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1 GENERAL INTRODUCTION

"No discovery of mine has made, or is likely to make, di-

rectly or indirectly, for good or ill, the least di�erence to the

amenity of the world" - G.H Hardy.

The Hardy-Weinberg principle states that in the absence of external evolutionary in�u-

ences, gene frequencies in a population of organisms will remain constant from one gener-

ation to the next. Hardy related the mathematical demonstration of this fact in the brief

1908 paper `Mendelian proportions in a mixed population' [44]. As a student of the history

of mathematics is already aware, Hardy was not a biologist but rather a famous English

number theorist and great champion of the pursuit of mathematics for its own sake. He

saw his result in genetics as a triviality, but it was certainly this author's �rst exposure

to the work of the man. It came as some great shock later in life to learn that the Hardy

of the Hardy-Weinberg principle was precisely the same Hardy that had collaborated with

Ramanujan and authored `A Mathematician's Apology,' from which the above quote is

taken. We note that an understanding of the nature of genetics has transformed both the

world's understanding of biology as well as its applications. As Hardy's discovery of this

principle resides in every introductory discussion of the subject, we suspect his quote to

be in error.

The above anecdote highlights the power of bringing a mathematician's expertise to ques-

tions arising in biology. More speci�cally, in bringing that expertise to those questions

related to the genetic information contained in organisms or groups of organisms. That is

the precise purpose of this document. In the following we provide a mathematical foun-

dation to usage of the Wasserstein metric, a metric on probability measures over a metric

space, in the context of β-diversity metrics for microbial ecology.
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Summary of Content

Supposedly, the problem underlying gene frequency was related to Hardy while in the midst

of a game of cricket. We are not so fortunate as to be considering questions so succinctly

expressed, and so �nd that understanding the analytic tools in microbial ecology requires

the survey of a great deal of material related to biology, such as the context in which

β-diversity metrics arise and the needs of biologists in their utilization and analysis. We

therefore dedicate the bulk of Section 1.1.1 to this information, assuming no biological

background on the part of our audience.

On the other hand, given that this is a work of mathematics for a mathematically-trained

audience, we do assume knowledge of the foundations of probability, analysis and linear

algebra used throughout. Thus we spend Section 1.2 relating the speci�c theory of the

Wasserstein metric and the mathematical context in which is arises. This includes a survey

of its use in other, nonbiological, applications, from which we draw inspiration for new uses.

We include a summary of tools for the computation of the Wasserstein metric in the �nite

setting to which we later apply it.

In Section 1.3, in preparation for Sections 2 and 3, we relate common results in the theory

of graphs, the metric spaces over which we will be considering the Wasserstein metric.

This is in no small part borne out of a desire to establish a common set of notation

and de�nitions for the �eld. In particular, we introduce and discuss de Bruijn graphs, a

mathematical structure utilized in genomics.

In Section 2 we proceed to demonstrate our main results. We prove in Section 2.2.1 an

alternate characterization for the Wasserstein metric between relative abundances assigned

to a phylogenetic tree, and utilize this to demonstrate a useful invariant behind the UniFrac

distance, a well-used β-diversity metric. We produce in Section 2.2.4 a constructive proof

that the UniFrac distance is the 1-Wasserstein metric, and adapt this proof to a highly
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e�cient and rapid algorithm for computing the UniFrac metric between relative abun-

dances. We demonstrate in Section 2.3 how casting the ordination technique known as

Double Principal Coordinate Analysis as the Euclidean distance between images of the

action of linear transformation allows for its e�cient computation and comparison to re-

lated metrics. Utilizing the mathematical framework we have established above, in Section

2.4 we derive formulations of the probability density function of the UniFrac metric under

the assumption of Dirichlet distributed relative abundances, a distributional assumption

inspired by biologists use of the Dirichlet-Multinomial distribution in modeling metage-

nomic datasets. For the biologically-minded, we demonstrate in Section 2.5 the utility of

our results on datasets, both real world and synthetic.

Inspired by the utility of the Wasserstein metric, both in the above applications as well as

the �eld of image analysis, in Section 3 we introduce a novel metric for probability distri-

butions de�ned on genomic sequence datasets utilizing the Wasserstein metric on vertex-

weighted de Bruijn graphs. In Sections 3.2.2 and 3.2.3 we adapt approximation algorithms

for the computation of the Wasserstein metric, one heuristic algorithm known classically

as the minimum cost method and another which computes an entropically-regularized ver-

sion of the Wasserstein metric. We then apply these algorithms to metagenomic datasets

in Section 3.3 and compare this reference-free metric on metagenomes against others used

commonly in biology. We benchmark our heursitic approximation against other solution

algorithms for the Wasserstein metric in Section 3.3.1 before discussing potential sources

of improvement and future research.

We conclude in Section 4 with a summary of the results we have demonstrated and a brief

outline of potential future work.
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1.1 Background Material for Microbial Ecology

1.1.1 Introduction to Microbial Ecology

Microbes are the dominant form of life on Earth. Constituting 350 to 550 billion tons of

biomass [123], microbial life is pervasive in every ecosystem science has ever investigated.

They have been found everywhere from the bottom of the sea-�oor [24] to the upper

reaches of the atmosphere [106]. As many as 1000 microbial species exist in the human

body at any moment [117], the composition and distribution of which has been implicated

in diseases as varied as cancer [57] and depression [51]. Microbial life shapes the geology

and atmosphere of our planet [17] and is so ubiquitous and resilient on Earth that our best

hopes for �nding life elsewhere in our Solar system lie in microbes [24].

The search for new microbial diversity does not require looking so far a�eld though. Esti-

mates for the number of distinct microbial species on Earth extend to 1 trillion, of which

99.999% have not been identi�ed [66]. This lack of understanding of microbes is due in no

small part to their invisibility outside of the scope of the tools of science.

Hooke and Leeuwenhoek's use of the microscope in Micrographia (1665) transformed our

understanding of biology [36] by showing that there was a invisible world of life around us.

In recent years, a new set of tools has led to a new transformation in our understanding of

the microbial world, that of next-generation or high-throughput sequencing technologies

[99]. Recent advances in technology have made possible the rapid sequencing of the genetic

material from both individual species as well as entire microbial communities.

But these new tools come packaged with new analytic and computational challenges.

Roughly speaking, the genetic information in a single human being is encoded in a string

of 6.4 billion letters from the alphabet {A,C, T,G} [58]. The �rst instance of determining

that information ended in 2001 after more than 13 years of work and an estimated cost of

1 to 3 billion dollars [22]. At the present moment, an Illumina X10 can sequence 18,000
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human genomes per year at a cost of roughly $1000 per genome [40]. Managing and

interpreting that volume of information demands new mathematical and computational

solutions.

