might be defined,
is known broadly as the transport metric. This measure of the minimal amount of work
required to move all that dirt becomes a very useful measure of distance with a multitude

of applications.

The theory of optimal transport began in 1781 with the work of Gaspard Monge [120], a
French mathematician who formalized the problem in precisely the same soil-moving con-
text we described above. He called his problem ‘Les de’blais et les remblais’ or ‘Excavation
and embankments’, and was concerned with the optimal transport of soil for construction

of forts and roads.

Pursuit of this theory was continued by the Soviet mathematician and economist Leonid
Vital’evich Kantorovich in the early twentieth century [119]. He developed the tools of

linear programming to tackle this and other optimization problems arising in economic
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models. Much as linear programming was rediscovered in the West, in particular in the
work of George Dantzig during World War II [119], the theory behind optimal transport

was rediscovered in many guises throughout the years.

The transport metric devised by Kantorovich in the field of economics was also described
by Vaserstein [118] (transliterated as Wasserstein) in the field of probability, Mallows [72]
in the field of statistics, and Rubner [100] in the field of computer science. As such, it has
collected a variety of names; Kantorovich-Rubinstein metric, Wasserstein metric, Mallows
distance and the Earth mover’s distance. In referring to the transport metric we will
primarily use the names Wasserstein metric and Earth mover’s distance, as these are the
names most common in the literature related to mathematics and computer science. We

continue our discussion with a more formal definition of the Wasserstein metric.

1.2.2 Definitions Related to the Wasserstein Metric

We begin our more rigorous discussion of the Wasserstein metric by recalling a few standard

definitions and results related to probability.

Let (X,d) denote a complete metric space. Let B be the Borel o-algebra of sets from X

generated by d. We say the pair (X, B is a Polish space when (X, d) is separable.

We say a probability measure is locally finite if for every x € X there exists a U € B of
finite measure such that x € U. We say that a probability measure is inner regular if for
every U € B we have that the measure of U is equal to the supremum over measures of
compact subsets of U. We say a measure defined on B is a Radon measure if it is inner
regular and locally finite. Let M (X ) denote the set of all Radon probability measures on
X.

We say that a measure has finite pth moment for 1 < p < oo if for some zg € X we have

that

/ d(x, z0)Pdu(z) < co.
X
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Note that this definition is independent of the choice of xq, since for another choice x; we

have that d(z,x1)P < 2P~ (d(x, 20)? + d(zo, 21)P).
Let M,(X) denote the set of all Radon measures on (X, d) with finite pth moments.

Now let p and v be elements of M,(X) for some p and define I'(i, ) to be the set of all
measures v on X x X such that for all measurable sets A € B we have that v(A, X) = p(A4)
and v(X, A) = v(A). Notice that I'(u, ) is nonempty, as we may always take the product

measure of p and v.

For a fixed measure v we refer to the related measures p and v as defined above as its
marginals. We will refer to v as a coupling or flow between p and v. Allowing for greater
generality, we can extend this definition of a coupling to the case where (X, ) and (Y, v)

are a pair of probability spaces and + is a measure on X X Y with appropriate marginals.

We are now equipped to define one of our principal objects of study, the p-Wasserstein

metric.

Definition 1.2.1. (p-Wasserstein distance) The p-Wasserstein distance Wy(p,v) on

My (X) is defined as

1/p
Wyt = (_nt [ ateratandn))
Yel (1Y) J X x X

Notice that by applying Minkowski’s inequality and the triangle inequality, we see that
the integral above is bounded by the sum of the pth moments of p and v and is thus finite,

by hypothesis.

Our definition is quite general, but our interest lies in the particular case in which X is the
vertex set of some graph G endowed with a metric induced by path length (see Proposition
1.3.1). Thus we will ultimately restrict our discussion of the Wasserstein metric to this
more finite setting. In our next section we proceed to related some of the standard theory

of the Wasserstein metric, in particular alternate formulations.
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1.2.3 Summary of Standard Results Related to the Wasserstein Metric

We now discuss some properties of the Wasserstein distance. While it is clear that the
Wasserstein distance is well-defined, that does not guarantee the existence of a coupling
which realizes the distance. There does happen to exist such a coupling, and so we start
with demonstrating that fact. We follow the treatment in [120] to outline the proof. In all

that follows X is a Polish space equipped with its Borel o-algebra.

Recall that a sequence of probability measures {p, }5° | converges weakly on X to a proba-
bility measure p if E,,[f] converges to E[f] for all bounded, continuous functions f. Further,
we say a set of probability measures U on X is tight if for every € > 0 there exists a compact

subset X of X such that for all © € U we have that pu(X\X.) <e.

For completeness we state the following useful result related to the compactness of sets of

measures.

Theorem 1.2.1 (Prokhorov 1956). Let X be a Polish space and P(X) the set of all
probability measures on X. Then there is a complete metric on P(X) equivalent to the
topology of weak convergence and K C P(X) has compact closure with respect to this

metric if and only if K is tight [120].

We now prove that there does exist a coupling realizing the Wasserstein distance between

probability measures p,v € My(X).

Theorem 1.2.2 (Existence of a Coupling Realizing the Wasserstein Distance). For u,v €

My(X) of a Polish space X there exists [120] v € I'(p, v) which minimizes
/ d(z,y)Pvy(dz, dy).
XxX

Proof. Using the notation of the statement of the proof, we first show that I'(u, v) is tight.

First note that {u} and {v} are tight subsets of X, as X is a Polish space. Let ¢ > 0.
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Then there exists Uy, U, C X such that u(X\U,) < €/2 and v(X\U,) < €/2. Thus for

any v € I'(u, v) we have that
W«XXXﬂﬂhXUM)SMQWMJ+MMKMJ§6

Thus T'(u,v) is tight. It follows from Prokhorov’s theorem that I'(u,v) has compact
closure. In fact, I'(, v) is closed and so is compact. To see this, let {7, } converge weakly
tovin X x X. Let A be compact in X and let f; be a sequence of continuous functions
converging to the indicator function of A in the first component. Then, by dominated

convergence, we see that

u(A) = lim (A x X)

n—oo
=1 li d
Aol (kgi:ofk> n

= lim <lim / fkd’yn>
k—o0 \ n—oo XxX

= lim frdy
k—o0 XxX

= / <lim fk> d'y
XxX k—o0

=74 x X)

As our space is Polish, it is Radon. Hence our measures are inner regular, and so it follows
by approximation from within by compact sets that v(U x X) = u(U) for all measurable
sets U. A symmetric argument in the second components shows that v € I'(u, v) and thus

I'(u,v) is compact.

Now suppose {y,} is a sequence of probability measures such that
limy, 00 fXxX d(z,y)Py = Wp(p,v)P. By passing to some subsequence if neces-
sary, we can assume that {v,} converges to some v € I'(u, ). Then by, passing to a

sequence of bounded and continuous approximations of the distance function and utilizing
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monotone convergence, we have that

Wp(:“‘v V)p = hm d($7 y)pdf)/n

n—o0 XxX

= lim (lim min(k:,d(x,y)p)> dyn,
XxX

n—o00 k—00

= lim lim min(k,d(z,y)?)dy,

k—o00 n—00 XxX

= / <lim min(k,d(%y)p)> dry
XxX k—o0

= / d(z,y)Pdy
XxX

Thus v is a minimizer for the Wasserstein distance. O

We now proceed to show that the Wasserstein distance indeed defines a metric on M, (X).

Recall that for separable metric spaces X,Y we say that a map f: X — Y is Borel if the
inverse image of any open subset of Y is a Borel subset of X. We say that a map which
assigns to each z € X a measure pu, of Y is Borel if for all Borel subsets U C Y the map

which sends each x to the quantity u,(U) is Borel.

For a probability measure p of X and Borel map f: X — Y we define the push-forward
measure fup of Y by fap(U) = u(f~1(U)) for all measurable subsets U of Y. It is a
straightforward exercise to show that this defines a measure on the Borel subsets of Y.
Given a product space X X Y let 77 : X x Y — X be the canonical projection onto the

first component.

To begin, we state without proof a technical lemma on the existence of couplings with

fixed marginals in a product of three probability spaces.

Lemma 1.2.1 (Gluing lemma). Let (X, pa), (Y, pny) and (Z,p.) be Polish probability

spaces. If vy, is a coupling of (pz, py) and vy » is a coupling of (jiy, p1-) then one can con-
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struct a measure Vg . on X XY X Z such that ﬂ;)‘;xy%’yz = Yaxy and WixZ%’W =Y.z

/120].

Clearly gluing lemma is an appropriate title, as we ‘glue’ the couplings ~v;, and 7, .
together along their common marginal u,. We can leverage this fact to show that the

Wasserstein distance is indeed a metric.

Theorem 1.2.3 (Wasserstein Metric). For all p > 1 the p-Wasserstein distance given in
Definition 1.2.1 satisfies the mathematical defintion of a metric for the finite pth moment

measures of a Polish space X [120].

Proof. Let X be a Polish space, let p > 1 be fixed and let u, v,w be probability measures

on X with finite pth moments. By symmetry of the integral defining W), it is clear that
WP(M? V) = WP(”? M)

Now suppose Wy,(u,v) = 0. Then there exists a coupling v for x4 and v which is con-
centrated on the diagonal in X x X, that is, it is assigns to any subset not lying on the
line y = = measure zero. Letting 7!, 72 denote the projections into the first and second
components of X x X, respectively, we see that 7771#7 = wiy since y = x on the support of

~ and thus p = v.

Now suppose 7, is an optimal coupling for 4 and v and ~,, is an optimal coupling for
v and w. By the gluing lemma there exists a measure 7y, ,,., on X x X x X such that the
push-forward measure into the first two components is v, ,, and the push-forward measure
into the second two components is 7,,. It follows that the push-forward measure of 7y, , .,
by projection into the first component is p and the push-forward measure of v, ,. by

projection into the third component is w. So we have that

1/p
Wy (1,0) < ( [ z)Pw,u,wwx,dz))
XxX
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1/p
( / (2. 2Pyl dy, dz))
X><X><X
1/p
</ (z,y) +d(y, Z))pvu,u,w(dx,dy,d2)>
X><X><X
1/p
</ (@, )P V0 (da, dy,dZ))
X><X><X

1/p
o+ (/ d(y, 2)PYupw(de, dy, dz))
XxXxX

- </XX d(x’y)p'yu,u(dx,dy)>l/p + ( /X Xxd(‘% Z)p%,w(dy,dz)>1/p

= Wp(lu’a V) + Wp(l/,w)

IN

IN

The third and fourth equalities above are justified by the triangle inequality in X and

LP(yyw)- It follows that W), satisfies the triangle inequality and thus is a metric. O

We now proceed to state an important duality formula for the Wasserstein metric. Our
principal interest is in the W), metric for p = 1 and p = 2 and so we will restrict ourselves

to those cases for the remainder of our discussion.

Recall that a function is Lipschitz if the difference quotient is uniformly bounded. More

precisely, for a function f: X — R let

|f(z) = f(y)]

Lip(f) = Sup{ iy

r,y € X,x# y} :
When Lip(f) is finite, f is Lipschitz and Lip(f) is its Lipschitz constant.

Let Lipi(X) denote the set of all f : X — R such that Lip(f) < 1. Note that for
f € Lipi(X), |f(x)] < |f(zo)| + d(x,z0). Hence for every f € Lipi(X), f is integrable
with respect to every measure in M;(X). We shall see that in seeking the value of the W}
between measures p and v we may, instead of asking for a coupling which minimizes, ask

for a Lip; function which maximizes. We state, without proof, this famous theorem.
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Theorem 1.2.4 (Kantorovich, Rubinstein 1958). Let (X,d) be a Polish space and let

w,v € My(X). Then [120]

Wlw,u):sup{ /X fu— /X fdv,

To summarize our discussion so far, the p-Wasserstein distance over a Polish space X

fe Lipl(X)}

between a pair of measures is realized by some optimal coupling of those measures. The
W, distance satisfies the definition of a metric on the Borel measures of X with finite
pth moments. In the case of p = 1, there is a dual formulation of the metric in terms of
Lipschitz-1 functions. We next turn to a comparison of the metric W), to other senses of

distance on probability spaces, with applications to both mathematics and biology.

1.2.4 Comparison of the Wasserstein Metric to Other Metrics in Probability
Spaces

We continue our discussion of the Wasserstein metric by discussing other measures of
difference in probability spaces and their relationship to the Wasserstein metric. The
metrics below were chosen for discussion due to their theoretical significance, relationship
to the Wasserstein metric [37] or use in applications. We follow the treatment in [37] in

the following discussion.

We begin with the definition of a few metrics, and less formal senses of distance, on

probability measures.

Definition 1.2.2 (Discrepancy). Let X be a metric space. We define the discrepancy

metric dp on the probability measures of X by

dp(p,v) = sup |u(C) —v(C)].

closed balls C

Recall that we say a measure u dominates a measure v if, for any measurable set A, we

have that u(A) = 0 implies that v(A) = 0.
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Definition 1.2.3 (Relative Entropy (Kullback-Leibler Divergence)). Let Q be any measur-
able space. Let f, g be densities of u, v, respectively, with respect to a dominating measure
w and let S, be the support of p in 2. We define the relative entropy or Kullback-Leibler
divergence dip, of 4 and v as

drr(p,v) = /

S, flog(f/g)dw.

As a consequence of the Radon-Nikodym theorem, this definition is independent of the
dominating measure. Further, note that the relative entropy is not a metric. It is neither
symmetric nor does it satisfy the triangle inequality. It is, however, non-negative and zero
precisely when p = v. It was defined by Kullback and Leibler in 1951 as a generalization

of the Shannon’s information theoretic definition of entropy. The symmetric version of the

Kullback-Leibler divergence is the Jensen-Shannon divergence.

Definition 1.2.4 (Jensen-Shannon Divergence). Let € be any measurable space. Let f, g
be densities of u, v, respectively, with respect to a dominating measure w. We define the

Jensen-Shannon Divergence d g of p and v as

1 1
dys(u,v) =5 -drr(p,v) + 5 - dxr(v, p).

Definition 1.2.5 (Hellinger). Let Q be any measurable space. For measures y and v on
Q, having densities f and g, respectively, with respect to some dominating measure A we

define the Hellinger distance dg to be
1/2
) = | (V- vara

In the case that Q is countable we can express the Hellinger distance as dg(u,v) =
1/2
[CoealVi@) - vi@)?| .

Definition 1.2.6 (x2-distance). Let € be any measurable space. For measures p and v

on (2, having densities f and g, respectively, with respect to some dominating measure A,
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let the support of each be S, and S,. We then define the x?-distance d,2 to be

N2
dXQ(u,y):/S y (fgg)d)\.

Note that the y2-distance is not a metric, nor even symmetric in the arguments.

Definition 1.2.7 (Prokhorov). Let X be any metric space. For any Borel set U and € > 0,

let U = {x]infycy d(z,y) < €}. We then define the Prokhorov metric dp by

dp(p,v) = inf{e > 0|u(U) < v(U) + € for all Borel U}.

The Prokhorov metric does satisfy the definition of a metric [47| and is of theoretical

importance as it metrizes weak convergence of measures on a separable metric space.

Definition 1.2.8 (Total Variational Distance). Let X be any measurable space. We then

define the Total Variational Distance dry by
drv (p,v) = sup |u(A) —v(A)].
ACX
Letting D = {(x,y) € X x X|z # y}, an alternate characterization of the total variational

distance in terms of couplings is dry (u, v) = inf{y(D)|y € T'(u, v)}.

Having defined several metrics or other measures of distance related to probability mea-
sures, we now state and recount proofs of several relationships between these and the
1-Wasserstein metric W;. We begin with an important relationship between the Wasser-

stein and Prokhorov metrics on the probability measures of a bounded metric spaces.

Theorem 1.2.5 (Prokhorov and Wasserstein). For a bounded metric space X, the

Prokhorov metric dp and the 1-Wasserstein metric Wy satisfy the following relationship
(dp)? < wy < (diam(X) +1)-dp

for diam(X) = sup{d(z,y)|z,y € X} [37].
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Proof. Let ¢ > 0. Let D, = {(z,y) € X x X|d(z,y) < €}. Then for any coupling

v € I'(p, v) we have

/Xde(:cyy)’y(dw,dy)—/ d(x,y)v(dw,dy)Jr/ d(w,y)y(dz, dy)

De (X xX)\De

< e-~(D,) + diam(X) ~7((X X X)\D€>

= ¢+ (diam(X) — ¢) m((x x X)\De)

By Strassen’s theorem [111] we see that if dp(u, v) < e then there exists a v € I'(u, v) such

that v((X x X)\D.) <e.

Therefore we have that
/ d(z,y)y(dx,dy) < e+ (diam(X) —€) - € < (diam(X) + 1) - e.
XxX

Thus, by taking the infimum over all couplings and setting € = dp(u,v), we see that

Wy, < (diam(X) + 1)dp.

To prove the other bound, we set € = /Wj(u,v) and use Chebyshev’s inequality’s to

deduce that

/ v(dz,dy) < z,y)y(dz,dy) < /Wi(u,v).

1
- - d(
‘ VWilp,v) Jxxx
Finally, by using Strassen’s theorem in the other direction and recalling the notation of
Definition 1.2.7, we note that fDe ~v(dz,dy) < e implies that for all Borel sets B we have

that u(B) < v(B) + € so that dp < /W1 (u,v), as required. O

As we have already stated, the dp metrizes weak convergence in separable metric spaces.

We now see that W; generates the same topology, and so we garner the following result.

Corollary 1.2.1 (Wasserstein Metrizes Weak Convergence of Measures on Bounded Met-
ric Spaces). Let X be a bounded metric space. Then the 1-Wasserstein metric Wi metrizes

the weak topology on the probability measures of X [37].
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We now state and prove a relationship between W; and the discrepancy metric dp over

the probability measures of a finite metric space [37].

Theorem 1.2.6 (Wasserstein and Discrepancy). Let X be a finite metric space. Let

dmin = mingy, d(x,y). Then [37] we have that

dmin : dD < Wl-

Proof. Recalling Theorem 1.2.4, we define for a closed ball B in X the function

dmin r€B
h(z) =

0 else

Clearly Lip(h) < 1. We then see that for any pair of probability measures p and v that

i 1u(B) = v(B)| = | [ hau— [ nav

< (M? 1/)
Taking that B which maximizes the left hand side yields the desired result. O

In the last of our analytic comparisons between metrics on probability measures, we com-
pare the 1-Wasserstein metric with the Total Variation metric dry on bounded or finite

metric spaces.

Theorem 1.2.7 (Wasserstein and Total Variation). Let X be a bounded metric space.
Then [37]
W1 < diam(X) . dTV-

Now supposed X is a finite metric space. Then setting dyi, = ming., d(z,y) we have that

dmin - drv < Wh.
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Proof. Recalling the coupling characterization of dpy we see that for D = {(x,y)|z # y}

and any coupling v € I'(u, v) we have that

/ d(z,y)dy = diam(X) - / d(z,y)dy
XxX XxX

< diam(X) - v(D)

By taking the infimum over all couplings we yield our first result.

Now suppose X is finite. We then get that

/ d(z,y)dvy = diam(X) - / d(z,y)dy
XxX XxX

and thus our second result. O

We now have a sense of the 1-Wasserstein metric’s relationship to other notions of distance
between probability measures in metric spaces. We have also shown that for bounded met-
ric spaces the 1-Wasserstein metric metrizes the topology of weak convergence of measures.
We now turn to discussing the applications of the Wasserstein metric in mathematics, sci-

ence and engineering.
1.2.5 Survey of Applications of the Wasserstein Metric

The Wasserstein metric is a natural and powerful sense of distance between probability
measures which has found applications in a variety of fields. It has been independently
discovered in various branches of both pure and applied mathematics [119]. Here we will
discuss a few examples of the application and formulation of the Wasserstein metric used

in the study optimization, statistics and computer science.
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Optimization

As mentioned in our introduction to this subject, Gaspard Monge first formulated the op-
timal transport problem in 1781 [120] in the context of the following very applied problem.
Suppose you wish to construct an earthen structure at a fixed location by excavating soil

from a predetermined set of locations. What is the optimal method of going about moving

the dirt?

Formalizing the problem slightly, let R be a bounded region in R2. Let c¢(r1,72) : R? — Rxg
be the cost of transporting a unit of material 7 € R to ro € R. Let S(r) : R — R>¢ be
the amount soil required to build our structure at location r € R and let E(r) : R — Rx>g

be the amount of soil to be excavated at location r € R.

Since we would rather not dig up any soil that is not going to be put to use in our structure,

we will require that [, S(r) dr = [, E(r) dr.

Now let a transport plan T between E and S be a function T : R? — R>q such that for each
ro € R we have that [, T(ro,7) dr = E(ro) and [, T(r,79) dr = S(rg). This is merely a
description of the ultimate destination of our excavated soil for each point r € R, our first
condition, and an assurance that each location r € R received precisely enough material

for construction, our second condition.

To determine how much it might cost to build our structure, we do the following: pick a
transport plan, look at every pair of points in R, see how much dirt was moved from here
to there for that transport plan, multiply that by the cost of moving dirt from here to
there and then total those costs. Invoking a little calculus, the cost of building our bit of

earthworks is then
CE,S = /2 C(Tl,’l“g) . T(’I"l, T‘2> d’l"ld’l"g
R

for a given transport plan 7. Letting Tr g be the set of all transport plans between E and

S we see that finding the minimal cost corresponds to the 7' € T ¢ which minimizes the
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integral.

We now simplify and abstract the problem. First, we choose units such that |’ rS(r)dr=
Jr E(r) dr = 1. Next, we take the cost function ¢ of moving the soil to be proportional to
the work, in the physics sense of force times distance. For a material of uniform density,
this means the cost is proportional to the distance traveled. Simplifying, we take that

constant of proportionality to be 1.

Notice that after our simplification, our functions F and S are now probability measures
on R and that Tg g is the set of all couplings of those measures. That is, the minimal cost

of construction under these assumptions is

inf /d(rl,TQ)T(drl,drg)
TeETE,s R2

or the 1-Wasserstein distance between E and S.

Monge attacked this problem using the tools of descriptive geometry [120], while some
150 years later Kantorovich developed linear programming, that is optimization of linear
objective functions subject to linear constraints, to address the problem in the context of
the mathematical theory of economics. The problem presented above in terms of soil and
structures can just as easily be recast in terms of goods and consumers. Before continuing,
we define a few terms related to finite metric spaces that will be useful for this problem

and, indeed, the rest of our discussion.

Definition 1.2.9 (Distance Matrix). Let (X, d) be a finite metric space and let n = | X].
The distance matriz D for X with respect to d is the n X n matrix, indexed by the elements

of X, such that D(4,5) = d(i,j) for all 4,5 € X.

Definition 1.2.10 (Marginals of a Matrix). Let M be an n by m matrix. Let 1,, and 1,,
be the column vectors of length n and m, respectively, whose entries are identically 1. We
say the pair of vectors p and v are the marginals of M if 11, M = pand M - 1,,, = v. We

may also say u is the column sum of M and v is the row sum of M.
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Returning to our economic problem, we pass to a finite metric space (X,d), say | X| = n,
let u(x) to be the number of goods ready for delivery at each z € X, and let v(z) denote
the number of goods required at each location x € X. Suppose that k goods are required,
and that this quantity is equal to the number available. Let D be the distance matrix for
X. Let T, be the set of all matrices T which have p and v as marginals. If we again
assume that the cost of transporting good is proportional to the distance traveled, and,
by normalizing if necessary, take the constant of propotionality to be 1, we see that the

minimum cost of associated with this economic allocation problem is
TETy 4 -

Normalizing each of u and v by k, we see that this again corresponds to the Wasserstein
metric. Further, it is now a linear programming problem, where multiplication against the
distance matrix forms our linear objective function and satisfying the marginals form our
set of linear constraints. It was in this context that Kantorovich developed the theory of

both linear programming and optimal transport [119].
Dynamical Systems and Partial Differential Equations

In 1970, Dobrushin [25] coined the term ‘Vasershtein metric’ in a paper regarding the ex-
istence and uniqueness of random fields. This was in reference to Vasershtein’s 1969 paper
[118, 101] which used the metric between distributions P and @ given by inf[Ed(X,Y)]
where this infimum is taken with respect to all random variables X,Y with distributions

P, @ in studying dynamical systems.
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Statistics

In a statistical context, studying the agsymptotic distribution of a sequence of jointly dis-

tributed random variables, Mallows |72| constructed the metric

1
2 = w) — g(w))?dw
p(F,G)—/O(f() g(w))2d

for F, G distributions of finite variance and zero mean, and f the essentially unique mono-

tone function such that f(F(x)) = x almost everywhere with respect to F.

Mallows demonstrated that p metrizes convergence of distributions in the Lévy metric, of
which the Prokhorov metric from Definition 1.2.7 is a generalization, and that p has as an

equivalent formulation as

*(Fi,F,) = mi / —y)?dA
p~(F1, F3) \eidin, (x —y)*dA(z,y)

where A(Fj, Fy) is the set of bivariate distribution functions on R x R with marginals equal

to I} and Fy, respectively. That is, the 2-Wasserstein distance between the distributions.
Computer Science

In 1999 Rubner et al. [100] defined a distance between distributions they called the Earth
mover’s distance for the purpose of content based computer image retrieval. Here the
problem is to identify a given image by comparison against a set of previously identified
reference images. Clearly some sort of metric or other means of comparison on the set of

images is necessary.

As a way of constructing such a metric, they first define a histogram as a mapping from
a set of d-dimensional integer vectors in ¢ into R>¢. Here the vectors i are called bins
and represent the a range of values in the spectrum of some image feature, such as color
content or intensity, and the value of h; is the number of pixels in an image which fall into

the range defined by 1.
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They next define a ground distance as a measure of dissimilarity, metric of otherwise,
between the bins in a histogram. Using this ground distance they define the signature
{sj = (mj,w;)} of an image as a set of clusters of image features, or bins, where each
cluster s; is represented by some measure of central tendency m; for the cluster and then
weighted by the number or fraction w; of pixels belonging to that cluster. Here the number

of clusters in a signature may vary, depending on the complexity of an image.

Given signatures P = {(p1,wp,), ..., (Dm, wp,,)} and Q = {(q1,wg,);- -, (Gm,wq,)} of m

and n clusters, respectively, and an m x n matrix D such that D(i,j) is the distance
between clusters p; and ¢; they solve the following transport problem. Determine the

m X n matrix F which minimizes

WORK(P,Q,F) =Y D(i,j)F(i, )
i=1 j=1
subject to the constraints
F(i,j) = 0, Vi,j

n
Y F(i,j) < wy, Vi
j=1
n
STF(ij) < wg, VY
i=1

m n

Z Z F(i,j) = min(Z?; Wp; Z;nzl wq]')‘

i=1 j=1

Having solved for an optimal matrix F, they finally define the Earth mover’s distance

EMD by
Z?il qulzl D(Z7])F(Z7])
Z;'Zl Z?:l F(Zvj) .

The normalization factor here helps to avoid skewing toward signatures with fewer clusters.

EMD(P,Q) =

In the case that P and @ given by proportions of pixels of a common set of clusters and the
ground distance is a mathematical metric, we see that FM D is the 1-Wasserstein metric

over a finite metric space.
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They demonstrate that EM D is an effective metric for image recognition which is in-
sensitive to noise and which allows for partial matches between images, that is, matches

between regions of images.

The Wasserstein metric, under the name EM D or otherwise, has since appeared in a
variety of computer science applications, such as image tracking [135], machine learning

|62, 4] and text analysis [59].

In this section we have discussed the ways in which the Wasserstein metric has been applied
in a variety of contexts, reaching from its first formulation more than two hundred years
ago to its recent applications in computer science. In particular, we have discussed the use
of the Wasserstein metric in image analysis as a valuable way to lift notions of distance
between small components of a set, in this case pixels or regions of pixels, to comparisons
of the large scale structure of sets, entire images. This provides valuable motivation in
some of the work which follows. We note that we have yet to determine how to compute

the value of the metric in any setting, and so this is the subject of our next discussion.

1.2.6 Survey of Computational Methods for the Wasserstein Metric

A variety of numerical methods have be devised over the years with which to compute
or approximate the Wasserstein metric in various settings. In particular, its utilization in
computer science as the Earth mover’s distance have lead to a number of novel solutions
and approximations. In their initial formulation of the Earth mover’s distance, Rubner et
al [100] utilized the classic Transportation Simplex algorithm as a solution method. The
Transportation Simplex algorithm is an adaption of Dantzig’s original Simplex algorithm
for linear programming [45] to the solution of the optimal transport problem. We begin

with a brief discussion of linear programming and the Simplex algorithm.

The traditional form of a linear programming problem is, for fixed vectors b,c € R” and

matrix M € R™¥", to find x € R" which maximizes the objective function Z = ct - x
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subject to the constraints that Ax < b and that the entries of x are nonnegative. It can
be shown [81] that problems in which we seek to minimize Z or satisfy constraints which
are equalities can be solved by the Simplex method either through merely negating our

objective function or introducing additional slack variables to enforce equality.

We call the set of potential solutions to Ax < b for x in the nonnegative orthant of R"
the feasible region. It can be shown [45] that the feasible region is a potentially unbounded
convex polytope in R™. We state the following very useful theorem related to the existence

and location of extreme values for a linear programming problem.

Theorem 1.2.8. Given a linear programming problem of the form max Z = ¢'-x subject to
the constraints that Ax < b defined above, if an extreme value for Z occurs in the feasible
region, then it occur on one or more of the vertices of the convex polytope defined by the

feasible region [45].

We call these vertices basic feasible solutions.

We now demonstrate how to cast the Wasserstein metric as a linear programming problem,
known generally as the Transportation or Network Simplex problem. Given a finite metric

space (X, d), with |X| = n, we can view the distance matrix D as

d(zy,21) d(xi,22) ... d(x1,x)
d(xg,xl) d(xQ,xg) e d(.%’g,.%’l)
D=
|d(zn,21)  d(Tp,m2) ... d(Tn,Tn) |
as the vector
cp = (—d(z1, 1), —d(z1,22), ..., —d(x1,20), —d(T2,Zp), . . .
vy —d(Tp—1,2pn), —d(Tn, 1), ..., —d(Tn, xy))

. 2
in R™.



Define the 2n x n? matrix A

1 1 0
0 0 1
0

A=
1 1 0
0 0 1
0

0

1

o4

where each row contains n consecutive entries of 1 and for row i, the first nonzero entry

appears in the n- (i — 1) + 1 column.

Given measures pu,v on X we can define the vector

b= (M($1)7M($2)7 cee 7M($n)7y<x1)7y($2)7 cee 7V(xn))

in R2",

For these definitions of A, b, cp the Wasserstein metric is a linear programming problem.

The Wasserstein metric between p and v is given by the vector x in R which minimizes

t
Cp - T.

Simplex algorithms solve a linear programming problem iteratively. It can be shown [45]

that if a vertex of the feasible region is not a maximizer for the objective function Z,

then it is adjacent to an edge on which Z is strictly increasing. Thus, intuitively, Simplex

algorithms select a vertex of the polytope and at each iteration traverse an edge which

increases Z. This choice of an edge is known as a pivot rule and generally involves solving

a system of linear equations to determine a new choice of edge [81]. If this edge is infinite

in length, then Z is unbounded and thus the linear programming problem has no solution.
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Otherwise, this edge terminates in another vertex. Either this vertex maximizes Z, and

thus we terminate, or we select another edge and continue.

We pause from our discussion on solutions to the optimal transportation problem to define

a few useful terms related to the study of algorithms.

Definition 1.2.11 (Big O Notation). For functions f,g : R — R, such that g(z) is
eventually strictly positive, we say f(x) has order of growth O(g(x)) if there exists an

N € R such that f(z) < N - g(z) for all sufficiently large x.

Definition 1.2.12 (Algorithmic Time Complexity). Given an algorithm A, let n be a
meagure of the size of the input to A. Typical examples of such a measure of size are the
number of unknown variables to be determined or the number values to be processed. We
say that the time complexily of A is g(n) or O(g(n)), for a function g(n) : N — R, if, for
an input of size n, the number of elementary mathematical operations required for the

algorithm to terminate has order of growth O(g(n)).

The time complexity of an algorithm is frequently not uniform accross all inputs of a
given size. In such cases, we may refer to the worst-case time complexity, average time
complexity or best-case time complexity, that is, the rate of growth of the maximum, average

or minimum number of elementary operations required for the algorithm to terminate.

Although Dantzig’s original Simplex algorithm has enjoyed a tremendous amount of success
in practical application due to an observed number of iterations which is linear in the size
of the linear programming problem, the Simplex algorithm has demonstrated exponential
worst-case time complexity [55, 81|. The Transportation Simplex problem described above
has additional structure to the objective function and constraints which allows for more

efficient solution techniques.

The Transportation Simplex method [1] interprets a vertex of the feasible region as a

spanning tree for the underlying graph. The algorithm, through a variety of pivot rules,
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selects an edge to add to the spanning tree. This necessarily introduces a cycle to the
spanning tree. Flows are reduced around this cycle until the the algorithm returns to a
new spanning tree, and thus a new vertex of the feasible region. This continues until no

choice of new edge reduces our flow.

Let G = (V,E) be a graph with n vertices, m edges and where C' is a bound for the
length of each edge. The best known Simplex algorithm for optimal transport over a
graph [113] has time complexity O((nm log(n))min(log(nC), mlog(n)) for a graph with.
That algorithm improves, through the use of more efficient data structures, the algorithm

presented in [87], which is in turn a variation on the classic Network Simplex method.

There are several methods for the selection of a starting point from which to iterate for
the Transportation Simplex algorithm [45]. The most simplistic is that of the Northwest
corner rule. Letting M be our initial basic feasible solution, we build M iteratively. We
increase M(1,1) until we meet one of the two marginal contraints and then stop. In the
case that we have satisfied the marginal constraint for the row, we proceed to the M(2,1)
element and repeat. Else we proceed to the M(1,2) element and repeat. We iterate this
process until we have satisfied all of the marginal contraints and generated a basic feasible

solution.

While this method is easy to implement, it is ignorant of the costs involved in transport
and varies given a reordering of the variables. The minimum cost method is an alternate
approach to generating a basic feasible solution which improves on this method by con-
sidering cost in the selection of elements of the initial flow to saturate. In this method we
begin by selecting the minimum cost between between distinct elements for the transport
problem, and sets the flow between these elements to a value which satisfies one or other
of the constraints defined by the marginals. This process iterates, satisfying all low cost

pairs before advancing to higher cost pairs.

In the above we have discussed methods for producing the exact minimizing value to
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the problem of optimal transport. We turn now to a discussion of a set of methods
for approximating the optimal transport metric via regularization. Regularization is the
inclusion of additional constraints on an objective function so as to make the minimization
problem more computationally tractable [107], and is common in optimization. A useful
form of regularization for optimal transport is entropic-reqularization. We now define the

entropy of a probability measure in a finite setting.

Definition 1.2.13 (Entropy). Let u be a measure on a finite set X such that u(z) > 0

for all ¢ € X. Then the entropy of p is given by
H(p) == p(i) log(p(i)).
i

The notion of entropically-regularized transport is to include some fraction of the entropy
of a coupling v between measures as an additional constraint in the minimization problem
underlying optimal transport. We follow the treatment in [107] in the derivation of the

following.

Definition 1.2.14. Let measures p and v on a finite metric space X be given, say | X| = m,
and recall that T'(/mu, /nu) is the set of all flows or couplings between p and v. Let D be
the distance matrix in X and let @ > 0 be fixed. We then define the entropically-reqularized

transport problem by

Wia(p,v) = min —aH(y)+ Z D, 7)v(i, 7).
YEL (1,v) i

We can express the function being minimized in the above as follows

]

=a> (i) (log(y(i,§)) + D(, j) /)
i,J

ORLY =)



o8

Letting K, the matrix such that K, (i, ) = e P9/ we note that

aZ’y i,7) <log ’Y(( ]))/a) = adgr(v,Kq)

where dg, is the Kullback-Leibler divergence from Definition 1.2.3.