In the following section we discuss fundamentals of metagenomics and phylogenetics so as

to better understand the analytic tools used in these �elds. We discuss the measures of

community diversity used by biologists and the manner in which biologists interpret their

use, with an eye toward understanding the needs of biologists so as to motivate both new

analytic tools as well as useful improvements to those tools currently employed.

1.1.2 Overview of the Foundations of Metagenomics

The language of life is written in the four letters {A, T,C,G}. These represent the 4

nucleotides adenine, thymine, cytosine and guanine which form the heritable, information

encoding elements of deoxyribonucleic acid (DNA) or what is known as genetic material.

These nucleotides are known as base pairs (bps), as each of cytosine and adenine only pair

with guanine and thymine, respectively, in the double-stranded structure of DNA. A gene is

a sequence of these base pairs which contains information for the construction of a protein.

The expression of genes, that is the construction of proteins, is mediated by ribonucleic

acid (RNA), itself a molecule similar to DNA but with the information encoding alphabet

{A,U,C,G}, representing adenine, uracil, cytosine and guanine, respectively.

While genes are very important, they are not the entire story of our genetic material.

Or even much of the story, as it turns out. A human being has an estimated 20,000

genes constituting less than 3% of the totality of our genetic material [21]. We call those

segments of the genetic material in an organism which contain genes coding regions and

the remainder noncoding regions. While the exact purpose of the noncoding regions is not

clear, it is clear than it is not `junk DNA' as was once thought. Indeed, more than 80% of

these noncoding regions have now been associated with a variety of biological processes,
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mostly related to gene regulation and expression [21].

The totality of the genetic material in an organism is referred to as its genome. While

there is necessarily some variation between genomes for individuals in a species, the vast

majority of the information between genomes is conserved among members of a species.

As an example, total genetic variation in human beings is estimated to be 0.6% of the

total genome [20]. The study of the totality of the genetic information in an organism or

species is known as genomics, in contrast to the study of the genes known as genetics.

The study of a microbial genome begins with the determination of its contents, that is

by sequencing of the genome [26]. The sequencing of a single genome starts by isolating

and replicating genetic material. In the case of microbial life, this involves culturing the

organism, that is, growing the organism in a lab. The methods which follow vary and

evolved in a sequence of `generations' [105], the �rst of which was Sanger sequencing.

Sanger sequencing is a `chain-terminating' method which produces continuous fragments

of translated DNA, known as reads, of length 500 to 1000 bps long. The technologies which

followed are generally known as `sequencing by synthesis' methods, and include techniques

such as pyrosequencing. These methods produce reads 50 to 300 bps in length but at a

speed much faster than that of Sanger sequencing. The current generation of sequencing

technology is known as `large fragment single molecule' sequencing, which produces very

long reads, up to 30,000 to 50,000 bps long, but with higher error rates. Each of this tech-

nologies still �nd application today to the meet the various needs of researchers regarding

cost, speed and accuracy [105].

After sequencing, a researcher is left with a large number of relatively small reads, not a

genome. Thus begins the assembly problem [26], reassembling the reads into larger pieces,

known as contigs, and then into yet larger pieces, known as sca�olds, before merging

into whole genomes. Here is where the necessity of mathematical tools begins. As noted

previously, genomes can be billions of base pairs long, and sequencing technologies produce
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reads of lengths on the order of 100s or 1000s of base pairs long. Note that since we are

not sequencing the entirety of the genome in one piece, redundancy in our gathering of

genetic information is necessary. The coverage of a sequencing is the expected number of

times any individual base pair is transcribed. The coverage required for accurate assembly

varies by genome length and read length, but is generally 30 to 100 times [26]. Additional

coverage also helps address the error inherent in sequencing technologies, which vary by

technology but are generally on the order of 0.1-1.0% [39].

Solutions to the assembly problem are divided into two principle approaches, based on

the available information. Ideally, someone has already assembled a genome for a related

organism. We can then use this reference genome as a template with which to reassemble

our genome [63]. Alternately, and in at least one case necessarily, there is no reference

genome with which to guide our assembly, and thus we are stuck with the problem of

de novo assembly. That is, of reassembling our reads without a priori knowledge of their

connectivity.

Mathematical techniques with which to solve the de novo assembly problem fall into three

categories [75], overlap-layout-consensus (OLC) methods, de Bruijn graph methods and

greedy algorithms. We defer a more thorough treatment of this subject to Section 1.3.5,

but brie�y, OLC and de Bruijn methods represent either reads, or segments of reads,

respectively, as vertices in a graph such that edges in the graph correspond to potential

assemblies of those reads. A full assembly of a genome, or subsection of a genome, is then

a path which traverses each edge of that graph. Greedy algorithms predate the use of de

Bruijn and OLC methods and are generally less e�cient [75]. If the de Bruijn and OLC

methods seek a globally optimal solution for assembly, by asking for a path which best

assembles all of the reads, greedy algorithms ask for locally optimal assemblies, by taking

a read and looking for the best extension of the read by matching overlap between reads.

This extension process continues for as long as possible, and then these assembled pieces
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of genome are compared against each other for consensus and thus assembly.

We have described the beginnings of a genomics work�ow so as to give context to the

challenges that face the metagenomics researcher. Metagenomics studies the totality of

the genetic material in an entire community of organisms present in an environmental

sample. So now suppose we have gathered a representative environmental sample from a

microbial community, be it from the soil [78], the ocean [126] or the human body [117].

Following the process involved in determining the genome of an individual microorganism,

we ought to isolate an individual species' genetic material. Unfortunately, this task is

generally not possible, as an estimated more than 90% of species are unculturable under

lab conditions [110].

To address this complication, researchers generally proceed down one of two paths of

metagenomic analysis. The �rst is whole genome shotgun sequencing in which the com-

bined genetic material is sequenced all at once, using any of the technologies described

above [96, 102]. The other common avenue for metagenomic analysis is 16S rRNA se-

quencing [56, 122]. The 16S ribosomal RNA (rRNA) is a small component of ribosomal

RNA, roughly 1500 base pairs in length, which has been shown to be highly conserved

in structure and function, both over time and between species, but which also contains

highly variable regions. These conserved sections make it a reliable `molecular clock' [128].

At the same time, highly variable regions allow for species identi�cation [91] which allows

classi�cation and analysis of 16S rRNA gene to be used for the reconstruction of phylo-

genies as similarities in 16S rRNA sequences have been shown to be positively correlated

[82] to similarities in phenotypes in microbial genomes. We defer a more complete dis-

cussion of phylogenetics to Section 1.1.3, but, brie�y, a phylogeny is a description of the

interrelated evolutionary history of a group of organisms. This analysis is made possible

by amplicon sequencing [122], in which polymerase chain reactions (PCR) are used to se-

lectively duplicate a segment of genetic material, in this case the 16S rRNA gene, prior to
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sequencing.