The above is a multivariate calculus problem, the optimization of a differentiable function
subjection to set of equality constraints, and thus we can apply the method of Lagrange
multipliers. Let A, and A, be vectors of Lagrange multipliers for each of the constraints
defined by the marginals of our coupling v. We then have a Lagrange multiplier function

A(y, Ay, Ay) of the form

A(Y, A M) ZD i, ), §) +a Y (i, )D(i

VO VED SEFIN D PP ( - Zwm)
7 i J a
Now let 1 be a column vector of ones and let the log(v) be given as the component-wise

logarithm. Taking the gradient of the above and setting it equal to O yields
0=7+all’ +alog(y) — A 1" — 1A,

so that

log(T) = + log(K,).

Ay —al) 1A}
(“a)+ v
o «

Letting p = exp[)‘ 1. q= exp[2¢] and, for a vector v, letting diag(v) be the matrix

whose diagonal elements are v, we then have that
7 = diag(p) Kodiag(q).

Hence by a change of variables we now seek the 2n components of p and q instead of the
n? components of 7. Further, recalling the constraints imposed by our marginals, we have,

after a bit of reassociation of matrix products, that

P ® (Ko.q) =p
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q® (K!p) =v

where ® denotes the element-wise product of vectors, also known as the Hadamard product.
This also inspires an extremely succinct algorithm for the computation of entropically-

regularized transport, the Sinkhorn algorithm. Let @ denote component-wise division.

Definition 1.2.15 (Sinkhorn Algorithm). Using the notation above, let p¥, ¢ be arbitrary
probability distributions on X such that both are strictly positive. Then the Sinkhorn

algorithm for entropically-regularized transport is given by iteration of

Pt =10 (Kudb)

q" = v o (Kaph*)

until the quantity

diag(p* ') Kodiag(g"™)

converges.

It can be shown [8] that the above algorithm converges asymptotically and efficiently to the
optimal . Thus we have a tool for computing an approximation of the optimal transport
metric which circumvents some of the time-complexity shortcomings of thr Transportation

Simplex algorithm.

We have discussed a classic solution technique for optimal transport problems, the Simplex
algorithm, and its refinements in the case of optimal transport. This discussion also
highlighted facets of the geometry of the solution set to optimal transport problems, and
thus to the Wasserstein metric. We have also discussed a method to approximate the
optimal transport metric via entropic regularization as well as described an algorithm
which converges to the optimal value for the entropically-regularized Wasserstein metric.

We next shift emphasis from a discussion of the ways of measuring distance between
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probability measures defined on metric spaces to metric spaces themselves, in particular

to those of graphs.
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1.3 Introduction to Graph Theory and its Applications to Biology

1.3.1 Introduction to Graph Theory and Combinatorics

A classic problem in mathematics is that of attempting to pass from local information to
that of global information. In what ways can information about the immediate vicinity
of a point tell us about the large scale structure of a mathematical object? Indeed many
basic notions in mathematics, such as that of compactness or continuity, are valued for
precisely this reason. They describe mathematical settings in which we are able to make
this leap. The birth of the theory of graphs can be cast as precisely such a question and
an introduction to the subject would be incomplete without the obligatory mention of the

story.

<>
S

a
FIGURE 1.5: Figure from Euler’s 1735 paper ‘Solution problematis as geometriam situs
pertinentis’ on the solution to the Seven Bridges problem [MAA Euler Archive] and a

more modern presentation of the same graph.

The city of Konigsberg, present day Kalingrad, is bisected by the Pregel River. In addition
to the components of the city on each of the banks, two large islands in the river are also
inhabited. There are seven bridges which interconnect the various components of the city.

Leonhard Euler considered the problem of whether one might be able to wander the city in
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such a way as to cross each bridge precisely once, abstracted by him in Figure 1.5. In 1735
he presented the paper 'Solution problematis as geometriam situs pertinentis’ in which he
proves that such a tour of the town is not possible. His solution relates the local structure
of the graph, the number of bridges departing from a given landmass in this case, to a

global graph property, that of a particular sort of path through the graph.

The application of graph theory in this often recounted story of the origins of the field is
actually quite close to one of the chief applications of graphs in our further discussion. We
will be concerned with two classes of graphs, those of trees (Defintion 1.3.4) and de Bruijn
graphs (Defintion 1.3.9). While trees are very common, de Bruijns graphs are a bit more
exotic and have their origin in the study by Nicolaas Govert de Bruijn [23] of the following

problem.

Let A be a set of n symbols, and let & € N be fixed. There are clearly n* distinct words or
ordered tuples of length k we can construct from a set n things. If we took all n* words of
length k and concatenated them together we would have a word made from k - n* symbols
which contained within it each of our n*. Tt is easy to imagine we can do better and find
a shorter word satisfying the same constraint. At a minimum such a word must have n*
starting positions, one for each of our n* distinct words, and the final starting position
must end with an additional (n — 1) symbols, to finish forming that last word. Is there a

word that achieves this minimum length of n* + (n — 1)? Take (A) = {0,1,2,3}, so that

k =4, and n = 3. Then n* + (n — 1) = 43 + 2 = 66. Consider this string of 66 symbols
000100200301101201302102202303103203311121131221231321332223233300.

This one does the trick and we shall see that this is not a special property of the numbers
3 and 4, but rather a general property of a certain graph upon which Euler would have

been able to take his tour.

We recount both of these problems not only before their inherent aesthetic appeal, which
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we see as self-evident, but also because they underlie a very useful application of graphs
to computational biology. Building up big words from little ones in an efficient manner,
the process at the heart of our string of 66 symbols above, is more than a novelty when
applied to genomes. It is also a useful motivation for a novel sense of distance on strings
of symbols which we hope to show has applications to metagenomics. We next establish

some useful definitions for the theory of graphs.

1.3.2 Definitions Related to Graph Theory and Combinatorics

We begin with the definition of a multigraph G. Let V' be a nonempty, finite set and let £
be a multiset of two-element multisets containing elements from V. The pair (V, E) form
a multigraph and we write G = (V, E). We refer to the elements of V' as the vertices or
nodes of G. We refer to the elements of E as the edges of G and say an element {u,v} € F

is a edge between u and v.

Definition 1.3.1 (Graph). A graph is a multigraph such that each element of F is distinct
and for each {u,v} € E we have that u # v. That is there are not multiples edges between

vertices and there are no edges between a vertex and itself.

A digraph is a graph whose edge set consists of ordered pairs of elements from V', that is,
the edges have a fixed orientation. For brevity’s sake we will restrict our references from
this point forward to graphs, though these definitions apply to each of these objects, given

the appropriate modifications.

Let v € V and let E, be the subset of ¥ whose elements contain v. The degree of v is the
cardinality of E,. For u € V, we say u and v are adjacent if {u,v} € E. The order of G
is the cardinality of V. We now define a very useful way of encoding the connectivity of a

graph, that of the adjacency matriz.

Definition 1.3.2 (Adjacency Matrix). The adjacency matriz of a graph G = (V, E) is a
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square matrix A, indexed by V x V such that A(i,5) = 1if (i,j) € E and A(i,j) = 0

otherwise.

We say a graph H is a subgraph of G if the vertices and edges of H are subsets of V and F,
respectively. For a subset U of V, the subgraph induced by U is the subgraph of G whose
vertices are precisely U and whose edge set is maximal, with respect to set inclusion, as a
subset of E. Similarly for a subset F' of E, the subgraph induced by F is the subgraph of G
whose edges are precisely U and whose vertex set is minimal, with respect to set inclusion,

as a subset set of V.

We say a graph is edge-weighted when considering a strictly positive function [ : £ — R.
We call | a weight function for G or that it defines a length for the edges of G. Note that we
can always consider a graph to be edge-weighted by taking the weight which is identically 1.
We similarly define a graph to be vertez-weighted when considering a nonnegative function

p:V =R

A path P from v to u in G is a sequence of n+ 1 elements {xg, z2, ..., x, } from V such that
u = xp, v =z, and z; is adjacent to x;+1 for all i € {0,...,n — 1}. A cycle is a path from

v to v in G.

For a graph without explicit edge-weights the length of the path {xzg,z2,...,z,} is n, the
number of edges involved. For an edge-weighted graph with weight function I, we define

the length to be Z?:_ol l(x;, i+1), the sum of edge-weights along the path.

We say a graph is connected if, for all v and v in V| there exists a path from u to v. For
v € V we define the connected component containing v as the maximal connected subgraph
containing v as a vertex. Similarly, for e € E we define the connected component containing

e as the maximal connected subgraph containing e as a edge.

Definition 1.3.3 (Bridge). We say an edge e € F is a bridge if the connected component

containing e in G fails to remain connected in the subgraph of G induced by E\{e}.
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Definition 1.3.4 (Tree). A tree is a connected graph T containing no cycles.

In a tree T" we may distinguish a single vertex p € V as the root of T. When drawing
T we typically place p at the top of the page. A tree with a root is called rooted. A
vertex adjacent to precisely one additional vertex in a tree is called a leaf. We call a vertex

internal if it is not a leaf.

Definition 1.3.5 (Ultrametric Tree). If the length of the path from the root p to any leaf

v in T is precisely d, for some fixed d we say T is an wltrametric tree of depth d.

We say a rooted tree T is binary if the root p is adjacent to precisely two vertices, which
we call daughters and, inductively, each internal vertex has in turn precisely two daughters

of its own.

Definition 1.3.6 (Perfect Binary Tree). We a binary tree is perfect if, for the trivial

edge-weighting, it is ultrametric of depth d, for some d > 1.

Having established a bit of the language of graph theory, we turn to a few simple results

in the field which will be useful for our future discussion.

1.3.3 Summary of Standard Results Related to Graph Theory

We first consider some standard results related to the mathematical theory of graphs in
general before more specifically discussing the properties of trees. In the following, let

G = (V,E) be a graph.

Proposition 1.3.1 (Classic). Given a connected graph G = (V, E), there is a natural
metric space structure on the set of vertices V.. That is, given u,v € V let | be the minimal

length of a path from u to v. Then d(u,v) =1 defines a metric on V.

Proof. We need to prove that the metric defined above is well-defined, symmetric, positive-

definite and satisfies the triangle inequality.
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As @ is connected, there exists a path between any pair of vertices u and v in V. The
lengths of paths from u to v is thus a non-empty, finite set of non-negative numbers, and

thus contains a minimal element. So d(u,v) is well-defined.

The path from w to v of minimal length can be traversed backwards, defining a path from

v to u, which is clearly of minimal length. Hence d(u,v) = d(v,u).

As we are counting, d > 0, and a path is of length 0 precisely when it contains no edges,

that is it contains only one vertex. Hence d is positive-definite.

Finally, say u,v,w € V and d(u,v) = [, d(v,w) = m. By concatenating our paths, from u
to v and then from v to w, we see that there exists a path from u to w of length bounded

by I +m. That is, d(u,w) <1+ m.

It follows that d defines a metric on V. O]

Definition 1.3.7 (Path metric). The metric described above, given by the length of the
minimal path between vertices in graph G is known as the induced path metric in a graph

G.

We recount a famous result [27] related to the origins of graph theory recounted in our
introduction to the subject and which is related to an important application of graph
theory in computational biology. We say a graph G is Fulerian if there exists a cycle in G

which traverses each edge of G precisely once.

Theorem 1.3.1 (Euler 1735). A connected graph G is Eulerian if and only if the degree

of each vertex is even.

Having described a few a few result related the to Graph theory in general, we specialize
for a moment and describe results explicitly related trees. In the following discussion, let

T = (V,E) be a tree.
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Proposition 1.3.2 (Classic). In a tree T, for each pair u,v € V there exist a unique path

from u to v.

Proof. Since T is connected, by our definition of a tree, it suffices to show uniqueness.

To produce a contradiction, suppose not, and let {xg,x1,...,x,} and {yo,y1,...,ym} be a
pair of distinct paths from u to v, where u = g = yp and v = x,, = y,. Without loss of
generality, assume n < m. Now let ¢ be the first index such that x; # y; and let {j, k} be

the first pair of indices such that each is greater than ¢ and that x; = y;.
By construction, ¢ # 0 and {7, k} exist, as {n,m} satisfy all but the minimality.

By the definition of {j,k}, the elements {x;,xit1,...,2j—1} and {vi, Yit1,..., yk—1} are
all pairwise distinct. Further, consecutive elements from each set are adjacent in T,
as they are consecutive elements in a path. As z; = y, and x; = y; it follows that
{&s, Tis1s o Tj, Yh—1, Yk—2, -, ¥i } is a cycle. This is a contradiction, as T' is a tree, and

hence the statement is proved. O

Corollary 1.3.1 (Classic). In a tree T, each edge is a bridge.

Proof. Let e € E be arbitrary. Say e = {u,v}. Then e is the single edge on the path from
u to v. By uniqueness, this is the only path from u to v in 7', and thus the graph induced

by removing e is disconnected. O

Thus the deletion of an edge e in a graph leaves the graph having two connected compo-

nents. As these are connected acyclic graphs, they are in turn trees, subtrees of T

Definition 1.3.8 (Branch). Let T be a rooted tree, with root p and let v # p be a vertex
in T. Let B, and B, be the subtrees formed by the deletion of an edge adjacent to v in

the path from v to p, such that v € B, and pinB,. Then we say that B, is the branch of
T defined by v.
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In this section we have established the natural metric structure on graphs. Additionally,
we have noted a few of the useful topological properties of trees, properties which will
be useful in our following discussion. We next turn to the second collection of graphs of

interest, that of de Bruijn graphs.
1.3.4 Summary of Definitions and Results Related to de Bruijn Graphs

We begin with some definitions related to the theory of words. An alphabet A is a finite
set of symbols. Examples include A = {0, 1} the binary alphabet, and what we will refer
to as the genetic alphabet A = {A,C,G, T}, the alphabet representing the four genetic

nucleotides.

A word is a finite tuple of elements from A. We will denote a word by the concatenation

of the symbols comprising it, that is a word w is wyws...wy for w; € A.

The length of a word w is the number of symbols in the tuple comprising it. We denote the
length of a word w by |w|. We will often refer to a word of length k as a k-mer, particularly
in the context of the alphabet {A,C,G,T}. Let the empty word be the word of length 0

containing no symbols.

We denote the set of all words of length k generated by A as A* and the set of all finite
words generated by A as A* = [y AF. There is a natural algebraic structure on A* given
by juxtaposition. That is, given words v = {v1...v,} of length n and w = {w; ... wy}
of length € A* define their product vw as the word vw = {v;...v,wy ... wy} of length

n—+m.

We say a word v is a factor of a word w if there exist words w), and w, such that w = wpvws.
We say v is a prefiz of w in the case that v is a factor and w,, is the empty word. We say v
is a suffix of w in the case that v is a factor and w; is the empty word. We say a word w
is a right-extension of v if v is a prefix of w and |v| = |w| — 1, and say w is a left-extension

of v if v is a suffix of w and |v| = |w| — 1.
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Let < be a total ordering on the symbols in an alphabet A. We may then lift this ordering
to a total ordering on Ak by defining v = viva...vx < w = wyws...wy, if either v = w or
v; < w; for ¢ the first index in which the letters comprising v and w differ. We refer to this

as the lezicographical order on AF.

Definition 1.3.9 (de Bruijn graph). The k-dimensional de Bruijn graph By(A) is the
directed graph with vertex set

vV =Ak

and edge set

E = {(v,w) eVxV ‘ V2V3...Vf = wlwg...wk_l}.

That is, for words v and w there is a directed edge between them in By(A) if the suffix of
length & — 1 of v agrees with the prefix of length k — 1 of w. Figures 1.6a and 1.6b show
representations of the de Bruijn graphs for words of length 3 on a binary alphabet and

words of lengths 2 on the genetic alphabet, respectively.
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(a) B3({0,1})
FIGURE 1.6: Depiction of B3({0,1}) and B2({A, C,G,T}), the 3-dimensional de Bruijn

(b) BZ({A’ Cv Gv T})

graph from a binary alphabet and the de Bruijn graph of 2—mers from the genetic
alphabet.

The k-dimensional symmetric de Bruijn graph Bj;(A) is the undirected graph with vertex
set

vV =AF

and edge set
E = {(v,w) eVxV | V2V3...V = W1W2...Wk_1 O V1V2...Vk_1 = wg’wg...’wk}.

Figure 1.7 shows a representation of the symmetric de Bruijn for 2—mers from the genetic

alphabet.



71

'I_I'
AA TG
AC TC
AG TA
AT GT
CA GG
CcC GC
CG GA
CT

FIGURE 1.7: Depiction of B}({A4,C,G,T}), the symmetric de Bruijn graph

of 2—mers from the genetic alphabet.

Our interest in de Bruijn graphs is related to genome assembly, as we shall see in the

following section, but we would be remiss to not address the problem we described briefly

in our introduction. While this is mostly for the enjoyment of the author, it does highlight

the manner in which de Bruijn graphs are used in genomics.

Theorem 1.3.2 (de Bruijn 1946). Given an alphabet A such |A| = n and let k € N be

fized. Then there exists a word of length n* + (n — 1) containing every element of A* as a

factor.
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Proof. Consider the de Bruijn graph Bj_,(A). First note that the degree of each vertex
w is Bj(A) is 2n, as we form n edges by appending each of our n symbols to the end
of w and another n edges by appending our n symbols to the beginning of w. Thus, by
Theorem 1.3.1 our graph is Eulerian. Further note that each edge corresponds to a unique
element of A, as a word is uniquely defined by simultaneously knowing its maximal prefix
and suffix. Hence any Eulerian cycle in Bf_,(A) describes a cyclic string of | B} (A)| = n*
symbols containing each element of A*. To generate the noncyclic version of our solution

we need to traverse the first (n — 1) edges of our cycle twice, once to begin our first factor

and a second time to complete our last factor. O

We continue with a simple way of defining a measure on de Bruijn graphs.

Definition 1.3.10 (Occurrence). For v, w € A* the number of occurrences of v in w is
ocey (w) = [{i|wiwit1...wiyp—1 = v}

Clearly occ,(w) = 0 when |v| > |w|.

This is the merely the number of instances in which v appears as a factor of w.