There are challenges and bene�ts to each of these methods. In whole genome shotgun anal-

ysis the assembly problem is more complicated due to a variety of factors [83, 46]. Microbial

species do not occur in uniform abundances, and, as such, there arises nonuniform coverage

in sequencing between species. Additionally, sections of repeated genetic information both

inside a given genome and between genomes make the assembly question ill-posed. There

may be many potential assemblies of sequence reads which `jump' genomes, wherein it

becomes unclear how to reassemble genomes which share conserved genetic information.

Finally, many highly interrelated species may exist together. Small variations between

genomes for such species make assembly more challenging. Current metagenomic assem-

bly techniques rely on extensions of the ideas outlined above, optimized for the size and

complexity of metagenomes [121]. These factors make whole genome shotgun analysis more

costly and time-intensive than 16S rRNA sequencing. Whole genome shotgun sequencing

does allow for the potential identi�cation of biological function through gene identi�cation,

something not possible in 16S rRNA sequencing. As whole genome shotgun sequencing

utilizes a greater amount of genetic information, it has greater resolving power and is thus

better able to distinguish highly similar species.

Having brie�y described the �eld metagenomics and the methods by which researchers

explore microbial communities, we turn to a more detailed discussion of phylogenetics and

the tools used to study the evolutionary history and interrelatedness of biological species.

1.1.3 De�nitions and Methods Related to Phylogenetics

As noted in our discussion of 16S rRNA sequencing, one of the principal uses of metage-

nomic analysis is the construction and understanding of phylogenies or phylogenetic trees,

a concept we de�ne now. Phylogenetics is the study of the shared evolutionary history and

interrelatedness of a group of organisms.
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De�nition 1.1.1 (Phylogenetic tree). A phylogenetic tree or phylogeny is a representation

of the pattern of evolution and the sequence of common ancestors for a species or group

of species [130].

A variety of essentially interchangeable terms are used in describing such groupings of

species in the context of microbial ecology, such a taxon or operational taxonomic unit

(OTU). Our language will re�ect whatever is most common in a given application.

In a phylogenetic tree vertices represent species, either extant or inferred. Extant species

are represented as leaves. A speciation event is a bifurcation at an internal node of the

tree, representing the beginning of a new evolutionary lineage. A clade is the group of all

species which can trace their lineage back to a single speciation event, and thus a single

common ancestor. Traveling back up the tree from the leaves, we travel backwards in time.

The lengths of the edges in a phylogenetic tree generally represent the expected number

of substitutions at each location in the genome of a species [125].

In the case that the rate of substitutions is constant either over time or between lineages,

we say that the molecular clock holds and in this case the number of substitutions can be

used as a surrogate for measurements of time. In this case, we can use this as a means

by which to infer a root or last common ancestor of a group of species. We call such

trees rooted. Figure 1.1 depicts a model rooted phylogenetic tree for a group of organisms.

Phylogenetic tree can certainly be much more complicated that this, containing far more

OTUs and evolutionary relationships. Figure 1.2 depicts a phylogenetic tree containing

approximately 3000 species, constructed from 16S rRNA data.
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FIGURE 1.1: A model rooted phylogenetic tree depicting extant species A-E,

in which A-B belong to a clade whose most recent common ancestor is X.
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ole

tico
la

Candida sc
hatav

ii

Can
did

a l
au

rel
iae

Candida kr
iss

ii

Can
did

a s
an

tam
ari

ae
 va

r m
em

bra

Can
did

a r
alu

ne
ns

is

Can
did

a s
an

tam
ari

ae
 va

r s
an

tam

Can
did

a b
ee

ch
ii

Can
did

a z
ey

lan
oid

es

Can
did

a s
op

hia
e r

eg
ina

e

Can
did

a q
ue

rcit
rus

a

Candida natalensis

Can
did

a f
rag

i

Candida psyc
hrophila

Candida gluco
so

phila

Candida xe
sto

bii

Can
did

a f
uk

uy
am

ae
ns

is

Can
did

a fe
rm

en
tica

ren
s

Pich
ia guillie

rm
ondii

Debaryo
myce

s h
anse

nii v
ar h

ans

Debaryo
myce

s h
ansenii v

ar fa
br

Taphrin
a farlo

wii

Ya
madazym

a guillie
rm

ondii

Pich
ia fa

rin
osa

Debaryo
myce

s u
denii

Debaryo
myce

s c
aste

llii

Debaryo
myce

s h
ansenii

Candida so
jae

Candida tro
pica

lis

Candida albica
ns

Candida dubliniensis

Candida m
altosa

Candida vis
wanathii

Candida lodderae

Candida parapsilo
sis

Lodderomyce
s e

longisp
orus

Candida sh
ehatae va

r in
secto

sa

Candida sh
ehatae va

r lig
nosa

Candida sh
ehatae va

r sh
ehatae

Candida palmioleophila

Candida flu
via

tilis

Candida sa
itoana

Candida pseudoglaebosa

Candida glaebosa

Candida insecta
mans

Candida lyx
osophila

Candida kru
isii

Candida tanzawaensis

Candida sa
ke

Candida austro
marina

Candida co
ipomoensis

Candida ergaste
nsis

Pich
ia angusta

Willio
psis

 sa
lico

rniae

Endomyce
s fi

buliger

Sacch
aromyco

psis
 fib

uligera

Sacch
aromyco

psis
 ca

psularis

Kluyve
romyce

s n
onferm

entati

Kluyve
romyce

s a
estu

arii

Kluyve
romyce

s m
arxia

nus

Kluyve
romyce

s la
ctis

Kluyve
romyce

s d
obzhanski

i

Kluyve
romyce

s w
icke

rhamii

Holleya sin
ecauda

Zygosacch
aromyce

s m
ellis

Zygosacch
aromyce

s ro
uxii

Zygosacch
aromyce

s b
isp

orus

Zygosacch
aromyce

s le
ntus

Zygosacch
aromyce

s b
ailii

Arxio
zym

a telluris

Sacch
aromyce

s d
airensis

Sacch
aromyce

s s
erva

zzii

Sacch
aromyce

s u
nisp

orus

Sacch
aromyce

s tr
ansva

alensis

Zygosacch
aromyce

s m
rakii

Torulaspora globosa

Torulaspora delbrueckii

Torulaspora pretoriensis

Zygosacch
aromyce

s m
icro

ellipsoide

Candida colliculosa

Kazachstania viticola

Kluyve
romyce

s b
lattae

Kluyve
romyce

s p
haffii

Zygosacch
aromyce

s flo
rentinus

Candida glabrata

Kluyveromyces delphensis

Sacch
aromyce

s p
asto

rianus

Sacch
aromyce

s ce
revisi

ae

Sacch
aromyce

s ce
revisi

ae 2

Sacch
aromyce

s b
ayanus

Sacch
aromyce

s paradoxus

Kluyve
romyce

s p
olysp

orus

Kluyveromyces yarrowii

Kluyve
romyce

s lo
dderae

Saccharomyces rosinii

Kluyveromyces africanus

Sacch
aromyce

s sp
encerorum

Saccharomyces exiguus

Saccharomyces barnettii

Saccharomyces castellii

Zygosacch
aromyce

s fe
rmentati

Saccharomyces kluyveri

Kluyveromyces thermotolerans

Kluyveromyces waltii

Saccharomycodes ludwigii

Hanseniaspora uvarum

Willio
psis pratensis

Willio
psis californica

Starmera amethionina var pachy

Starmera amethionina var ameth

Starmera caribaea

Pichia anomala

Williopsis saturnus

Williopsis saturnus var m
rakii

Willio
psis mucosa

Pachysolen tannophilus

Candida chilensis

Candida cylindracea

Candida savonica

Candida mesenterica

Candida suecica

Phaffomyces antillensis

Phaffomyces opuntiae

Phaffomyces thermotolerans

Yarrowia lipolytica
Candida rugosa

Candida catenulata

Candida pseudointermedia

Candida intermedia

Candida akabanensis

Candida oregonensis

Candida haemulonii

Candida tsuchiyae

Clavispora lusitaniae

Candida melibiosica

Candida torresii

Metschnikowia bicuspidata

Candida agrestis

Metschnikowia reukaufii

Metschnikowia pulcherrim
a

Candida mogii

Brettanomyces bruxellensis

Dekkera bruxellensis
Dekkera anomala

Brettanomyces anomalus

Dekkera custersiana

Dekkera naardenensis

Candida insectalens
Candida silvatica

Issatchenkia orientalis

Pichia membranaefaciens

Candida spandovensis
Candida apicola
Candida bombi

Starmerella bombicola

Candida geochares
Candida vaccinii

Endomyces geotrichum

Galactomyces geotrichum

Dipodascus albidus

Candida chiropterorum

Candida valdiviana
Candida drimydis

Waltomyces lipofer

Dipodascopsis uninucleata

Protomyces macrosporus

Protomyces pachydermus
Protomyces inouyei

Protomyces lactucae
Taphrina virginica
Taphrina carnea

Taphrina pruni subcordatae
Taphrina mirabilisTaphrina nana

Taphrina pruni
Taphrina ulmi

Taphrina communis
Taphrina flavorubra
Taphrina populina

Taphrina deformans
Taphrina wiesneri

Taphrina robinsoniana
Taphrina letifera

Neolecta vitellina
Neolecta irregularis

Saitoella complicata

Schizosaccharomyces pombe

Schizosaccharomyces japonicus
Pneumocystis carinii

Calicium tricolor
Taphrina maculans

Taphrina californica
Chytridium confervae

Neocallimastix frontalis
Neocallimastix joyonii
Piromonas communis

Spizellomyces acuminatus

Allomyces macrogynus

Blastocladiella emersonii
Chrysops niger

Drosophila melanogaster
Ceratitis capitata
Ornithoica vicina

Nephrotoma altissima
Lutzomyia shannoni

Aedes albopictusAedes aegyptiAedes punctor

Toxorhynchites ambionensis
Culex tritaeniorhynchus

Anopheles psuedopunctipennis
Anopheles albimanus

Eucorethra underwoodi
Dixella cornuta

Culicoides variipennis
Amblabesmia rhamphe

Simulium vittatumXenos vesparumStylops melittae
Mengenilla chobauti
Galleria mellonella

Archaeopsylla erinacei
Panorpa germanica

Anisochrysa carneaOliarces clara
Monolobus ovalipennis

Antarctonomus complanatusLoricera foveata
Loricera pilicornis pilicornis

Amarotypus edwardsi
Bembidion mexicanum

Bembidion levettei carrianumAsaphidion curtumDiplous californicusPatrobus longicornis
Pericompsus laetulusDiplochaetus planatusZolus helmsi

Merizodus angusticollisSloaneana tasmaniaeBatesiana hilarisSchizogenius falliClivina ferreaDyschirius sphaericollisMelisodera picipennisMecyclothorax vulcansAmblytelus curtusApotomus rufithoraxBroscosoma relictumCreobius eydouxiGalerita lecontei leconteiPseudaptinus rufulusAptinus displosorPterostichus melanariusTetragonoderus latipennisDiscoderus cordicollisChlaenius ruficaudaCalybe laetulaAmara apricariaAgonum extensicolleCymindis punctigeraLoxandrus n sp nr amplithoraCnemalobus sulciferusCatapiesis brasiliensisMorion aridusBrachinus armigerBrachinus hirsutusPheropsophus aequinoctialisPasimachus atronitensScarites subterraneusCarenum interruptumSiagona europaeaSiagona jennisoniClinidium calcaratumOmoglymmius hamatusOmus californicusCicindela sedecimpunctata
Metrius contractusPachyteles striolaCymbionotum semelederiCymbionotum pictulumGehringia olympicaPromecognathus crassusLaccocenus ambiguusOmophron obliteratum
Psydrus piceusCeroglossus chilensisPamborus gueriniiCalosoma scrutatorCarabus nemoralisScaphinotus petersi catalinae

Cychrus italicusOpisthius richardsoniLeistus ferruginosus
Nebria hudsonicaNotiophilus semiopacusTrachypachus gibbsiiTrachypachus holmbergiSystolosoma lateritiumElaphrus californicus

Elaphrus clairvilleiBlethisa multipunctata aurata
Mecodema fulgidum

Oregus aereus
Suphis inflatusCopelatus chevrolati renovatusHydroscapha natans

Xanthopyga cacti
Dynastes granti
Tenebrio molitor

Meloe proscarabaeus
Clambus arnetti

Phaeostigma notata
Leptothorax acervorum

Polistes dominulus
Graphosoma lineatum
Raphigaster nebulosa

Lygus hesperus
Hemiowoodwardia wilsoni

Hackeriella veitchi
Spissistilus festinus
Prokelisia marginata
Philaenus spumarius
Okanagana utahensis