For W a finite subset of A* and v € A*, the factor frequency of v in W is

ZwGW OCCU(M)
> wew max{0, [w| — [v] + 1}

freq,(W) =

Define freq®(W) to be the vector, in lexicographical order, of freq,(W) for v € A*.
Proposition 1.3.3. Using the notation defined above, freq®(W) defines a measure on

Ak

Proof. Since A is a finite set, we need only demonstrate that freq®(WW) integrates to 1

over A¥. That is

> fred (W) = Y freq.(W)

veEAk veAk
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S uew occu(w)
25 ey max{0, Jw] — [0 + 1}

_ Zueﬂk EweW occy(w)
> wew max{0, [w| — |v] + 1}

Notice that the numerator and the denominator here both count the same quantity, the
number of factors, counting with repetition, of length k appearing in the words in W. The
numerator does so by counting the occurrences over all possible factors of length k, the
denominator does so by counting the number of consecutive sequences of length k in each

w € W. Thus the sum is 1, as required. O

We next describe a useful, and related, function when considering factor frequencies and

de Bruijn graphs, that of the complexity function of a word or collection of word.

Definition 1.3.11 (Complexity Function). For a word w over an alphabet A define the

complezity function f, : N — N by

fw(n) = |[{v]|v is a factor of w and |v| = n}|.
We extend the complexity function to a set of words W by counting the number of factors
of length n in any of the words w € W.

We now relate a useful formula for the computation of the path distance in each of the

above de Bruijn graphs.

Theorem 1.3.3 (Graph Distance in By(A)). Let v = v1...vp,w = wy ... w, € A*. Let

dgp be the path length distance in the de Bruijn graph. Then [64]
dgp(v,w) =k —max{i|1 <7 < k,Vg—s41...0k = W1 ... W;}.

Theorem 1.3.4 (Graph Distance in Bj(A)). Let v = v ...v5,w = w; ... wy € AF. Let

dgp+ be the path length distance in the symmetric de Bruijn graph. Define

lij(v,w) =max{s|s <j,s <k —i+1,0...Vijs—1 = Wj_s41...W;}



74
rij(v,w) =max{s|s <i,s <k —j+1,0i—gt1...0 =Wj ... Wj—_s41}
Then [64]

dgp+(v,w) =2k — 14+ min {i—j —max{l; ;(v,w),r; (v, w)}}.
1<i,j<k

Note that in the case of a directed graph, our distance on vertices is not a metric as it
is not symmetric. On the other hand, utilizing the path distance on the symmetric de
Bruijn graph does yield a metric on A*, which we will make use of later in our work. We
break from our discussion of de Bruijn graphs to introduce an alternate pair of metrics on
the space of finite words [77]. We begin by defining a set of operations on words, that of
insertion, deletion and substitution. In the following let v be a word of length k£ from the

alphabet A.

Definition 1.3.12 (Insertion). We say w is obtained from v by an insertion if there exists

a € A and factors « and y of v such that v = xy and w = zay.

Definition 1.3.13 (Deletion). We say w is obtained from v by an deletion if there exists

a € A and factors « and y of v such that v = zay and w = zy.

Definition 1.3.14 (Substitution). We say w is obtained from v by an substitution if there

exists a, 8 € A and factors = and y of v such that v = zay and w = z8y.

We now define the edit distance and the related longest common subsequence distance

(LCS) on elements of A*.

Definition 1.3.15 (Edit Distance). Let v,w € A*. Define dg(v,w) to be the minimum

number of applications of insertion, deletion or substitution needed to obtain w from v.

Definition 1.3.16 (Longest Common Subsequence (LCS) Distance). Let v,w € A*. De-
fine drcs(v, w) to be the minimum number of applications of insertion or deletion needed

to obtain w from wv.
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It is clear that the above are both metrics, given the symmetry of the operations involved.

The LCS distance is so named because of the following alternate characterization.

Proposition 1.3.4 (Alternate Characterization of LCS). Let v = vi...v, and w =

Wi ... Wy be words. Let I be the set of strictly increasing functions p : N — N. Then

[64]
dros(v,w) = (n+m) —2-max{s| I py, pw € IS5V, (1) Vp,(s) = Wpo(1) - - - Wpy(s) }

where we take the mazimum over the empty set to be 0.

That is, we may take the LCS to be the number of symbols left unmatched in a pairing

between symbols comprising words which respects order.

In this section we have defined the language used in understanding the theory of words and
the de Bruijn graph, a natural mathematical object which encodes information regarding
the factors of words. We have also defined a few natural metric structures on the space
of words, those arising from de Bruijn graphs, as well as those derived from of a set of
operations on words. We now turn to a discussion of the applications of graphs, particularly

the manner in which graphs have been used in biology.
1.3.5 Survey of the Applications of Graph Theory to Genomic Assembly

Applications of the mathematical formalism of graphs appear in a variety of contexts in the
biological sciences, including networks describing biomolecular interaction and structure
[48, 9], ecosystem ecology [14], epidemiology and phylogenetics [90] (see Section 1.1.3). In
molecular biology, of chief importance is the understanding of the structure and function
of the molecular building blocks of life. Graphs have been implemented in predicting the
shape of molecules, such as predicting RNA secondary structures [9] and protein shape
[38]. In the field of genomics, graph theory has been particularly useful for giving a

computational framework to the problem of de novo genome assembly. Our chief purpose
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here will to be to describe the application of graphs to this problem. See Section 1.1.2 for

information related to genomics which is assumed in the following.

Given a collection of short sequence reads, the assembly problem is that of finding the most
parsimonious sequence, that is, the simplest genome, from which this given collection
might have arrived as factors. As we have seen, de Bruijn graphs are a useful object
when considering the manner in which longer words can be built up from a set of factors.
Indeed, de Bruijn graphs have been at the heart of solving this problem [19] by solving
an interpretation of the same Eulerian path problem described in Theorem 1.3.2, but in
a genomic context. There are many current de Bruijn graph based genomic assembly
packages, such as Velvet [134], SOAPdenovo2 |70] and SPAdes |5], which vary in their
optimization for particular genomes sizes, sequencing technologies or methods of error
correction. We describe the general method utilized by following the algorithm for EULER

[92], one of the original such assemblers.

Given that errors occur in the process of genomic sequencing, error correction is made
before assembly begins. By leveraging the relatively high coverage rates supplied by se-
quencing technologies, error correction can be done by consensus among sequence reads.
Additional processing to reduce error can be made by applying dynamic programming
techniques to determine the minimum number of edits to a set of sequences for an assem-
bly to exist and then thresholding ‘low-quality’ reads having little agreement with the rest

of the sequences.

We begin assembly itself by selecting a positive integer k and deriving from our collection
W of sequence reads a multiset Wy, of all k-mers appearing in W. The optimal values for k
vary by assembler technology, sequence read length and genome length [18] and are often
chosen experimentally, by comparing the quality of assemblies under each. Typical values

are from k& = 20 to k = 70.

Letting A = {A,C,T,G} we select and build the vertex set for the de Bruijn of (k — 1)-
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mers, B,_1)(A). Note that each directed edge in B,_y)(A) corresponds uniquely to a
k-mer, given by the word whose first proper prefix is given by the originating vertex and
whose first proper suffix is the terminal vertex. Thus we then take our set of k-mers Wy,

and populate the edges, with multiplicity, of B(,_1)(A).

A path of length n in this graph is thus a word of length n+ &k — 1, with overlapping factors
of length k appearing among the known set of k-mers in the multiset of sequence reads. By
producing an Eulerian path which traverses each edge of the graph, we produce an assembly
of the genome. There are linear time algorithms for solving the Fulerian path problem
[53], given that the degree requirements of the graph are satisfied so that a solution exists,
and so, in theory, we have reduced the problem of genome assembly to that of the Eulerian
path problem. Complexities arise due to unaddressed errors in sequence data, uneven or
incomplete genome coverage and boundary conditions for sequences. These constraints
are addressed otherwise, or are used to place additional constraints on the choice of an

Eulerian path.

In the above we have described the application of graphs to questions arising in genomics,
particularly to of sequence assembly. We have highlighted how adjacency in the de Bruijn
graph can be used to find sequences which contain a given set of k-mers as consecutive
factors. This material is important motivation for the work in Section 3. The treatment
here regarding graphs in a biological context is complementary to our discussion in Section
1.1.3 regarding the application of trees to Phylogenetics. We are now prepared to begin
the discussion of our main results, the Wasserstein metric in the context of biologically

relevant graphs.
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2 COMPUTATION AND FOUNDATIONS OF THE UNIFRAC
METRIC FOR MICROBIAL COMMUNITY ECOLOGY

2.1 Introduction

The UniFrac metric (Definitions 1.1.13 and 1.1.14) is a robust and well-used [-diversity
metric in metagenomics. Evans and Matsen demonstrated in [28], using the dual for-
mulation of the 1-Wasserstein metric (Definition 1.2.4), that the UniFrac metric is the
1-Wasserstein metric (Definition 1.2.1) for path distance (Definition 1.3.7) in a phyloge-
netic tree (Defintion 1.1.1) and is given by integration over subtrees of the tree. They
utilized that observation to generalize the UniFrac metric, by considering alternate ex-
pressions for weighting the differences between relative abundances over a phylogenetic
tree, and to develop the use of Monte Carlo permutation tests for significance, in both

UniFrac and their generalized metrics.

In the following we provide an alternate and elementary proof of the same fact, that
UniFrac is the 1-Wasserstein metric given by integration over the subtrees of a phylo-
genetic tree. The constructive proof builds a minimizing coupling between samples and
highlights a useful invariant behind the UniFrac metric, that of a weighted differential
abundance vector between relative abundances. We utilize the structure of the integral to
construct an efficient linear time algorithm, EMDUniFrac, which computes UniFrac or-
ders of magnitude faster than previous implementations while returning more information,
that of the weighted differential abundance vector and a minimizing coupling between
samples. These results were published as EMDUniFrac: ezxact linear time computation
of the UniFrac metric and identification of differentially abundant organisms with David
Koslicki in J. Math. Biol. (2018) https://doi.org/10.1007/s00285-018-1235-9. The ideas

contained within Algorithm 2.2.2 were incorporated into a collaborative work which is in



79

revision, to be published as Striped UniFrac: enabling microbiome analysis at unprece-
dented scale with Daniel McDonald, Yoshiki VAgazquez-Baeza, David Koslicki, Nicolai

Reeve, Zhenjiang Xu, Antonio Gonzalez, Rob Knight, Nature Methods (2018).

We next show how modifying the linear structure underlying the UniFrac metric allows for
the computation of a related biological ordination technique known as Double Principal
Coordinate Analyis (DPCoA, Definition 1.1.23). We show how combining this realization
with a mathematical understanding of the principles behind DPCoA allows for an efficient
algorithm which circumvents the need to compute pairwise distances between relative

abundances in the generation of DPCoA.

Finally, we demonstrate how considering the UniFrac metric between relative abundances
as the L; norm of the image of their difference under a linear transformation allows for
the formulation for the expected Unikrac distance between Dirichlet distributed sample
relative abundances. We show how this has utility to the Dirichlet-Multinomial (Definition

1.1.21) model frequently used for sequence read data.

We conclude by demonstrating the effectiveness of these tools on both real-world and

synthetic metagenomic datasets, before discussing potential work for the future.

2.2 Efficient Computation of the UniFrac Metric as the Wasserstein
Metric

2.2.1 Alternate Characterization of the 1-Wasserstein Metric over a Tree

In the following we begin our demonstration that the 1-Wasserstein metric Wi (P, Q) be-
tween probability distributions P and ) over a tree T' is given by an edge-weighted in-
tegration over all subtrees of the absolute value of the difference between P and @ by
producing an alternate characterization for the minimizing flow realizing the Wasserstein

metric. We first require some definitions.
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Let P and @ be probability distributions on a tree T" with distance matrix D and edge set
E. Recall that T'(P, Q) is the set of all flows or couplings between P and @ in T. By an
abuse of notation, we write ¢ € T to denote a vertex of our tree. For such a vertex ¢ € T
we will say i is a source if P(i) > Q(i) and say i is a sink otherwise. Let Tsource and Tsink

denote the sets of sources and sinks, respectively.

Next, we select an arbitrary vertex and distinguish it as the root p of 7. While the choice
of a root in a phylogenetic tree is biologically motivated, it is, for our current mathematical
purposes, merely a convenience of notation. For each i € T let a(i) be the unique neighbor
of 7 in T which lies on the path from i to p in T". Thus the edges of T" are determined by the
set of ordered pairs (¢,a(7)) for i € T. Let e; denote the edge (i,a(i)). As T is a tree, each
edge e € F is a bridge. Thus the removal of an edge partitions the vertices into two disjoint
subsets. We denote the subset containing p by T, and the other by 7T7. Let [ : E — R
define a set of edge weights or lengths on E. For 4,5 € T, define 7 (7, j) to be the set of
edges comprising the unique minimal path from i to j in T', so that D(i,j) = >_ c.( ;) U(e)

is the distance from 4 to j in 7.

Lemma 2.2.1 (McClelland 2018). We have that

Wi(P,Q) = MGIIFHII;Q)Z D) i) (M, §) + M, 1)).

ecE i€l jET!

Proof. Let 1.(; j)(e) : £ — {0,1} be the indicator function of the path from i to j in 7'
That is, 1,(; j)(e) = 1 if e is an edge in the path from i to j and is 0 otherwise. We then

have that for any flow M € I'(P, Q)

> DG, j => 3 (Zz NG ) M(i, §) (2.2.1)

i,j€T €T jeT \e€E
=D D> U aiy (€)M, ) (2.2.2)
ecE €T jET
- Z Z Z l 7r zg) (Zvj) (223)
ecE i€

TeUT], TeuT’
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=D (D0 UM, g) + D> i(e)M(i, ) (2.2.4)

ecE \i€T. jET! €T jeTe

=22 > Ue) (M(i,j) +M(j. ). (2.2.5)

e€E i€T. jeT!

The above equalities are justified as follows. To begin, (2.2.1) follows from the definition
of the distance function and the use of the characteristic function of the path between
vertices to expand the summation over all edges of the graph. Next, (2.2.2) and (2.2.3)
reorder the summation and express the vertex set in terms of the partitions defined above
by edge deletion. We have that 1W(i7j)(e) = 1 if and only if the vertices i and j belong to
distinct partitions T, and 77, from which (2.2.4) follows. Finally, in (2.2.5) we condense the
summation notation by reordering the last sum and grouping terms. Taking the minimum
over all M € T'(P, Q) yields the 1-Wasserstein metric on the left hand side, and thus the

desired result is obtained. O
Next, we prove a lower bound on the summands involved in the above definition of the
1-Wasgserstein metric.

Lemma 2.2.2 (McClelland 2018). For any flow M € T'(P.Q) and any e € E we have that

ZZZ M(i,5) + M(j,17) ZP

1€Te jET! €T,

Further, the wvector d, indexed by the edges of T and having entries dy(e) =

le) X ier, 2ojer, M(i,j) — M(j,i) is unique, regardless of the minimizing flow M.
Proof. We have that

e)| > Pi) = Q)| = [le) D [ DM, ) = > M) (2.2.6)

1€Te 1€Te \JET JeET

=D Ue) YoM 5) — M, i) (2.2.7)

i€T, jeT
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=D weMG,5) — M(Gi)) + D i(e) (M, §) — M(j,4))

i€Te \j€T. JeT:

(2.2.8)

= D0 ey M(i,5) = MG, i) + > Y (e)(M(i, §) — M(j, 1))

i€Te jeTe icTe jET!

(2.2.9)
= D03 Ue) (M, j) — M(j, ) (22.10)
i€Te jET,

D ie)(M(i, ) + M4, 4)). (2.2.11)

1€Te jET]

IN

Equations (2.2.6) and (2.2.7) above follow from expanding P(i) and Q(i) in terms of
the row and column sums of M. Equations (2.2.8) and (2.2.9) reorganize the inner
sums by way of the partitions 7, and 7 and then group terms. Next we note that
>ier, 2ojer. L(€)(M(4, j) — M(j, 1)) = 0 as each term M(i, j) occurs precisely twice, once
with each sign, which is reflected in (2.2.10) above. This line also demonstrates the unique-
ness of d,(e), as the quantity is here shown to be equal to Y ;. P(i) —Q(i), which depends
only on the distributions P and (). Finally, we apply the triangle inequality to yield our

result. O

By the lemmas above, it suffices to demonstrate that there exists a flow M which, for every

edge e, satisfies 3,0 > 25 Ue)(M(i,j) + M(j, i) = I(e) ‘ZieTe P(i) — Q(i)|. Further
note that the expression on the right is precisely the summands involved in Definition

1.1.14. In our next section we present EMDUniFrac, which produces such a flow M.
2.2.2 EMDUniFrac: Description

The pseudocode for EMDUniFrac is contained in Algorithm 2.2.1. Intuitively, the algo-

rithm begins at the leaves of the tree and ‘pushes’ mass toward the root; satisfying the
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sources and sinks for each subtree encountered in the progression. The matrix G tracks
the mass still needed to be moved to or from each vertex by the algorithm, while the vector

w tracks the length of paths traversed by mass at each step.

To implement EMDUniFrac, we first choose an ordering of the set of vertices of T" such that
for i, € T, i is an element of the path from j to p only if ¢ > j. A natural such ordering is
defined by partitioning the vertices of T" by the disjoint circles of radius r € N centered at
p, and then ordering vertices such that increasing indices correspond to partitions defined

by descreasing radii.

We now establish a bit of notation for the following algorithm. We then let G and M be
a pair of matrices whose rows and columns are indexed by the vertices of T with respect
to an ordering as above. Let G;. denote the ith row of the matrix G. Initialize both G
and M to be the zero matrix. Let w be a vector indexed by the vertices of T', initialized
to be the zero vector. For any vector u, define skel(u) to be the binary vector of the same

dimension as u such for all 7, skel(u(i)) = 1 if u(é) # 0 and skel(u(i)) = 0 otherwise.