Trioza eugeniae
Pealius kelloggii

Acyrthosiphon pisum
Aonidiella aurantii

Batrachideidae gen sp
Carausius morosus
Acheta domesticus
Mesoperlina pecircai

Aeschna cyanea
Lepisma saccharina

Lepidocyrtus paradoxus
Crossodonthina koreana

Hypogastrura dolsana
Podura aquatica

Theatops erythrocephala
Scolopendra cingulata

Cryptops trisulcatus

Craterostigmus tasmanianus
Lithobius variegatus

Scutigera coleoptrata

Pseudohimantarium mediterraneum

Clinopodes poseidonis

Cylindroiulus punctatus

Polydesmus coriaceus

Rhipicephalus appendiculatus

Hyalomma lusitanicum

Hyalomma rufipes

Hyalomma dromedarii

Rhipicephalus sanguineus

Boophilus microplus

Rhipicephalus zambeziensis

Rhipicephalus bursa

Boophilus annulatus

Rhipicephalus pusillus

Dermacentor andersoni

Dermacentor marginatus

Amblyomma triguttatum triguttat

Amblyomma vikirri

Aponomma fimbriatum

Aponomma latum

Amblyomma variegatum

Amblyomma tuberculatum

Amblyomma americanum

Amblyomma maculatum

Haemaphysalis inermis

Haemaphysalis punctata

Haemaphysalis leporispalustris

Haemaphysalis humerosa

Haemaphysalis petrogalis

Haemaphysalis leachi

Aponomma undatum

Aponomma concolor

Ixodes auritulus

Ixodes ricinus

Ixodes affinis

Ixodes pilosus

Ixodes cookei

Ixodes simplex simplex

Ixodes kopsteini

Ixodes holocyclus

Carios puertoricensis

Ornithodoros moubata

Ornithodoros coriaceus

Otobius megnini

Argas lahorensis

Argas persicus

Megisthanus floridanus

Cosmolaelaps trifidus

Hypochthonius rufulus

Lohmannia banksi

Nothrus sylvestris

Xenillus tegeocranus

Euzetes globulosus

Allonothrus russeolus

Archegozetes longisetosus

Trhypochthonius tectorum

Nehypochthonius porosus

Steganacarus magnus

Gehypochthonius urticinus

Chortoglyphus arcuatus

Acarus siro

Eusimonia wunderlichi

Androctonus australis

Liphistius bicoloripes

Eurypelma californica

Odiellus troguloides

Pseudocellus pearsei

Limulus polyphemus

Callipallene gen sp

Berndtia purpurea

Trypetesa lampas

Octolasmis lowei

Paralepas palinuri

Lepas anatifera

Balanus eburneus

Chelonibia patula

Tetraclita stalactifera

Chthamalus fragilis

Verruca spengleri

Ibla cumingi

Calantica villosa

Loxothylacus texanus

Dendrogaster asterinae

Ulophysema oeresundense

Palaemonetes kadiakensis

Helice tridens

Philyra pisum

Callinectes sapidus

Pugettia quadridens

Raninoides louisianensis

Procambarus leonensis

Astacus astacus

Nephrops norvegicus

Panulirus argus

Oedignathus inermis

Penaeus aztecus

Stenopus hispidus

Artemia salina

Branchinecta packardi

Daphnia pulex

Bosmina longirostris

Daphnia galeata

Stenocypris major

Argulus nobilis

Porocephalus crotali

Milnesium tardigradum

Macrobiotus hufelandi

Thulinia stephaniae

Echiniscus viridissimus

Euperipatoides leuckarti

Priapulus caudatus

Pycnophyes kielensis

Helix aspersa

Balea biplicata

Limicolaria kambeul

Laevicaulis alte

Onchidella celtica

Siphonaria algesirae

Anthosiphonaria sirius

Lymnaea glabra

Stagnicola palustris

Lymnaea stagnalis

Radix peregra

Lymnaea auricularia

Fossaria truncatula

Bakerilymnaea cubensis

Biomphalaria glabrata

Littorina obtusata

Littorina littorea

Fasciolaria lignaria

Nassarius singuinjorensis

Pisania striata

Reishia bronni

Thais clavigera

Rapana venosa

Bursa rana

Monodonta labio

Antalis vulgaris

Scutopus ventrolineatus

Arctica islandica

Mercenaria mercenaria

Spisula subtruncata

Mulinia lateralis

Spisula solida

Spisula solidissima

Tresus nuttali

Tresus capax

Mactromeris polynyma

Hippopus hippopus

Hippopus porcellanus

Tridacna squamosa

Tridacna crocea

Tridacna maxima

Tridacna derasa

Tridacna gigas

Vasticardium flavum

Fulvia mutica

Fragum unedo

Fragum fragum

Corculum cardissa

Galeomma takii

Ostrea edulis

Crassostrea virginica

Nerita albicilla

Mytilus edulis

Mytilus trossulus

Mytilus galloprovincialis

Mytilus californianus

Geukensia demissa

Mimachlamys varia

Chlamys hastata

Crassadoma gigantea

Pecten maximus

Argopecten gibbus

Argopecten irradians

Placopecten magellanicus

Chlamys islandica

Atrina pectinata

Arca noae

Barbatia virescens

Acanthopleura japonica

Lepidochitona corrugata

Lepidozona coreanica

Eohemithyris grayii

Platidia anomioides

Stenosarina crosnieri

Gryphus vitreus

Thecidellina blochmanii

Cancellothyris hedleyi

Terebratulina retusa

Liothyrella neozelanica

Liothyrella uva

Gwynia capsula

Calloria inconspicua

Gyrothyris mawsoni

Neothyris parva

Terebratalia transversa

Macandrevia cranium

Fallax neocaledonensis

Laqueus californianus

Megerlia truncata

Terebratella sanguinea

Notosaria nigricans

Hemithyris psittaceae

Neocrania anomala

Neocrania huttoni

Discina striata

Glottidia pyramidata

Lingula lingua

Lingula anatina

Phoronis architecta

Phoronis psammophila

Phoronis vancouverensis

Alboglossiphonia heteroclita

Hirudo medicinalis

Haemopis sanguisuga

Barbronia weberi

Eisenia fetida

Lumbricus rubellus

Dero digitata

Xironogiton victoriensis

Sathodrilus attenuatus

Nereis virens

Aphrodita aculeata

Nereis limbata

Capitella capitata

Harmothoe impar

Sabella pavonina

Magelona mirabilis

Scoloplos armiger

Polydora ciliata

Pygospio elegans

Lanice conchilega

Nephtys hombergii

Glycera americana

Dodecaceria concharum

Chaetopterus variopedatus

Siboglinum fiordicum

Ridgeia piscesae

Ochetostoma erythrogrammon

Pedicellina cernua

Barentsia hildegardae

Barentsia benedeni

Symbion pandora

Plumatella repens

Alcyonidium gelatinosum

Porania pulvillus

Asterias amurensis

Astropecten irregularis

Stomopneustes variolaris

Mespilia globulus

Temnopleurus hardwickii

Salmacis sphaeroides