2.2.3 EMDUniFrac: Algorithm

Algorithm 2.2.1. EMDUniFrac (McClelland 2018)
Input:

P,Q,p,T,E ={i,a(i)} ForieT,l

Initialization:
M,G=0
EMDUniFrac(P,Q) =0
DiffAbund = 0

w=20

Tterations:
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1: fori=1,..,|T| do

2: M(i,i) = min(P(i), Q(i))

3 G(i,i) = P>i)— Q)

40 w=w+1(ia(i))skel(G;..)

5. for j such that G(i,j) > 0 do

6: for k such that G(i, k) < 0 do

7: M(j, k) = min(G(3, 5), — G(i, k))

8: G(i,j) = G(i,j) — M(j, k)

9: G(i, k) = G(i, k) + M(j, k)

10: EMDUniFrac(P, Q) = EMDUniFrac(P, Q) + (w(j) + w(k)) - M(j, k)
11: end for

12: end for

13: Gui), = Gagi), + Gi,.

14: DiffAbund((4, a(i))) = I(i, a(i)) 3 ,cqp G(i,1)
15: G;.=0

16: end for
Output:

M, EMDUniFrac(P, Q) and DiffAbund

2.2.4 EMDUniFrac: Proof of Correctness, Speed and Space Requirements

What follows is a brief technical lemma used to prove that the matrix M produced by

EMDUniFrac is indeed a flow. between distribution P and Q.

Lemma 2.1 (McClelland 2018). Let m € T be arbitrary. Then for all n € T such that

n is a vertex along the path from m to p, when ¢ = n in the loop beginning at line 1 of

Algorithm 2.2.1 we have that one of the following hold:
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If m is a source, then at the beginning of line 4 of Algorithm 2.2.1 we have that

P(m) = G(n,m) + Y _ M(m, k)
keT

Q(m) =Y M(k,m).

keT

Alternately, if m is a sink, then at the beginning of line 4 of Algorithm 2.2.1 we have that

P(m) =Y M(m,k)

keT

Q(m) = —-G(n,m) + Z M(k,m).

keT
Proof. This follows by induction. Suppose m is a source and let ¢ = m in the loop at
line 1 of Algorithm 2.2.1. Then min(P(m),Q(m)) = Q(m) and hence, by construction,
M(m,m) = Q(m), G(m,m = P(m) — Q(m). Further, before beginning the loop at line 4
of Algorithm 2.2.1, every other entry of the mth row of M and G are zero. This is because
the elements of these rows are first potentially assigned nonzero values for ¢ = m in the
midst of lines 6, 7 or 8. Thus at the beginning of line 4 of Algorithm 2.2.1, we have

P(m) = G(m,m) + Y _ M(m,k),
keT

Q(m) =>_ M(k,m).

keT

Thus the claim holds for ¢ = m.

Now suppose inductively that the above equalities holds when ¢ = j for some vertex j > m
on the path from m to pin T'. We shall show the equalities holds for i = a(j). As Algorithm
2.2.1 proceeds in the loop at line 1 to the vertex for i = a(j), we have that G(a(j),m >0
and thus by line 5 of Algorithm 2.2.1, the m-th column of M is left unchanged. Hence the

sum ), .o M(k,m) remains unchanged.
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Additionally, any change to G(a(j),m) during the loop at line 5 is compensated by a

change to ), .p M(m, k), thus

G(a(j),m) + Y _ M(m,k) = G(j,m)+>_ M(m,k) = Pp.
keT keT

Thus, inductively, the claims holds for all vertices along the path from m to p in T and m

a source. Symmetric reasoning holds for the case of m a sink. O

We now prove our main result.

Theorem 2.1 (McClelland 2018). The EMDUniFrac algorithm in Algorithm 2.2.1 produces

the 1-Wasserstein distance W1 (P, @) and a corresponding minimizing flow M.

Proof. We first show that M is indeed a flow. Upon the algorithm reaching the root p,

that is when ¢ = |T'| in line 4 of Algorithm 2.2.1, we have traversed every vertex of T', so

that
0=1-1 (2.2.12)

=Y P(k) - Q(k) (2.2.13)
keT

= > P)-QK)+ Y Pk)—-Q(k) (2.2.14)
k€Tsource k€Tsink

= Y <G(p, k) + > Mk, 1) - ZM(Z,k))
k€T source leT leT

Y (Z M (k1) — (—G(p, k) + > M(l, k))) (2.2.15)

k€Tsink \IET leT

=3 Y MIE) - > MED+ > Gk + > Glpk)  (2216)
keT leT keT leT k€Tsource k€Tsource

=Y G(p,k). (2.2.17)
keT

The above equalities are justified as follows. In (2.2.15) we expand the terms P(k) and

Q(k) in terms of the matrices G and M, as shown in Lemma 3, since p is an element of
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the path from any vertex to p. We then group terms in (2.2.16) and (2.2.17) by repeatedly
using that Tsoyrce UTsink = T, before canceling the symmetric summations of the elements

of M.

It then follows that the sum of the positive elements of G(p,- is equal to the sum of the
negative elements of G(p,-, and thus, by construction of the loops at lines 4 and 5 of
Algorithm 2.2.1, the algorithm must terminate with G(p,- identically zero. As we still
have that for each i € T', P(i) = > . cp M (4, k), Q(i) = > _per M(k, j), up to the addition

or subtraction of G(p,i) = 0, M must be a flow.

Now we show that M minimizes the sum defining the 1-Wasserstein distance. By Lemmas
1 and 2, it suffices to show that ;e = 5er Ue)(M (i, )+ M (j,7) = [ Xoier, P(i) — Q(0)]
for all e € E. Given the ordering of the vertices chosen for the algorithm above, let
n € T — {p} be arbitrary. To begin, we make some observations regarding the structure of
the matrix G and its relationship to M in the algorithm. Note, that by construction, at
the termination of the loop at line 4 of Algorithm 2.2.1 for ¢ = n, the entries of G(n, ) all
have the same sign, as the the loops at lines 4 and 5 have the effect of pairwise choosing
elements of opposite signs and using one to reduce the magnitude of the other. This process
terminates when elements of one or the other sign are exhausted. Second, note that for
k€T and m > n, either G(m, k) = 0 or has the same sign as G(n, k), as any change to
the entries of G(-, k) is made to move the value toward zero by a quantity bounded by the
magnitude of the entry. This again follows from examination of the inner most loop of the

algorithm, as well as the evolution of rows of G.

Finally, note that across all i € T, ,j € T, either M(j,i) = 0 or M(j,i) = 0. This
follows since M (4, j), respectively M (j,1), is only assigned a nonzero value in the case of
G(m,i > 0, respectively G(m,i < 0. By the above observation regarding the signs of the

elements of G(n,-), only one of these conditions holds across i, j.
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Now, without loss of generality, assume
> PO - Q)| = Y Pi)- Q)
€T, €T,

as the argument for the alternate case is analogous. We then have that

3 P - Q)| = Y. Pi) - Q) (2.2.18)

i€Te, €T,

= D D M(i.j) — M(ji) (2.2.19)

i€Te, jET

=D > M(ij) - M) (2.2.20)

i€Te, jeT.,

=D > M(ig) + M) (2.2.21)

i€Te,, jETY,
The change of sign in moving from (2.2.20) to (2.2.21) follows from the above observation
that at least one of M (i, j) or M(j,i) must be identically zero, and that the sum must be
non-negative. Hence —M (j,7) = 0 = M (j,7). Scaling the above equality by I(e,) yields
YPH)—QM)| = > Y M(i,j) + M(j,i).
i€Te,, i€Te, jET.,
Having achieved the lower bound established in Lemma 2, we must have that the flow M

is a minimizer for the sum defining Wi (P, Q). O

Theorem 2.2 (McClelland 2018). Let |supp P|, |[supp Q| denote the number of elements in
the support of the probability distributions P and @, respectively. Let s = |supp P| +

|supp @Q|. Then the EMDUniFrac algorithm has time and space complexity O(s).

Proof. We first consider the time complexity of EMDUniFrac. Note that each iteration of
the loop at line 5 of Algorithm 2.2.1 has the effect of satisfying a source ¢ or sink j, that
is, establishing the appropriate row sum ¢ or column sum j of the matrix M. Further, the

loop at line 5 only visits a pair of vertices (7,j) in the case that both source ¢ and sink j
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have not been satisfied, that is, that both P(i) # >, . M (i, k) and Q(3) # > pcr M (K, ).
As there are s such row or column sums to satisfy, the loop at line 5 is evaluated at most

s times. Hence the time complexity of the algorithm is, in total, linear in s.

Now we examine the space requirements of EMDUnikFrac. By the above, the matrix M
is sparse. That is, there are most s evaluations of the loop at line 5 of Algorithm 2.2.1
and thus, including the assignment of values to M at line 2 of the algorithm, at most 2s
non-zero entries in M. Additionally, line 3 of the algorithm assigns a nonzero entry to G
at most n times, while line 12 has the effect of passing non-zero entries of G from one row
to another prior to being removed in line 13. Thus the number of nonzero entries of G is
bounded by s. Finally, the vector w in Algorithm 2.2.1 is one dimensional, having at most
s nonzero entries. Hence the total space requirements of the algorithm are also linear in

s. O

In this section we have demonstrated the correctness and efficiency of an algorithm which
computes the UniFrac metric while producing an optimal flow. In our next section we
relate a proof which demonstrates a method for the computation of the UnikFrac metric

which does not produce an optimizing flow.
2.2.5 EMDUniFrac: Linear Algebra Proof of Correctness

We present another proof of our previous result, that the 1-Wasserstein metric is given by
integration over all subtrees of the absolute value of the difference between distributions,
in the spirit of |28]. This does not produce a minimizing flow M, but it does allow us to

characterize the Wy as the L; norm of a readily constructed linear transformation W.

Consider a rooted tree T with root p. Identify the subtrees of T" with the nodes of T,
so that subtree ¢ is the subtree which does not contain p formed by deletion of the edge

(i,a(i)) from the path from node i to the root p. The subtree corresponding to p is T'. Let
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the vectors {w;| 1 <14 < n} be such that w; is the indicator function for subtree w, that is

v;(j) = 1 for those nodes j in subtree i and zero otherwise

Let W be the n X n matrix whose rows correspond to the vectors w; scaled by the corre-
sponding edge weight [(i,a(i)). Let P and @ br probability distributions on 7', given as

column vectors ordered such that entry ¢ corresponds to the root of subtree 1.

Theorem 2.2.1. Using the above definitions, the 1-Wasserstein metric between distribu-
tions P and Q is given by [28]

IW(P = Q)

Proof. Recall that by Theorem 1.2.4 we may express the Wi (P, Q) distance between dis-
tributions P and @ as

Wi(P,Q) = max}  f(H)(P(t) - Q1))

teT

for Lipschitz f € Lipi(T). Tt follows from standard facts from analysis, which are perhaps
more trivial in our current discrete setting, that f can be expressed as an indefinite integral
for a function bounded in absolute value by the Lipshitz constant. That is, we may write

any such f as

F@&) =Y gls)-Us,a(s))

s€m(t,p)

for some g : T'— [—1,1], up to the value of f(p), which does not alter the value of the

maximization.

For a fixed f we then have that

D FOPE) - =) 9(s) - 1(s,a(s)) | (P(t) = Q1)) (2.2.22)

teT tel \sen(t,p)

=D > e (s) - g(s) - Us,als)) - (P(t) = Q(1)) (2.2.23)

teT seT

=D > e (s) - g(s) - Us,als)) - (P(t) = Q(1)) (2.2.24)

seT teT
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=Y g(s)-Us,a(s)) Y (P(t) - Q) (2.2.25)

sel 1€ a(s)
Where we have again in (2.2.22) expressed summation over a path as summation against
an indicator function over 7' and noted in (2.2.25) that, after interchanging the order of

integration, for a fixed node s, the set of vertices ¢t for which s is an element of the path

7(t, p) is precisely the subtree defined by s.

Letting u(i) be the ith component of the vector u = W (P—Q) we see that, by construction,
u(i) = U(i,a(i)) ZteT(,_ ('))(P(i) — Q(i)). It follows that Wi(P,Q) = maxy Y ;. g(i)u(i)
for |g| < 1. Clearly we achieve a maximum when g(i) = 1 for u(i) > 0 and u(i) = —1 for

u(i) < 0, that is, when g(i)u(i) = |w(i)]. Thus W1(P,Q) = [|[W(P — Q)||1, as required.

We note that the above formulation allows for an more efficient implementation of the
UniFrac metric in those instances in which we are uninterested in capturing a minimizing
flow. By expressing the action of the matrix W implicitly we are able to recover the
UniFrac metric in time linear in the number of OTUs in a pair of samples, without having
to interact with the matrix which contains the elements of a minimizing flow. We present

pseudocode for this simplified version of the algorithm now.
2.2.6 EMDUniFrac: Algorithm without Flow

In the following algorithm let 7' = (V, E') have root p. Let m be the maximum number of
edges in a path from p to any vertex in T. Let Sy = {v € T|d(v, p) = k} for d the metric
which merely counts unweighted edges, for each 1 < k < m. For each vertex v € T let
Dau(v) be the set of daughters of v in T, that these are the vertices adjacent to v in the

branch which has v as its base.

Algorithm 2.2.2. EMDUniFrac: Without Flow (McClelland 2018)
Input:

P,Q,p, T,E ={i,a(i)} ForiecT,l
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Initialization:

EMDUniFrac(P,Q) =0

w=0
D=P-Q
Iterations:

1: fori=1,....,m do

2: forveS; do

3: for w € Dau(v) do

v D(v) = D(v) + D(w)
5: end for

6: end for

7: end for

§: fori=1,...,|T| do

9: EMDUniFrac(P, Q) = EMDUniFrac(P, Q) + (I(i,a(3))) - | D(7)]
10: end for

Output:

EMDUniFrac(P, Q)

2.3 Efficient Computation of a PCoA Motivated, UniFrac-Related Met-
ric for Ordination

2.3.1 Introduction to the Rapid Computation of DPCoA

One of the chief applications of the UniFrac metric is as measure of dissimilarity for use in
ordination techniques, such as Principle Coordinate Analysis (PCoA) (see Section 1.1.6),
for the purpose of exploratory data analysis. The pairwise distances between 1,000s or

10,000s of samples are carefully computed, and then embedded on 2 or 3 dimensions in
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such a manner as maximize retained variance in the measured distances between low di-
mensional points. This embedding necessarily just approximates the relationships between

our samples, and thus we are throwing away information which we have labored to produce.

But what if we knew before hand which information we wanted to keep afterwards? What
if we only computed the aspects of the metric we were actually interested in observing? As
an aside to our work regarding the UniFrac metric, in the following we outline a solution
to precisely that question that utilizes a UniFrac-related and biologically significant metric
based in the Lo distance between weighted differential abundance vectors. Let P and @)
be relative abundances assigned to a phylogenetic tree T" and let W be the matrix defined
in Section 2.2.5 such that [|[W (P — Q)||r, is the UniFrac metric between P and Q. Let
W /- denote the matrix formed by scaling the rows of W by the reciprocal of the length
of the corresponding edge length, so that W has rows which are indicator functions for

subtrees scaled by the square root of the length of the edge defining the subtree.

In [28] Evans and Matsen noted that there was a biological significance to the quan-
tity |[W_ (P — Q)l|L, albeit in the form of a integral over subtrees of a component-wise
squared difference of relative abundances, and thus, as written, not a linear function of the
abundances themselves. We modify the expression to suit our purposes and notation and
denote it dypra(P, @), but the result remains the same. We relate the derivation of that

significance in the following. Consider

durre(P, Q) = |W (P - Q)|l1, (2.3.1)
= _(WiP — wiQ)? (2.3.2)

€T
=) (WiP)’ + (wiQ)? — 2(wWiP)(W{Q). (2.3.3)

€T

For the sake clarity, we expand one of the above terms as an example
2

S WP =" 1,0 (V1) P(5)

€T €T \jeT
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K 1w(j,p)(i)mp(j)) <Z 1w(k,p)(i)\/@P(k)>
JET keT

Z Tl'(jp )N (k ,p)(l)P(])P(k)
ke

=,

Note that if we let a;; denote the last common ancestor of j and k, then 1.(; Hrr(k,p) =

lr(a, ,,p)- Further, we have that d(aj, p) = (1/2) - (d(4,p) + d(k, p) — d(j, k)) which we

Qj.ksP

utilize in continuing the above expansion

Z(W§P>2: Z Zl ﬂaJk,p (4)

icT J,keT teT
= S PGP -d(ags.0)
jkeT
- Z (d(7, p) + d(k, p) — d(4,k)).
]k:ET

Returning to our previous work and applying the above expansion to each of the terms in

Equation 2.3.3 yields

1

dirpra = B} > P()P(k) - (d(j,p) + d(k, p) — d(j, k) . ..
jkGT
+3 ZQ (d(4, p) + d(k, p) — d(j, k)) . ..
JkET
- P (d(,p) +d(k, p) —d(4,k))
J,keT

Isolating the terms which depend upon p and thus only one of j or k, yields

> %P(j)P(k) (d(, p) + d(k, p)) - ..

3,keT
QUQK) - (d(j. p) + d(k, p)) — P()QUE) - (A(j, p) + (k)
= 30 LPGIPH) — Q) - (A0 p) +d(k, )

= 5QK)(P() — Q@) - (d(, p) + d(k, p))
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Thus we have that

1

dipre = Y P(QK) (k) =5 | D PGIPK) -G k) + Y QU)Q(K) - d(j, k)
J.keT J,keT j.keT

The treatment in [28] ends with the above statement, which has a clear biological sig-
nifigance. We weight the sum of all pairwise distances between community members by
their relative abundances and then compare the average of such measurements among a
pair of communities to the measurement between communities. Thus we are comparing
the overall biological ’spread’ in an evolutionary sense between of a pair of communities,
as encoded by pairwise distances in a phylogenetic tree, against the average ’spread’ of
the communities themselves. It was noted in [33] that this is precisely Double Principle
Coordinate Analysis (DPCoA), see Section 1.1.6. It is currently implemented as described
in [33] in the ’phyloseq’ R package, a component of the Bioconductor initiative [35] for
bioinformatic tools development.In [33] they note the computational inefficiency of imple-
menting DPCoA compared with UniFrac, while using the formulation for DPCoA given
by [28]. They note in 2012 a run time of approximately 40 minutes of a 32 core Linux

cluster for a tree containing approximately 2500 OTUs.

We note that casting DPCoA as the Ly distance between images under a linear transforma-
tion has computational benefits. As shown in Section 1.1.6, in the case of an Ly distance
matrix for PCoA, PCoA on a set of pairwise distances is precisely PCA on the data points
themselves. Thus we can determine the principle coordinates for a matrix of pair-wise

distances dypro from the images W \/(P), without constructing the the quadratic in time
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and space distance matrix. But, as we noted in Section 1.1.6, we can further produce the
covariance matrix for the set of images W/ (P) from the covariance matrix for the relative
abundances themselves. In the case that relative abundances are supported only on the
leaves of T', this yields a matrix which is at least twice as sparse as the matrix of images

and does not require computation of the action of the W U

Further, given the first few principle coordinates, say c¢; and cg, the products Wi/cl
yield the projections of the action of Wf/ into only the desired coordinates, thus we can
compute, via a pair of inner products, precisely the PCoA transformed dataset and and
no additional components. Note that any additional work in performing the eigenvalue
decomposition of the matrix of relative abundances would have been embedded in the
construction of a PCoA plot anyways, we have merely done the work upfront so as to

avoid the construction of the full set of images and their pairwise distances.

Finally, this allows DPCoA to be cast in a similar theoretical framework as other linear
transformation used for ordination, such those described in [60] by Legendre and Gallagher.
They noted the use by biologists of PCA to transform raw abundance dataset, and thus
the ordination of communities with respect to the Lo distance, and presented a variety
of linear transformations which allowed for the use of PCA to produce more meaningful
relationships. This included the x? and Hellinger distances discribed in Section 1.2.4.
Regardless of the computational benefit, the above observation allows for Rao’s diversity
index to be included in a list of diversity metrics which are given by ‘ecologically meaning

transformations’ of relative abundance datasets, as described defined in [60].
2.3.2 DPCoA via PCA: Description

In the following we outline the description of the algorithm to compute DPCoA via PCA.
As we are not interested in capturing the minimizing flow underlying the metric, we utilize

the action of the matrix W /- described in our introduction implicitly in a pair of subrou-
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tines. For ease of notation we assume in the following that our underlying phylogenetic
tree T is a perfect binary tree with root p and depth b, and thus 2° leaves and 20+ — 1
vertices, and let S be a set of k probability distributions on T'. Index the vertices of our
tree, and hence the probability distributions in S, in the following manner. Let the root
be 1, and for each vertex indexed by x, iteratively index each daughter vertex as 2 -z and

2-x+ 1.

We begin by computing 3, the covariance matrix for the elements of S. Recall that if a

random vector x has covariance matrix C, then for a matrix M of appropriate dimension
cov(Mz) = M'*CM.

We use X in this way to compute of the covariance matrix for the vectors W (p;). We
note that since the rows of W, are given as scaled indicator functions for subtrees, the
columns are then scaled indicator functions for paths from a given vertex to the root. Thus
in computing the action of Wi/ on a vector, we may inductive express the value of Wf/(z)

in terms of the value of the vertex adjacent to ¢ in a path to the root. By our indexing

system for a binary tree, this vertex is |(i/2)| for any ¢ > 2.

Having performed the above computation, we then compute the singular value decompo-
sition of cov(W (p;)) to determine the principal coordinates of interest, say ci,.. ., cn,
of the pairwise distance under Rao’s diversity index. The projection of the set of images

onto those coordinates is then given by
AW /pj = (ct W /)p;
= (Wt\ﬁck)tpj.

Thus we may construct the our set of PCoA plots via inner products with the set of vectors

W’i/ck. In the following section we present pseudocode which expresses the above.
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2.3.3 DPCoA via PCA: Algorithm

Algorithm 2.3.1. DPCoA via PCA

Input:
S, > S a set of relative abundances, | the length function for the phylogenetic tree
n > n the desired number of principle coordinates
Iterations:
1: ¥g = cov(S)
2: Yws = Xg
3: forj=2,...,d do
4: fori=2,...,d do
5 Sws(d,i) = V10, a(i) - Sws (4, 1) + Sws(, [(i/2)]) > The action of SW
6: end for
7: end for
8: fori=2,...,d do
9: forj=2....ddo
10: Swas(i, §) = /10, a(i)) - Sws(i,§) + Sws(i, 1(5/2)]) > The action of
w (EW)
11: end for
12: end for
18: (c1y...,¢n) = First n principal components generated from SVD(Zws)
14: forj=1,...,n do
15: fori=2,...,d do
16: cw ;i (1) = /11, a(i)) - cw; (1) + cw i (1(i/2)]) > The action of W' c;
17: end for
18: end for
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19: forj=1,...,n do
20: forse S do
21: PCoA(i, s) = (s, cuj) > Transformation of the dataset into the principal
coordinates
22: end for

23: end for

Output:

PCoA

2.4 Expectation of the UniFrac Metric

Having alternate characterizations and efficient computation of the UniFrac metric, as
well as noted the application of our results to the related ordination technique DPCoA,
we we change our focus to understanding the expected value of the UniFrac metric. In
this section we generate expressions for the probability density function of the UniFrac
metric under the assumption of a frequently employed distribution for the modeling of
metagenomic datasets. We determine E(UniFrac(P,Q)) when P and @) are drawn from a
Dirichlet distribution (Definition 1.1.20) using previous work on the relationship between

the difference of Beta distributed random variables (Defintion 2.4.1).

2.4.1 Application of the Dirichlet Distribution in UniFrac for Dirichlet-
Multinomial Distributed Sequence Data

While our efforts to speed computation of the Unikrac metric make analysis of significance
in measured UniFrac distances via Monte Carlo methods more tractable, it is tempting to
see if we can derive exact expressions for the expected value of the UniFrac metric given

a model of the underlying distribution of OTUs on a phylogenetic tree.
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As we noted in Section 1.1.6, the Dirichlet-Multinomial (Definition 1.1.21) is a common
probabilistic model for the distribution of sequence read data. Given a fixed phylogenetic
tree T', and a set S of sequence reads, we select a subset Ts of the nodes of T, thus a
collection of taxa or OTUs for the phylogenetic tree, upon which the sample generating
the sequence data is to be supported. This is typically some fixed taxonomic depth in the
tree to which the use of 165 rRNA analysis will assign sequences. We then draw a Dirichlet
distributed probability that each sequence read s is assigned to some node v € Tg. The
assignment of the set of sequences to nodes is then a Multinomial distributed random

variable.

What we have at the end of this model is a distribution for sequence assignments, not for
the vector of relative abundances which forms the basis for UniFrac distances. Supposing
that Ts = n and letting p = (p1,...,pn) be the probability distribution which forms
the parameter for the Multinomial and ¢ = (¢1,...,t,) be the random vector of sequence
counts, we note that the marginal distributions for each component t; is the Binomial
with parameter p;. Considering our Binomially distributed marginals as a sequence of
independent Bernoulli trials, a standard application of the central limit theorem yields
that t;/n is normally distributed with expectation E(¢;/n) = (n - p;)/n = p; and variance
Var(ti/n) = (pi - (1 — pi))/n. In the case of sequence read data, n stretches into the
100,000s for the metagenomic coverage generated by modern sequencing techniques. In
these circumstances the Dirichlet prior for the Dirichlet-Multinomial is an excellent model
for the UniFrac metric, one which is compatible with methods being utilized currently by

researchers.

In the following section we utilize properties of the Dirichlet distribution and its marginal
distribution, the Beta distribution, to generate formulas for the expectation of Dirichlet

distributed relative abundance datasets.
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2.4.2 Derivation of Expected Values for the UniFrac Metric

By utilizing our characterization of the UniFrac metric between relative abundance vectors
Pand Q as |[W(P—Q)||z,, we can generate formulations for the expectation of the UniFrac
metric between P and @ by first exploring the distribution of P — @ when P and @ are

Dirichlet distributed random variables.

For ease of use, we recall that we say a random variable X = (Xy,...,X,,) is Dirichlet
distributed, X ~ Dir(X, «), if it is supported on the interior of the unit simplex in R™ and

has probability density function given by
1 n
: _ i—1
f(xy, . Tp 00, ap) = Ba) Z||1 zy

for shape parameters o« = («,...,ay) > 0. Note that the z; satisfy z, = 1 — Z?;ll Zi,
X1y ey Tp—1 > 0 and 2?2_11 x; < 1, where the normalizing constant B(«) is given by the
multivariate Beta function (Definition 1.1.19).

We first define the Beta distribution [32].

Definition 2.4.1 (Beta distribution). The Beta distribution Beta(a, ) is a probability

distribution supported on the unit interval and has probability density function

flzia,B) = 2 (1 —2)?!

B(a, B)

for shape parameters «, 5 > 0.

The Beta distribution bears more than a passing similarity to the Dirichlet distribution, a
connection we formalize now. We now describe the marginal distributions of the compo-

nents of a Dirichlet distributed random variable [32].

Proposition 2.4.1 (Marginals of Dirichlet distribution [32]). Suppose a (X1,...,X,)
is Dirichlet distributed with shape parameters ou,..., 0. Let ag = > ;. Then the

marginal distribution of X; is Beta(ay, ag — « ).
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As we are interested in the image of our random variable under a linear transformation,

we recount the following very useful aggregation property of the Dirichlet distribution [32].

Proposition 2.4.2 (Dirichlet aggregation property [32]). Say X = (X1,...,X,) is Dirich-
let distributed with shape parameters (aq, ..., ay). If the random variable X' is constructed
by omitting z;,x; from X and replacing with x; + z;, that is X' = (z1, ..., + 5, ..., Tp)

then X' is Dirichlet distributed with shape parameters (aq, ..., 04 + @, ..., o).

Now suppose that we are considering the UniFrac metric over tree T" with n + 1 edges,
thus n nodes and the trivial edge-weight. Thus the matrix W defined in Section 2.2.5 has
n + 1 rows, each row being the indicator function for a given subtree in 7. Let wyg, for
1 < k < n+1 be the rows of W. Further, say that the relative abundance vector P is drawn
from a Dirichlet distribution with shape parameters a = (o, ...,o). Let ag = Y 1" .
The following proposition follows directly from the aggregation property for the Dirichlet

distribution

Proposition 2.4.3 (McClelland 2018). W P(k), the kth component of the vector W P, is
distributed as

W P(k) ~ Beta({a, w), ag — (o, wg)).

given the above definitions.

Thus determining the distribution of the elements of the differential abundance vector
W (P —Q) relies on the determination of the distribution of the difference of beta variables.
We follow the treatment in [93] to determine the distribution. As a step toward that goal

we first define the Pochhammer symbol (a)p,.

Definition 2.4.2 (Pochhammer symbol). Define the Pochhammer symbol (a),, by

I'(a +m)

@ =T

for m > 0 and (a,m) =1 for m = 0.
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We now define Appell’s First Hypergeometric function F}.

Definition 2.4.3. Appell’s first hypergeometric function Fy is given by

(@)mtn ™
Fi(a,br,bo;c;m,y) = ZZ 2 (b1)m (b2)n 2 n2'

|
nOmOcm+n me

It can be shown [29] that F} converges for |z1], |z2| < 1. Picard [94] derived the following

integral expression for Fy, which is useful for our purposes.

Theorem 2.4.1 (Picard 1881). Let a, by, ba, ¢ be complex numbers. If Re(a), Re(c—a) > 0

and Fi(a, by, by;c;x1,x9) converges then [94]

F(C) ! a—1l¢q1 _ ,yc—a—1 —ur —b1 —ur —ba w
)/Ou (1= ) (1 — uzy) " (1 — uwy)~"2d

Fi(a, b1, bo; ¢ 1, 9) = T'(a)T(c—a)

The following identities [29] related to F} will also be required. We have that

Fi(a,by, by; c;m,y) = (1 — z)°~(0Fb) (1 —)~02
-Fi(c—a,c— (b1 +b2),b2;¢c52(y —x) /(y — 1)) (2.4.1)

— (L=a) (1= gl
-Fi(c—a,bi,e— (b1 +ba)sc; (x—y)/(x—1),y). (2.4.2)
We are now prepared for a description of the density of a difference of Beta distributed

random variables.

Theorem 2.3 (Pham-Gia 1993). Say X,Y are independent random variable with X ~
Beta(ax,fx) and Y ~ Beta(ay, fy). Let A = B(ax, Sx) - B(ay,By). Then [93] D =
X — Y has probability density function

LB(ax, By )dPx Ay =1(1 — g)ov+hx—1. for0 <d<1

Fi(Bx,ax + Bx +ay + By —2,1 —ax;Bx +ay; (1 —d),1 — d?)

LB(ax, By )(—d)Px Ay =1(1 — d)yov +Ax=1(1 — g)oxt+hv—L. for —1<d<0

Fi(By,1 —ay,ax + Bx +ay + By — 2;ax + fBy; 1 —d*, 1+ d)
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In the case that ax + oy > 1 and Sx + Sy > 1 then

1

f(0) = ZB(ax+aY—1,ﬁx+5y—1)

Proof. The density of D = X —Y is given by the convolution of the densities for each of

X and Y. Thus for 0 < d <1 we have that

1 1-d
fd) = / (d+ o)™ (1 —d —z) e (1 - 2)” Nda (24.3)
0
_ ldaxfl(l _ d),BXfl /1d mozyfl(l _ x)ﬁyfl(l + f)axfl(l _ L)ﬁxfldx
A 0 d 1—d

Changing variables so that w = z/(1 — d) yields

f(d) = a1 =@t — a2

/1 w11~ (1 dywy 11— U D jax1(q yixtgy,
) d

After simplyfing and applying Picard’s theorem, we can express the integral in terms of
Fi so that

Fld) = & 11 - @By, )

1

Fi(ay,1-By,1 —ax;Bx +ay;1—d,1— g)-

We now apply Equation 2.4.1 above to yield

fld) = %B(ax,ﬂﬂdﬁxwy_l(l — d)y Thx -1

Fi(Bx,ax + Bx +ay + fy —2,1 —ax; Bx + ay; (1 —d), 1 — d°),

our desired result. Note that |1 — d|,|1 — d?| < 0 so that F} converges. The proof for

—1 < d < 0 is analogous.

In the case that ax + ay > 1 and Sx + By > 1, setting d = 0 in Equation 2.4.3 we have

that

1 1
£(0) :A/ 22X (1 )Pxlgor (1 — gy ldg
0



1
— 1/ x(ax-&-ay—l)—l(l _ x)(ﬁx-l—/ﬁy—l)—l
A Jo

1
:ZB(aX—i-ay—l,Bx—FBy—l)
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As an example of utilizing the above, consider a perfect binary tree of depth 2, and thus

4 leaves. Let P,(Q be Dirichlet distributed relative abundance vectors, supported only on

the leaves and with shape parameter uniformly 1. This choice of parameters represents a

uniform random distribution for OTUs at the leaves. Letting X; = P; — Q;, for 1 <1 <4,

X, has density

%(1 +2;)3(6 — 3z; + 2?) for —1 <2 <0
flai) =
%(1 —2;)3(6 4+ 3z; + 22) for0<ax <1
and thus E[|X;|] = .

Letting Vi ;11 = (P + Piy1) — (Qi + Qiy1), Yiit1 has density

o

(1+ yi,i+1)3(yi2,i+1 —3Yiit1+1) for —1<2<0
fWiiv1) =
21— yiin1)* (Wi + 3011 +1) for0<z <1

and thus E [D/Z"Z‘Jrl” = %
Thus we have that

. 48
E [UniFrac(P, Q)] = E[|X1] + ... + | Xu4| + |[Y12| + [Y34|] = 35

Utilizing the implementation of Appell’s First Hypergeometric function F; in Wolfram

Mathematica, we applied the above to perfect binary trees of depths 2 through 6. The

results are shown in Table 2.1. As consequence of Theorem 1.2.7, an upper bound for the

1-Wasserstein metric, and thus UniFrac, is the diameter of the tree. The case of our binary



106
trees, that equates to twice the depth. So as to compare values lying in the range of 0 to
1 for a variety of trees, we have also included the expectation normalized by the diameter

of the tree in Table 2.1.

TABLE 2.1: Expected values for the UniFrac metric and the UniFrac metric normalized
by the tree diameter between a pair of Dirichlet distributed relative abundance vectors,
with shape parameters chosen so as to represent a uniform random distribution on the

leaves of perfect binary trees of depths 2-6.

Depth Expectation Normalized Expectation

2 1.37143 0.342857
3 1.96022 0.326703
4 2.41646 0.302057
5 2.75824 0.275824
6 3.00946 0.250788

In the above we has presented a solution to the expectation for a collection of particu-
larly simple examples. The application to other, more complicated examples is no more
complicated. Note that differences in branch length merely scale the summands in the
formula for the expectation above and so are easily incorporated. Having in this section
determined an expression for the expectation of the UniFrac metric in the case of Dirichlet
distributed relative abundances, we now turn to applying our efficient algorithm for the

the computation of the UniFrac metric itself to actual datasets.

2.5 Applications

In the following we demonstrate the utility of applying our results related to the Wasser-

stein metric and UniFrac to datasets, both real-world and synthetic.
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2.5.1 Application of EMDUniFrac to Data

To demonstrate the utility of EMDUniFrac, we utilized it to analyze a real world 16S rRNA
dataset from a previous study [127]. The original dataset consists of 454 pyrosequenced
fecal samples from a cohort of 40 twin pairs. We utilized phylogenetic tree classifications
from QIIME/QIITA [15]. For simplicity, we focused on the phylum level, and so summed
classifications to this level. From the dataset of 454 samples we selected a subset consisting
of 49 healthy samples and 16 ulcerative colitis samples and used the silva taxonomic tree

[133] for the EMDUniFrac computation.

We evaluated the EMDUniFrac algorithm on all (625) = 2,080 pairs of samples and per-
formed principle coordinate analysis (PCoA) on the resulting distance matrix. The result
of this is contained in part (A) of Figure 2.1. Next, we combined all the healthy samples
and combined all the ulcerative colitis samples and evaluated EMDUniFrac on these two
combined samples. The returned minimizing flow is depicted in part (B) of Figure 2.1.