Tripneustes gratilla

Ophiopholis aculeta

Strongylocentrotus intermedius

Colobocentrotus atratus

Echinus esculentus

Sphaerechinus granularis

Psammechinus miliaris

Diadema setosum

Centrostephanus coronatus

Eucidaris tribuloides

Fellaster zelandiae

Cassidulus mitis

Echinodiscus bisperforatus

Encope aberrans

Echinocardium cordatum

Brissopsis lyrifera

Meoma ventricosa

Arbacia lixula

Asthenosoma owstoni

Psychropotes longicauda

Cucumaria sykion

Lipotrapeza vestiens

Stichopus japonicus

Ophiocanops fugiens

Amphipholis squamata

Strongylocentrotus purpuratus

Ophiomyxa brevirima

Ophioplocus japonicus

Astrobrachion constrictum

Antedon serrata

Endoxocrinus parrae

Eptatretus stouti

Myxine glutinosa atlantic hagfis

Petromyzon marinus

Lampetra aepyptera

Plethodon yonhalossee

Amphiuma tridactylum

Siren intermedia

Ambystoma mexicanum

Eleutherodactylus cuneatus

Hyla cinerea

Bufo valliceps

Nesomantis thomasseti

Gastrophryne carolinensis

Xenopus laevis

Scaphiopus holbrooki

Discoglossus pictus

Grandisonia alternans

Hypogeophis rostratus

Ichthyophis bannanicus

Typhlonectes natans

Homo sapiens

Mus musculus

Rattus norvegicus

Oryctolagus cuniculus

Alligator mississippiensis

Turdus migratorius

Gallus gallus

Heterodon platyrhinos

Sceloporus undulatus

Sphenodon punctatus

Pseudemys scripta

Latimeria chalumnae

Elops hawaiiensis

Megalops atlanticus

Ophichthus rex

Echiophis punctifer

Hiodon alosoides

Albula vulpes

Salmo trutta

Oncorhynchus kisutch

Cyprinus carpio

Ictalurus punctatus

Clupea harengus

Fundulus heteroclitus

Amia calva

Lepisosteus osseus

Polyodon spathula

Sebastolobus altivelis

Rhinobatos lentiginosus

Echinorhinus cookei

Squalus acanthias

Notorynchus cepedianus

Branchiostoma floridae

Halocynthia roretzi

Styela plicata

Herdmania momus

Oikopleura dioica

Doliolum nationalis

Thalia democratica

Pyrosoma atlanticum

Ciona intestinalis

Saccoglossus kowalevskii

Balanoglossus carnosus

Dicyema acuticephalum

Dicyema orientale

Sagitta elegans

Sagitta crassa

Paraspadella gotoi

Phascolosoma granulatum

Prostoma eilhardi

Haplogonaria syltensis

Atriofonta polyvacuola

Actinoposthia beklem
ischevi

Aphanastoma virescens

Convoluta pulchra

Anaperus tvaerm
innensis

Sym
sagittifera psam

m
ophila

Convoluta roscoffensis

Convoluta naikaiensis

Anaperus biaculeatus

Paedomecynostomum bruneum

Postm
ecynostomum

 pictum

Childia groenlandica

Philom
ecynostom

um
 lapillum

Sim
plicom

orpha gigantorhabditis

Paratom
ella rubra

Dugesia subtentaculata

Dugesia ryukyuensis

Girardia tigrina

M
icroplana scharfii

Caenoplana caerulea

Australoplana sanguinea

Arthiopostia triangulata

Dugesia japonica

Dugesia iberica

Dugesia m
editerranea

Dugesia polychroa

Cura pinguis

Neppia m
ontana

M
icroplana nana

Bipalium
 kewense

Platydem
us m

anokwari

Artioposthia triangulata

Dendrocoelopsis lactea

Crenobia alpina

Polycelis nigra

Phagocata ullala

Ectoplana lim
uli

Bipalium
 trilineatum

Heronim
us m

ollis

Prosorhynchoides gracilescens

Stephanostom
um

 baccatum

Zalophotrem
a hepaticum

Nasitrem
a globicephalae

Tetracerasta blepta

Fasciola gigantica

Dicrocoelium
 dendriticum

Fasciola hepatica

Fasciolopsis buski

Echinostom
a caproni

O
pisthorchis viverrini

Calicophoron calicophorum

Schistosom
a japonicum

Schistosom
a m

ansoni

Schistosom
a spindale

Schistosom
a haem

atobium

M
ulticotyle purvisi

Lobatostom
a m

anteri

Zeuxapta seriolae

Plectanocotyle gurnardi

Diclidophora denticulata

Kuhnia scom
bri

Bivagina pagrosom
i

Neom
icrocotyle pacifica

Pseudohexabothrium
 taeniurae

Neopolystom
a spratti

Polystom
oides m

alayi

G
rillotia erinaceus

Abothrium
 gadi

Bothriocephalus scorpii

Proteocephalus exiguus

G
yrocotyle urna

Dictyocotyle coeliaca

C
alicotyle affinis

Troglocephalus rhinobatidis

Leptocotyle m
inor

Pseudom
urraytrem

a ardens

G
yrodactylus salaris

Udonella caligorum

Encotyllabe chironem
i

Bothrom
esostom

a personatum

Plagiostom
um

 cinctum

Plagiostom
um

 striatum

Plicastom
a cuticulata

Vorticeros ijim
ai

Plagiostom
um

 vittatum

Plagiostom
um

 ochroleucum

Pseudostom
um

 klosterm
anni

Pseudostom
um

 quadrioculatum

Cylindrostom
a fingalianum

C
ylindrostom

a gracilis

Pseudostom
um

 gracilis

U
lianinia m

ollissim
a

R
eisingeria hexaoculata

Urastom
a cyprinae

Archiloa rivularis

N
em

ertinoides elongatus

Planocera m
ultitentaculata

Notoplana koreana

N
otoplana australis

D
iscocelis tigrina

Pseudoceros tritriatus

Thysanozoon brocchii

G
eocentrophora sphyrocephala

G
eocentrophora baltica

M
icrostom

um
 lineare

M
acrostom

um
 tuba

Stenostom
um

 leucops aquariorum

Stenostom
um

 leucops

Eubostrichus parasitiferus

Eubostrichus topiarius

Eubostrichus dianae

C
hrom

adoropsis vivipara

D
esm

odora ovigera

Laxus oneistus

Laxus cosm
opolitus

Stilbonem
a m

ajum

R
obbea hyperm

nestra

Acanthopharynx m
icans

Plectus aquatilis

Plectus acum
inatus

C
ruznem

a tripartitum

R
habditella axei

Pellioditis typica

R
habditis blum

i

R
habditis m

yriophila

H
aem

onchus placei

H
aem

onchus sim
ilis

H
aem

onchus contortus

N
em

atodirus battus

O
stertagia ostertagi

N
ippostrongylus brasiliensis

Syngam
us trachea

H
eterorhabditis bacteriophora

C
aenorhabditis briggsae

C
aenorhabditis elegans

C
aenorhabditis vulgaris

Pelodera strongyloides

Panagrellus redivivus

Teratorhabditis palm
arum

Aduncospiculum
 halicti

Pristionchus lheritieri

D
iplogaster lethieri
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FIGURE 1.2: A phylogenetic tree depicting approximately 3000 species from