The corresponding weighted differential abundance vector is shown in part (C).
2.5.2 Comparison of EMDUniFrac to Alternate Solution Methods for UniFrac

As modern comparative metagenomics studies often perform all pairwise UniFrac distance
computations for datasets consisting of tens to thousands of samples, it is important to
compute such distances in an efficient manner. As we showed in Section 2.2.4, Algorithm
2.2.1 used to compute EMDUniFrac runs in space and time complexity linear in the total
support of the input vectors, and thus less than or equal to the number of vertices in the

tree.

To assess practical performance of Algorithm 2.2.1, we compared it to the fastest previous
implementation of UniFrac, called FastUniFrac [43]. We randomly generated trees (using
the ete2 toolkit [49]) with the number of leaf vertices ranging from 10 to 90,000. We then

randomly produced pairs of distributions on the leaves using an exponential distribution
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FIGURE 2.1: Results of the application of EMDUniFrac on real-world data. Part (A) is

the PCoA plot of the EMDUniFrac distance matrix between all pairs of samples analyzed.

Compare to the similar plot in Figure 2 of [127]. Part (B) contains a heat map of the

minimizing flow for the combined healthy and ulcerative colitis samples. This heat map

is scaled logarithmically for visualization purposes. Part (C) depicts the differential abun-

dance vector between the combined healthy and Ulcerative Colitis samples and indicate

which organisms are differentially abundant in the samples, demonstrating usefulness over

the PCoA plot in part (A).
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with scale parameter 1. Importantly, EMDUniFrac can handle distributions with weights
on leaf vertices as well as internal vertices while FastUniFrac only allows distributions with
weights on the leaf vertices. We performed 10 replicates for each number of tree leaves

and 10 replicates for each tree topology.

Using the same fixed computational resources, we then ran FastUnikFrac, EMDUniFrac
in a mode that computes and returns the optimal flow as given in Algorithm 2.2.1, and
EMDUniFrac in a mode that compute only the distance as given in Algorithm 2.2.2, and
thus not an optimal flow, so as to return output identical to that of FastUniFrac. The

average timings (over each number of tree leaves) are depicted in Figure 2.2.

Mean Execution Times

12 -

—FastUnifrac

— =EMDUnifrac (with flow)y”
10+ —e—EMDUnifrac

Time (seconds)
()]

O & . o | ! L ]
0 10K 20K 30K 40K 5B0K 60K 70K 80K
Number of leaves

FIGURE 2.2: Speed comparison of FastUniFrac to EMDUniFrac (while also returning
the minimizing flow) and EMDUniFrac (while returning just the distance). Trees are
generated with random topology and abundances are random realizations of an exponential

distribution and are supported on the leaves.
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2.6 Discussion

2.6.1 Results

Having applied EMDUnikFrac to real-worlds datasets and compared the efficiency of the
algorithm against the fastest previous implementation of the UniFrac metric, we now

interpret the results of our applications to real and synthetic datasets.

Even though upon visual inspection, the PCoA plot in part (A) of Figure 2.1 does not show
much distinction between healthy and ulcerative colitis samples (compare to the similar
plot contained in Figure 2 of [127]), the differential abundance vector leads to the immedi-
ate conclusion that the ulcerative colitis samples are primarily enriched for Actinobacteria
and Proteobacteria, while being deficient in Bacteroidetes. This observation is consistent
with other studies where the same trend was observed in irritable bowel disease subjects,
but using alternate analysis techniques [30, 109, 74|, and demonstrates how utilizing the
minimizing flow results in more information than simply using an ordination technique

(here PCoA) on the pairwise UnikFrac distances.

These results from our comparison of indicate that in either mode, EMDUniFrac is more
computationally efficient than FastUniFrac, and when just the resulting distance is desired
and thus Algorithm 2.2.2 is utilized, EMDUniFrac takes less than half a second to run,
even on trees with 90,000 leaves. Note that our implementations of EMDUniFrac are

non-optimized, Python implementations.

2.6.2 Future Work

There are multiple avenues for continued research in understanding the UniFrac metric
from a mathematical perspective. While faster direct computation seems unlikely, ways
to rapidly estimate the metric seem feasible. Our observation regarding computation of

DPCoA was borne out of attempts to perform the same mathematical sleight of hand,
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via PCA on a dataset of transformed relative abundances, to avoid generating billions of
pairwise distances when seeking PCoA plots for tens of thousands of samples. There do
exists techniques for generating L, versions of PC'A, such as described in [12, 79], which
seek coordinate transformations which embed a dataset in lower dimensions in such a
way as to preserve the L; distances between datapoints. Understanding the relationship
between such coordinate transformations and the UniFrac metric is a source for future
work, in addition to implementation and exploration of our observations regarding DPCoA

itself.

Additionally, and perhaps as more of a mathematical curiosity than anything, while con-
sidering the difference of Dirichlet distributed random variable under the UniFrac metric,
definite patterns were observed in the structure of the rational functions which give the
densities. Attempts to determine a more succinct expression for the densities cost the
author more than a few moments of thought and is likely to be something which will be
consider when less pressing matters are at hand. In the same vein, but perhaps more
biologically signifigant, would be the application of our results related to the structure of

the UniFrac metric and its computation to other models for sequence count datasets.

Finally, there exists alternate mathematical frameworks in which to consider relative abun-
dances, particularly that of compositional data analysis (CDA) [2]. We have not touched
on these tools for understanding relative abundances in our treatment of metagenomics or
the UniFrac metric, as our results and considerations have not utilized them. They present
an alternate approach to the consideration of relative abundances as probability distribu-
tions. Extremely briefly, one can consider CDA as ‘projective geometry for geologists’, in
which we view our relative abundances as equivalence classes of proportions. From this
framework the probability distributions we have utilized are just one possible normaliza-
tion. The techniques were born out of the statistical analysis of geologic datasets and give

a means by which to consider the interior of the unit simplex as a Hilbert space. While
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these techniques have definite drawbacks, the requirement of nonnegativity on the part of
the components being a particularly biologically egregious one, they offer theoretical ben-
efits and an alternate mathematical structure for the problem of comparing proportions
arising in metagenomics. There has been recent work on this subject [103]. Finding ways
to incorporate the framework of CDA into the mathematics behind the UniFrac metric,
or the highlight the ways in which the techniques are complementary, is a goal for future

research.

With that, we conclude our discussion of the Unikrac metric and turn to the formulation

of a novel B-diversity metric, based in another application of the Wasserstein metric.
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3 REFERENCE-FREE METAGENOMIC COMPARISON USING
THE WASSERSTEIN METRIC

3.1 Introduction

In the work previous to this section we have considered UniFrac, a [-diversity metric
between microbial communities defined by relative abundances assigned to some com-
mon phylogenetic tree. In Section 1.1.2 we noted that species or OTU identification in
a metagenomic sample is hampered by challenges related to the culturing of microbial
species, the lack of reference databases and the overlap between related species. These
challenges motivate reference-free methods of comparison between metagenomic sample,

like those described in Sections 1.1.4 and 1.2.4.

These reference-free methods act on probability distributions defined on k-mers generated
from sets of sequence reads, as described in Section 1.1.2, including examples such as
Jensen-Shannon (d g, Definition 1.2.4) divergence. As we noted in Section 1.3.2, there is
another utility for k-mers, that of genome assembly. Distributions of k-mers are assigned to
a de Bruijn graph in such a way that a solution to the Eulerian path problem corresponds
to an assembly of a component of a genome or, in the case of much smaller assemblies,
reads are fitted together via overlap-layout-consensus (OLC) methods by finding agreement
between read ends. Such assemblies are the source of OTU identification and relative

abundance estimation, and thus the input to an analysis via UniFrac.

Recalling the notation of Section 1.3.4, we can therefore consider the methods described
thus far as making comparisons at either the top or the bottom of the diagram in Figure

3.1.
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FIGURE 3.1: Depiction of relationships between g-diversity metrics and genomic assembly.

A* Comparisons made using UniFrac
By (A) Assembly
Ak Comparisons made using dxr,dss

At the bottom, we compare distributions on k—mers, elements of A* for the genetic alpha-
bet A = {A,C,G,T}, directly, by methods which are ignorant of their origins as factors of
a genome. Alternately, we lift collections of k—mers to assemblies, elements of A*, by way
of the de Bruijn graph By (A) or the OLC methods described in Section 1.1.2, at the top of
the diagram, which we then compare via S-diversity metrics on relative abundances such as
UniFrac. Clearly each method has benefits, UniFrac in informed by the biological context
of proximity in a phylogenetic tree and the reference-free methods allow for comparisons

between datasets for which less background information is known.

In this section we prove that for k sufficient to allow unambiguous assembly of a metage-
nomic dataset via de Bruijn graphs, convergence of a set of measures defined on assemblies
derived from that dataset is equivalent to the convergence of the set of derived measure
with respect to the k—mer occurrence defined on the set of metagenomic sequence reads.
We then use this to motivate EM DeBruijn, a reference-free metric between metagenomic
datasets which makes -diversity comparisons by utilizing the structures used in assembly,
but without preforming the assembly itself. EM DeBruijn utilizes the Wasserstein metric
between k—mer occurrence distributions defined on metagenomic samples, in which the
underlying ground metric between k-mers is derived from the de Bruijn graph. Due to the
infeasibility of exact computation of the Wasserstein metric in this setting, we introduce

a pair of approximations, one heuristic and another borrowed from the burgeoning field
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of image processing via the Wasserstein metric. We then apply these approximations to
EMDeBruijn to real-world datasets. The results of these applications are then com-
pared against alternate methods for reference-free comparison. Finally, we explore alter-
nate ground metrics for use in Wasserstein-based reference-free comparison of metagenomic

sample.

3.1.1 Motivation for a Reference-free Wasserstein Metric on Metagenomic
Datasets

As we have shown, the UniFrac metric is the 1-Wasserstein metric when we take a ground
distance between OTUs given by path length in a common phylogenetic tree. As we
commented in Section 1.1.3, the edge-lengths of a phylogenetic tree are given in terms
of an expected number of substitutions per location in the genomes between organisms.
Formalizing this, given an OTU with genome u € A*, let u, be the most recent ancestor

of u. Then the length of an edge between u and u, is given by

) = 2t

where s(u,u,) is the expected or estimated number of substitutions between the genomes
of w and w,. This over simplifies the situation somewhat, but, in microbial ecology in
particular, agreement between genomes or genomic regions such as the 16s rRNA gene as
described in Section 1.1.2 is taken as the very definition of an OTU and is the source for

the information used in the construction of phylogenetic trees.

Thus the edge-length in a phylogenetic tree can be interpreted as a normalized version of
an edit distance (Definition 1.3.15) between genomes. In this light we can interpret the
evolutionary distance given by path length in a phylogenetic tree as a constrained edit
distance between genomes, constrained in that we are obligated to compute the evolution-
ary distance with respect to a sequence of substitutions that pass through the most recent

common ancestor of a pair of OTUs. It follows that we can view the UniFrac metric as
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measuring a quantity related to the 1-Wasserstein distance between genomes for a ground

edit distance.

This motivates considering the following abstraction which relates convergence of measures
defined on a finite subset of S C A* with respect to the Wasserstein metric and the
convergence of the projection of those measures into A*, when % is chosen so that assembly
via de Bruijn graphs is unambiguous. The spirit of the statement below is summarized as
follows. If we are interested in comparing probability distributions on sets of genomes via
the Wasserstein distance and we are able to unambiguously assemble the sets of genomes
given a collection of k-mers, then we can recover a notion of closeness from comparing the

distributions given by the k-mers themselves, without actually performing the assembly.

Recall that for words v and w the juxtaposition vw denotes concatenation of the symbols
involved. Further recall that we say a word w is a right-extension of v if w = va for some

a € A and w is a left-extension of v if w = awv for some a € A.

Theorem 3.1.1 (McClelland 2018). Let S C A* be finite. Let m = mingeg |s|, and suppose
that there exists k < m such that each factor of length k in S has a unique, possibly empty,

left and right extension to factors of length k+ 1 in S.

Let Sy be the set of k-mers occurring as factors in the elements of S. Let M (S) and M (Sk)
be the set of measures defined on S and Sk, respectively. Let my, : M(S) — M(Sy) be the

projection of measures such that mi(u) = v for

B w(w) + ocey (v)
V) =D, lw| — k + 1
weS
where occy,(v) is the occurrence function (Defintion 1.3.10) which counts the number of
instances of v in w. Let Wy, and Wy, denote the 1-Wasserstein metric on M(S) and

M (Sy), respectively, with respect to an arbitrary pair of ground distances.

Then a sequence of measures {11;}52, converges in M(S) to a measure p with respect to

Wi . if and only if the sequence of projections {mp(1i)}52, converges in M(Sy) to m(p)
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with respect to Wi, .

We first require an observation regarding uniqueness of factors which mirrors the use of de

Bruijns graphs in assembly.

Lemma 3.1.1 (McClelland 2018). Given the above hypotheses and notation, for each

a € Sy there exists a unique b € S such that a is a factor of b.

Proof. This follows from our property regarding uniqueness of extensions as follows. Let
a=aj...ar €Sk be arbitrary. Then either a has a unique right-extension to a factor aag
for some a1 € A or a is a suffix to some word in S. If a is not a suffix, then as . ..apa; € Si
and so has either has a unique right-extension or is a suffix. Inductively, we may keep
appending the unique elements extending our word, to say ajas...araq ... qp, until we

necessarily terminate in a suffix of some word in S. Let a =y ... ;.

On the other hand, a is either the prefix of some word in S or there exists a unique
left-extension of a by some 1 € A, so that fia is a factor to some word in S. Thus
we inductively append Bm,Bm—1...01 to a before terminating in a prefix. Letting g =
BmBm—1 ... P1, we thus have that Sac is both a suffix and prefix to some word in S, that

is faa € S. Thus PBaa is the unique element of S containing a as a factor. O

We now prove our result.

Proof. Let d, be the ground metric for Wi , and let

Admins = min dy(s,1).
UL T te S st «(5,1)

Note that as our metric spaces are finite, convergence with respect to Wi, implies the
pointwise convergence of measures in RIS! as the distance between elements of S is bounded

below by dmin «-
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Further, the function 7, is clearly continuous from RS to RI°%/. as in each component it
is a fixed linear combination of the measures of the elements of S. Thus convergence of

{pi}52, in M(S) to a measure p implies convergence of {my (1) 152, to mx(p) in M (Sk).

We prove the alternate implication by considering the contrapositive. Suppose that we
have that W1 «(pin, ) > 0 for some § > 0. By the same considerations as above regarding

the finite nature of out metric space, this implies that there exists v € S such that

4]
|/‘I’(U) Mn(v)‘ — dmin,* . ‘S’

This follows from considering the Wasserstein metric as a sum |S| differences in measure
scaled by the distanced required for transport in some minimizing flow. Now let 7y (u,) =

vy, and i (p) = v.

We claim that the above implies that there exists w € Si such that

0
(m—Fk+1)dmins -S|’

v (w) — v(w)| >
recalling that m = mingcg |s|. As this quantity depends only on §, our result follows.

From our lemma we see that for each factor w of v we have that

_occy(w) pn (v)
)= T

as w occurs as a factor in no other v. Thus we have that

oce,(w)n(v)  oce,(w)p(v)

v (w) —v(w)| =

| k1 | —k+1
occy(w)
= W’Hn(v) — p(v)]
occy(w) 4]
|v| =k + 1 dmins - |S]
5

>
- (m—k:+1) 'dmin,* . |S|
where we have used that occ,(w) > 1 and that |v] < m in the last inequality. Thus the

claim, and so the statement, is proved. ]
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While the above gives weight to the notion of Wasserstein-based comparisons of k-mers
distributions arising from metagenomic datasets by relating the notion to the very suc-
cessful UniFrac metric, it does not address why such a Wasserstein metric is useful for
these sorts of datasets to begin with. A strong analog exists between these applications in
metagenomics and the application of the Wasserstein metric, generally under the name of
the Earth mover’s distance, to image analysis, as described in Section 1.2.5. As noted in
that section, the Earth mover’s distance has been useful in those contexts in part because
it is capable of taking large, noisy datasets, images, and determining the relative similar-
ity of large scale structures given comparisons of purely local features, such as the color

composition of individual pixels or small groups of pixels.

These are precisely the features which unify the various phylogenetically-aware S-diversity
metrics described in Section 1.1.4, they lift comparisons of the constituent parts of commu-
nities to comparisions of the communities themselves. With this in mind, we now consider
the relative benefit of various ground metrics on words with respect to the problem of
reference-free comparison of metagenomic datasets.

3.1.2 Comparison of Ground Metrics for Wasserstein Distance between
Metagenomic Datasets

We made no mention of any particular metric on words in the our discussion relating
Wasserstein convergence on finite words and the k-mer distributions arising from them,
and relied solely on the necessity of the pointwise convergence of the measures. In actual
applications we are more interested in a definition of distance that is useful when the
distributions are not so similar. In particular, as we have noted in Section 1.1.2, sequencing
produces potentially nonuniform coverage of genetic material and includes errors, and so
even inside a single genome the distribution of k-mers derived from a set of sequence reads

will not perfectly reflect the actual distribution of k-mers in the genome.

For these reasons we are interested, at a minimum, in versions of distance in which k-mers



120

are closest when they arise from the same OT'U. This is the benefit of utilizing a distance
derived from de Bruijn graphs as opposed to the edit distance. While the edit distance
is useful in comparing alignments, that is in identifying when portions of an assembled
genomes are most similar, it does not reflect the actual process of assembly well. The
sequences AAACCCCC and ACCCTCCG are only three edits apart but a minimal
assembly of these sequences is their concatenation, so in this sense they are maximally
different. On the other hand, the sequences GTTTGA and TTTGAC are two edits away
but clearly adjacent in the assembly GTTTGAC, and so have a distance in the de Bruijn
graph of 1. Note that as we desire a true metric on words, we are obligated to take the

metric dgp. given by distances in the symmetric de Bruijn graph.

There are some simple inequalities between the edit distance dgp and the path distance
dgps in the symmetric de Bruijn graph which can be observed. In particular, 2-dg < dgp.
as we may view each transition in the de Bruijn graph as a pair of edits, one in which we
delete a terminal symbol in a word and another when we insert a symbol to the alternate
end. As our example above showed, when a pair of k-mers are adjacent in the de Bruijn
graph, we have that dgg, < dg. The example AAAAA and ATAAA, in which the edit
distance is one but the distance in the symmetric deBruijn graph is two shows that this

inequality cannot be extended to nonadjacent elements of the symmetric deBruijn graph.

Another benefit of dgp. over the edit distance is the smaller size of a neighborhood about
each point, which diminishes the probability that a randomly selected pair of words are
adjacent. Note that the degree of any vertex in the symmetric de Bruijn graph for an
alphabet of size n is at most 2n, one for each potential left and right-extension, and thus
the volume of a ball of radius 1 with respect to the distance defined by the symmetric de
Bruijn graphs is independent of k. On the other hand, the number words within a ball
of radius 1 with respect to the edit distance is at least k- (n — 1), as there are this many

nontrivial substitutions, and so grows at least linearly with k.
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A more constrained version of the edit distance, that of the Longest Common Substring
(LCS, Definition 1.3.16) distance offers some of the benefits of both of the above metrics
on words. It achieves its minimum value of two for distinct k-mers when they are adjacent
in an assembly, though this condition is not necessary to achieve that minimum. On the
other hand, it does allow for a degree of error correction not allowed by the distance in
the symmetric de Bruijn graph, as k-mers which differ by one substitution also achieve the

minimum nonzero value.

In this section we have noted some of the relationships between various metrics on words,
in particular highlighting the manner in which proximity of k-mers with respect to the
path distance in the symmetric de Bruijn graph implies adjacency of factors in assembled
genomes. We have noted some relationships between natural metrics on words and the
potential benefits of each when considering the comparison of k-mers arising as factors in

metagenomic sequence reads.

We now define a reference-free metric on metagenomic datasets which utilizes the 1-
Wasserstein metric for a ground distance defined by path length in the symmetric de

Bruijn graph.

3.2 Application of the Wasserstein Metric to Metagenomic Datasets

3.2.1 EMDeBruijn: Description

Let U and V be datasets consisting of sequence reads from a pair of metagenomic samples.
That is, abstractly, for the alphabet A = {4, C, T, G}, we have that U,V C A* such that
|U|,|V| are finite. Choose k € N such that k& < min,ep vy |z| and let uy = fregy(U) and
v = freqy(V) be the vectors, indexed by the elements of A¥, of the normalized frequency

of occurrence of k—mers in the elements of U and V, respectively, as described in 1.3.4.
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EM DeBruijn computes a approximation to the 1-Wasserstein metric between normalized
frequency vectors for a ground distance between k-mers given by path distance in the
symmetric de Bruijn graph. Such an approximation is necessary as the number of k-mers
grows exponentially with k£, making an exact solution computationally impractical. To
demonstrate the proof of concept, a simple heuristic based in the minimum cost method was
first implemented, as described in Section 1.2.6 as a means by which to generate an initial
basic feasible solution for the transportation Simplex algorithm. This heuristic algorithm
approximates the optimal transport metric by iteratively building a flow between relative
abundances by first maximizing the transport between adjacent vertices in the symmetric
de Bruijn graph before proceeding to maximize the remaining transport between vertices
which are distance 2,3,..., up to the diameter of the graph, thereby constructing a flow
which satisfies both marginals. The pseudocode for the implementation of this algorithm

is shown in Section 3.2.2.

As a way of producing a more mathematically rigorous approximation to the Wasserstein
metric, the method of entropically-regularizing the optimal transport problem was then
implemented. The theory behind this recently developed method is described in Section
1.2.6, while Definition 1.2.14 gives the specific form of the regularized optimization prob-

lem. The pseudocode for the implementation of this algorithm is shown in Section 3.2.3.
3.2.2 EMDeBruijn: Minimum Cost Heuristic Algorithm

Algorithm 3.2.1. EMDeBruijn: Minimum Cost Heuristic
Input:
k, frequ(V), frequ(W) > freqp(V), freqe(W) distributions on k-mers, D a distance

maltriz between k-mers

Initialization:

v =0 RAMA
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d=0

Tterations:
1: while v ¢ T(V,W) do
2: Sort A* so that freqe(V)(vi) = > v(vi, ) > fregp(V)(v;) — > (vj,-) fori < j

3: for v; do

4: while Y v(vi, ) < freqp(V)(v;) do

5: Choose w' with D(v;,w") = d, freqe(W)(w') > freq.(W)(w')Vw
6: Mazimize y(vi, w') subject to > v(vi,+) < freqe(V)(v;) and

7: 2 w') < freqp(W)(w')

8: end while

9: end for

10: d=d+1

11: end while

Output:

v, EM DeBruijn(freqe(V), freqy(W))

3.2.3 EMDeBruijn: Entropic-Regularization Algorithm

In the following we describe our implementation of an entropically-regularized approxima-
tion to the 1-Wasserstein metric via Sinkhorn iteration as described in Section 1.2.6. In
what follows, the let exp and log denote the elementwise computation of this functions,
let ® denote the elementwise, or Hadamard, product of matrices, and © the elementwise

division of matrices.

Algorithm 3.2.2. EMDDeBruijn: Entropically-Reqularized Approzimation

Input:

freq(V), frequ(W), D > freqp(V), freqe(W) distributions on k-mers, D a distance
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matriz between k-mers
a, rep > « the reqularization parameter, rep the number of iterations for Sinkhorn

projection

Initialization:
Ka = 6Xp[(—1/0[> ® D]

v=w=1

Iterations:
1: fori=1,...,rep do
2: v=A0 (K, w)
3: w=Bo(Ky-v
4: end for
5: v = diag(v) - Kq - diag(w)

6: EM DeBruijn(freqp(V), freqe(W)) = 32, ;7(i, ) - log(v(i, 1)/ Ka)

Oulput:

v, EM DeBruijn(freqi(V), freqe(W))

3.3 Results

3.3.1 Empirical Estimation of Error in the Minimum Cost Heuristic Approx-
imation to the Wasserstein Metric

To gauge the accuracy of the minimum cost heuristic approximation to the Wasserstein
metric for ground distances given by path length in the symmetric de Bruijn graph, the
minimum cost heuristic was compared against a solution to the linear programming formu-
lation of the optimal transport problem. 10,000 pairs of random synthetic measures were

generated for AF for k = 4 and |A| = 4. For each pair, the minimum cost heuristic approx-
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imation to the Wasserstein metric was computed. Additionally, the linear programming
formulation of the optimal transport problem, as described in Section 1.2.6, was solved
iteratively via non-negative least squares implementation in MATLAB to determine a min-
imizing flow. Iterative methods were chosen to generate solutions due to the exponential
growth of the problem with respect to k. The computed values for the first 100 such pairs
are displayed in Figure 3.2. The distribution of the relative error of the minimum cost
heuristic approximation is included in Figure 3.3. The mean relative error between the
minimum cost heuristic and the linear programming formulation was determined to be

0.010, the median such error was determined to be 0.098.
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0 10 20 30 40 50 60 70 80 90 100
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FIGURE 3.2: Comparison of the computation of the Wasserstein metric for ground dis-
tances given by path length in the symmetric de Bruijn graph for k£ = 4 and |A| = 4 via the
minimum cost heuristic and non-negative least squares solution to the linear programming

formulation for 100 randomly generated synthetic sample pairs.
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FIGURE 3.3: Distribution of the relative error in the computation of the Wasserstein
metric for ground distances given by path length in the symmetric de Bruijn graph for
k =4 and |A| = 4 via the minimum cost heuristic and non-negative least squares solution
to the linear programming formulation for 10,000 randomly generated synthetic sample

pairs.

3.3.2 Application of EMDeBruijn to Real-world Datasets

To evaluate the utility of Wasserstein-based reference-free metagenomic comparisons, we
first applied the minimum cost heuristic algorithm to a real-world dataset consisting of 223
samples from the Human Microbiome Project [117|. These samples, originating from body
locations designated as oral, airways, urogenital tract or skin, were processed by the Broad
Institute via whole genome shotgun sequencing. The downloaded datasets were processed
using the FASTX-Toolkit package [42] into FASTA format sequence-read files. These were

processed into k-mer counts via the dna-utils package [76].
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Pairwise comparisons for k = 6 were made for each of the following metrics: EM DeBruijn
using the minimum cost heursitic, L1, Jensen-Shannon divergence and a 1-Wasserstein met-
ric with a ground distance given by the longest common subsequence metric approximated
utilizing the minimum cost heuristic. The resulting matrices of pairwise distances were
then used to perform PCoA for each of the given metrics. The results are presented in

Figure 3.4.
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FIGURE 3.4: Principle Coordinate Analysis via minimum cost heuristic approximation of the
EMDeBruijn metric for k& = 6, 1-Wasserstein for the LCS metric and k£ = 6, Jensen-Shannon
divergence, and L; metric of 223 metagenomic microbiome samples from the Human Microbiome
Project. Samples are labeled as originating from body locations designated as oral, airways,

urogenital tract or skin.

After further research, the entropically-regularized formulation of the optimal transport

problem was selected as a means by which to better approximate the Wasserstein metric.
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Implementation of these ideas is ongoing, but as a further proof of concept a subset of
the Human Microbiome dataset used above was analyzed. Ten samples designated as
originating from skin and ten samples designated as originating from airways were selected
at random. The same selection of metrics were again applied, but utilizing the entropically-
regularized approximation to the Wasserstein metric for both the LCS and symmetric de
Bruijn distances. Parameter choices for the regularization were set uniformly at o = 0.01
with a fixed 500 Sinkhorn iterations. The resulting pairwise distance matrices were then

used to perform PCoA. The results are presented in Figure 3.5.
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FIGURE 3.5: Principle Coordinate

o Ay

Analysis via entropically-regularized approximation of the

EMDeBruijn metric for k& = 6, 1-Wasserstein distance using the longest common subsequence

(LCS) ground metric for k& = 6, Jensen-Shannon divergence, and L; metric of 20 metagenomic

microbiome samples from the Human Microbiome Project. Samples are labeled as originating

from body locations designated as airways or skin.
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3.4 Discussion

3.4.1 Results

As observed in Figure 3.4, the EM DeBruijn metric implemented with the minimum cost
heuristic appeared to show a greater degree of discrimination in separating the samples
designated as originating from the the oral and urogenital tract locations from those des-
ignated as airways and skin than the Jensen-Shannon divergence, a commonly applied
reference-free metric in microbiology. A similar apparent pattern was observed in com-
paring the minimum cost approximated Wasserstein metric for the LCS ground metric.
Strikingly, ordination via the L; metric, the least theoretically justifiable of the metrics

used, appeared to perform as well or better than any of metrics tested.

These results suggested that the use of Wasserstein metrics in reference-free comparisons
had merit. This is in spite of the somewhat lackluster performance of the minimum cost
heuristic in approximating the Wasserstein metric, as observed in the 10% average relative
error shown in Figure 3.3. The heuristic does generate a basic feasible solution for the
Wasserstein metric, and so provides a lower bound for the true value, as demonstrated
visibly in Figure 3.2. Regardless, the broad distribution of relative errors demonstrate

that the heuristic did not provide a consistent or precise approximation to the true value.

Adaption of the entropically-regularized approximation is a work in progress, and so our
current results utilizing the method are preliminary. As such, benchmarking the accu-
racy of the approximation against known solution techniques has not yet been performed.
The result themselves are promising though, and again Figure 3.5 demonstrates that
EM DeBruijn appears to outperform the Jensen-Shannon divergences in demonstrating

the similarity of microbial communities sample from skin.

As noted in Section 1.1.5, the heuristic arguments for the lower bound of optimal k values

for a single genome comparison using reference-free techniques is on the order of log, of the
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length of the genome. With some microbial genomes being on the order of millions of base
pairs long, our choice of kK = 6 is far from optimal. Further optimization and refinement
of the algorithms employed to allow for computation of these metrics with larger word

lengths should only increase the resolving power of the technique.

3.4.2 Future Work

At the moment, when utilizing an Intel i7 2.2 gHz processor, computation of the
entropically-regularized Wasserstein metric for k¥ = 6 and a ground metric derived from
the symmetric de Bruijn graph requires approximately 40 seconds. If this method of uti-
lizing the Wasserstein metric to make S-diversity comparisons is to be truly useful, faster
computation for larger values of k will be necessary. While the current implementation of
the algorithm has much room for optimization, it seems unlikely to scale to the necessary
values in its current form. This suggests that if these ideas are to be followed through on,

another approximation technique will need to be developed.

By its very nature, a graph is defined by purely local connectivity information. From
this information we have extracted a metric, but there exists a potentially more efficient
algorithm which uses the local connectivity information given by the graph adjacency
matrix (Defintion 1.3.2) to approximate the Wasserstein metric. This technique is known
as the convolutional Wasserstein metric [108]. It is related to the entropically-regularized
Wasserstein metric we have adapted for these computations, and further approximates the
Wasserstein metric by utilizing convolution against solutions to the heat equation over
a geometric domain to approximate the action of the matrix K, utilized in the solution
to the entropically-regularized transport algorithm described in Section 1.2.6. A goal for
future work is to explore whether the high degree of regularity found in the de Bruijn graph
can be leveraged to use these convolutional techniques to generate sufficiently efficient and

accurate algorithms for optimal transport approximation to make the ideas developed in
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this chapter practical.

This concludes our discussion of the application of the Wasserstein metric to reference-free
B-diversity comparisons between metagenomic datasets. We now turn to a brief summary

of the work and result we have developed.
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4 CONCLUSION

In this dissertation we have developed the mathematical foundations for two instances of
the Wasserstein metric in microbial ecology. This work has been inspired by the explosion
of data arising from the sequencing of metagenomes, the aggregate genetic information of
entire communities of organisms. Our research has been focused in building analytic tools
to infer structure between these communities, and so better understand the vast diversity

of microbial life around us.

We began our work by conveying the biological foundations of microbial ecology in Section
1.1, with an emphasis on phylogenetics, the metrics used to quantify the diversity found
between microbial communities and the tools used in the analysis of ecological data. We
sought to show how the methods of comparison adopted by biologists, such as the UniFrac
metric, benefited from further mathematical analysis. We highlighted the ways in which
the graph theoretic or combinatorial form of some of the objects of biological study, such

as phylogenetic trees and genomes, allowed for mathematical means of understanding.

In Section 1.2 we explored a particular metric between measures defined on a metric space,
that of the Wasserstein distance. We noted its basic theory and alternate formulations, as
well applications to a variety of other fields. Our treatment gave context to the metric in
Section 1.2.4, which the choice of comparisons made motivated by mathematical as well as
biological significance. Of particular interest were the recently developed methods related
to the Wasserstein metric, arising under the name of the Earth mover’s distance, in image
analysis. These applications were a source of inspiration in our own uses of the Wasserstein
metric to understand difference in microbial communities. We concluded our survey of the

Wasserstein metric in Section 1.2.6 with solution and approximation techniques.

Our next goal was to better understand the graph theoretic structures underlying two
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important ideas in metagenomics, that of the trees used to encode evolutionary relation-
ships and the de Bruijn used in genomes assembly. Our interest in Section 1.3 was in
determining the properties of the metric spaces upon which we would be considering the
Wasserstein metric, as well as to establish a common language for the various objects of
study under consideration. This included giving in Section 1.3.4 a mathematical formal-
ism, finite sequences from a fixed alphabet, with which to consider genomes and sequence

reads.

Our primary results are related to the UniFrac metric and are conveyed in Section 2. We
proved an alternate characterizations for the Wasserstein metric when applied to a tree
and provided a novel proof that this metric, when comparing relative abundances assigned
to a common phylogenetic tree, was equivalent to the successful UniFrac metric. We devel-
oped this proof into an efficient solution technique for the UniFrac in Section 2.2.4 which
simultaneously computes the Unikrac metric faster than previous implementations while
providing additional information, that of a minimizing flow between relative abundances
and the weighted differential abundance vector. In Section 2.3, our research noted how the
relationship between the ordination techniques of PCA and PCoA might allow for a more
efficient application of DPCoA, and how adapting the linear transformation used in the
computation of UniFrac casts DPCoA in the same light as other biologically signifigant
metrics, such as the y? and Hellinger distances. We proceeded in SectionUniFracErr to use
the framework we developed for considering the UnikFrac metric as a means to produce the
expectation of UniFrac for Dirichlet distributed relative abundances, a model appropriate
for the datasets in question. We then applied this method to a sequence of examples.
In Section 2.5 we demonstrated the application of our work on datasets. We concluded
with a description of potential for future work inspired by our research, particularly the
development of ideas related to the relationship between alternate L; PCA formulations

and the UniFrac metric and the potential for the use of these ideas in other conceptual
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frameworks for relative abundances, particularly that of compositional data analysis.

Given the success of the Wasserstein metric in making phylogenetically aware S-diversity
comparisons, in Section 3 we developed a framework for making reference-free metagenomic
comparisons via the Wasserstein metric. We noted in Section 3.1 how the means by which
phylogenetic trees are constructed can be used to interpret distances between OTUs in
these trees as distances between the words representing their genomes. We showed in
Section 3.1.1 how utilizing the structure given by de Bruijn graphs allowed for convergence
with respect to the Wasserstein metric between finite words to be cast in terms of the
k-mers comprising those word. This work was inspired not only by the success of the
UniFrac, but also by the recent development of the Wasserstein metric in image analysis.
We next described two approximation algorithms for the Wasserstein metric when applied
to k-mers, one a heuristic used classically as a seed for the Simplex algorithm and another
developed recently for the purposes of image analysis which itertively solves an entropically-
regularized form of the Wasserstein metric. In Section 3.3 we demonstrated the proof-of-
concept of our ideas, and showed how utilizing Wasserstein metrics performed against
metrics commonly used in the reference-free comparison of sequence dataset. We ended
our discussion in Section 3.4.2 by considering the computational limits of our methods and
the need to increase resolving power by considering factors of greater length. We noted
how using more of the local graph structure to apply convolutional solution techniques

might help address these issues and make this line of analysis computationally tractable.

With that, we conclude our work.
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