the spectrum of Earth's biology. Source: David M. Hillis, Derrick Zwickl, and

Robin Gutell, University of Texas
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Evolutionary relationships between groups of organisms are not directly observable, and so

phylogenetic trees must be inferred. The vast amount of genomic sequence data now avail-

able is a tremendous source of information for determining the evolutionary relationships

between organisms. In particular, as mentioned in Section 1.1.2, 16S rRNA sequencing

has been extremely successful in the inference of phylogenetic trees for microbial life [131]

due to its stability and ubiquity among species, making it a reliable molecular clock. The

two most common groups of methods for reconstructing phylogenetic trees from sequence

data are distance-matrix methods and character-based methods [130]. Distance-matrix

methods are pertinent to future discussion, so we brie�y outline a few such methods here.

In distance-matrix methods, a metric on aligned sequences, that is, sequences in which

areas of conserved function have been identi�ed, are used to generate a matrix of all

pairwise distances between genetic sequences, generally using some Markov model as a

basis for the metric [86]. That distance-matrix is then used to generate an optimal tree by

methods such as least squares, minimum evolution and neighbor-joining.

Letting D be such a matrix of observed pairwise distances between sequences, let, for any

given phylogenetic tree, D̂ be a matrix of pairwise distances derived from an assumed

molecular clock in the tree. Least squares seeks a tree which minimizes the sum of the

squares of di�erences between the expected molecular clock distance in the tree and the

observed distance between sequences. That is it seeks a tree such that

Q =
∑
i

∑
j

(D(i, j)− D̂(i, j))2

is as small as possible. Minimal evolution seeks a tree in which branch lengths are minimal,

again deriving distances from an expected molecular clock.

The most popular method [130] is neighbor-joining [34]. Neighbor-joining begins with a

graph in which all taxa are joined to a common node. It then chooses a pair of taxa i and
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j which minimizes the quantity

Q = (r − 2)D(i, j)−
∑
k

(D(i, k) +D(j, k))

where r is the number of taxa adjacent to our initial node. The taxa i and j are then

agglomerated into a common taxa descending from an inserted additional taxa u. Distances

from u to each of i and j are then computed via the formula

D(i, u) =
1

2
·D(i, j) +

1

2(r − 2)

[∑
k

(D(i, k)−D(j, k))

]
.

The taxa i and j are then removed from the distance matrix and list of taxa, being replace

by u. Distances from u to the remaining taxa k are computed via the formula

D(u, k) =
1

2
[D(i, k)−D(j, k)] +

1

2
[D(j, k)−D(j, u)].

The algorithm terminates when all of the taxa we began with are resolved from the initial

node.

The construction of phylogenetic trees highlight the utility of metrics between genomes.

We see that, by the very notion of a species or OTU in a genetic context, groups of

species whose genomes are more related are de�ned to be more evolutionarily related. We

turn from a discussion of how species are the same, that is how they are interrelated, to

a discussion of the ways in which biologists de�ne groups of species or communities of

organisms to be di�erent. That is, metrics of community diversity.

1.1.4 Survey of Methods in Community Dissimilarity Measurements

One of the chief applications of metagenomic analysis via high-throughput sequencing

is the ability to conduct large-scale surveys of the spatiotemporal diversity of microbial

communities [88]. The ability to reconstruct phylogenies for communities of organisms

from a speci�c location, at a speci�c time, via analysis of 16S rRNA or whole genome

shotgun datasets gives researchers the ability to understand the phylogenetic composition
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and relative abundance of species in a community and how those quantities a�ect and are

a�ected by environmental factors.

Ecologists de�ne measures of the richness of an ecological community in terms of α-

diversity, the site speci�c composition of biological communities, β-diversity, the variation

in species composition between sites in an environment, and γ-diversity, the variability

found in an entire ecosystem [124]. Metagenomics has given ecologists access to datasets

describing the richness found in hundreds [69] and thousands [16] of environmental sam-

ples, which has led to the increased importance and application of analytic measures of

such diversity.

Our chief interest lies in measures of β-diversity, but we will brie�y touch on measures of

α-diversity for context. Before continuing our discussion, we de�ne an important term for

casting ecological questions in a mathematical context, that of relative abundance.

De�nition 1.1.2 (Relative abundance). Given a environmental sample A, let SA denote

the set of species or OTUs present in A. For each i ∈ SA let ni denote the number of

specimens of i in A. Then the relative abundance pA(i) of i in A is

pA(i) =
ni∑

j∈SA nj

and the relative abundance of A is the vector pA, indexed in some order. When comparing

samples A and B, we will generally take the index set to be the species or OTUs found in

the union of A and B.

The simplest measure of α-diversity is species richness [71], which is merely the number

of species or OTUs (see Section 1.1.3) present in a community. In Whittaker's initial

de�nition of the term α-diversity he takes this as �the most generally appropriate� [124]

formulation, though it takes into account no information on species abundance. Measures

of α-diversity which account for species abundances generally take the form of a reciprocal

weighted mean, or some function of that quantity, as follows.
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De�nition 1.1.3 (order q diversity). For a community of S species, where species i ∈ S

has relative abundance p(i), the order q diversity qD is

qD = 1

/
q−1

√∑
i=1

pq(i).

Taking q = 0 we get species richness, q = 2 yields what is known as the Simpson index,

taking q = 1 and applying the natural logarithm yields the Shannon index. Each correlates

with an e�ective number of species [115].

On the other hand, β-diversity measures are far more varied [88, 7], given the wide variety

of ways one might construct for comparing things which are not the same. Measures of

β-diversity can be described as quantitative or qualitative, and phylogenetic or nonphylo-

genetic [80]. Phylogenetic measures account for the interrelatedness of species in de�ning

di�erences between communities, inferred from some phylogeny, while nonphylogenetic do

not. Quantitative measures account for the di�erence in relative abundance in species

or OTUs between communities, while qualitative measure account only for the absence or

presence of species or OTUs. In many cases [88], the same analytic tools can be considered

in each context by recasting a dataset of abundances as binary absence-presence values

or a dataset of absence-presence data as proportions of the total species accounted. We

follow the literature in describing the most common applications of these tools.

Nonphylogenetic examples of β-diversity measures include Bray-Curtis dissimilarity [11],

Jaccard Index [98], Sørenson index, modi�ed Gower measure [3], Hellinger Distance (see

De�nition 1.2.5) and χ2 distance (see De�ntion 1.2.6). We describe each brie�y.

De�nition 1.1.4 (Bray-Curtis). The Bray-Curtis dissimilarity BCA,B between sample

specimen counts A and B is de�ned as

BCA,B = 1− 2|A ∩B|
|A|+ |B|

,

where the intersection |A ∩ B| above is de�ned as the sum over all species present of the

minimum of the number of specimens counted from each sample.
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De�nition 1.1.5 (Jaccard). The Jaccard index JA,B between samples A and B is

JA,B =
|SA ∩ SB|

|SA|+ |SB| − |SA ∩ SB|

where SA, SB denote the set of species or OTUs recorded in each sample.

De�nition 1.1.6 (Sørenson). The Sørenson index SA,B between samples A and B is

SA,B =
|SA ∩ SB|
|SA|+ |SB|

using the notation of De�nition 1.1.5.

Note that the Jaccard and Sørenson indices are qualitative measures of β-diversity which

adhere to the relationship SA,B < JA,B, while Bray-Curtis is the quantitative version of

the Sørenson index.

De�nition 1.1.7 (Modi�ed Gower). De�ne l+ by

l+(x) =


log10(x) + 1 x 6= 0

0 x = 0.

Let nA,B denote the number of species or OTUs found in either of a pair of samples A and

B. Then the Modi�ed Gower MGA,B measure between samples A and B with relative

abundances pA and pB is

MGA,B =

∑nA,B
i |l+(pA(i))− l+(pB(i))|

nA,B

Hellinger and χ2 are described in Section 1.2.4 and are computed on vectors of relative

abundances.

Phylogenetic examples of β-diversity measures include community distance, community

distance-nearest taxon distance [112], PhyloSor [13] and UniFrac [68, 67].

In the following we assume familiarity with the material related to graph theory detailed

in Section 1.3. For microbial community samples A and B let T = (V,E, ρ) be a rooted
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phylogenetic tree which has been constructed for the combined communities (see Section

1.1.3). Let l be a weight function for the edges of T . Let dT be the induced path length

metric in T between species or OTUs in A and B. Let pA,pB be the vectors of relative

abundance. Let SA, SB be the species or OTUs present in each of A and B, let SA,B the

species or OTUs present in their union, and let nA, nB and nA,B the number of elements

in each set.

De�nition 1.1.8 (Community distance). The community distance CDA,B between sam-

ples A and B is de�ned as

CDA,B =
1

nA · nB

∑
i∈SA

∑
j∈SB

dT (i, j).

De�nition 1.1.9 (Community Distance-Nearest Taxon). The community distance-nearest

taxon CDNTA,B between samples A and B is de�ned as

CDNTA,B =
1

nA

∑
i∈SA

min{j ∈ SB|dT (i, j)}.

Each of the above is qualitative as described but can be adapted to a quantitative measure

by weighting the summands involved by their corresponding relative abundances.

Our next measure of β-diversity was given by Rao [97] in an attempt to give a unifying

mathematical framework similar to that of De�ntion 1.1.3 for measures of diversity between

communities.

De�nition 1.1.10 (Diversity Index). Let d be any symmetric measure of di�erence be-

tween species or OTUs. Then for samples X and Y containing species SX and SY with

relative abundance vectors pX and pY we de�ne the diversity index hX,Y to be

hX,Y =
∑
i∈SX

∑
j∈SY

pX(i)pY (j)d(i, j).

De�nition 1.1.11 (Dissimilarity Index). The dissimilarity index Dh between samples A

and B for a given measure of di�erence d is given by

Dh(A,B) = hA,B −
1

2
(hA,A + hB,B) .
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The following terminology will be useful in the de�nition of the following phylogenetic

β-diversity measures. We say an edge e in T belongs to sample A in the case that H ∩ SA

is nonempty while H ∩SB is empty for the branch H of T (De�nition 1.3.8) de�ned by the

deletion of e. We say an edge belongs to both if H ∩ SA,B is nonempty and say it belongs

neither otherwise.

De�nition 1.1.12 (PhyloSor). Let EA,EB and EA,B be the set of edges belonging to A,B

and both, respectively. Then, given our weight function l, the PhylSor PSA,B diversity

measure between A and B is given by

PSA,B =
2 ·
∑

e∈EA,B l(e)∑
e∈EA l(e) +

∑
e∈EB l(e)

.

Note that PhyloSor is qualitative. It is the phylogenetic application of the idea behind

the Sørenson index, where species or OTU absence-presence is weighted by evolutionary

distance.

Finally, we discuss UniFrac, a phylogenetic β-diversity measure which has formulations

which are qualitative, unweighted UniFrac, as well as quantitative, weighted UniFrac. We

retain the notation used in the de�nition of PhyloSor in our description of each.

De�nition 1.1.13 (Unweighted UniFrac). Let EA and EB be the set of edges belonging

to A and B, respectively. Then the unweighted UniFrac metric UF uA,B between A and B

is given by

UF uA,B =

∑
e∈EA l(e) +

∑
e∈EB l(e)∑

e∈EA∪EB l(e)
.

That is, UniFrac measures the fraction of a phylogeny which is unique to each of the

communities. Figure 1.3 shows the identi�cation of edges belonging uniquely to each of

two samples. We de�ne weighted UniFrac similarly. For an edge e let He be the branch

de�ned by e. Let pA,pB be the relative abundances for samples A and B.
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De�nition 1.1.14 (Weighted UniFrac). The weighted UniFrac metric UFA,B between

samples A and B is given by

UFA,B =
∑
e∈E

l(e) · |
∑
v∈He

(pA(v)− pB(v))|.

FIGURE 1.3: A depiction of edge identi�cation on a phylogenetic tree T used

in the computation of UniFrac between samples A and B. The presence of a

species or OTU in sample A is indicated by a red box, that of sample B in

blue. Edges identi�ed with each of A and B are colored correspondingly.

In the example depicted, let the tree be ultrametric (De�nition 1.3.5) of depth 3. Suppose

the upper two OTUs terminate in edges of length 1, and thus the length of edges which

belong to sample A is 4. Suppose that the bottom two edges are of length 0.5 and that

these edges belong to a clade which arises from a edge of length 1, so that the edges which

belong to sample B is 2. The edge which contains OTUs from both is then necessarily 1.5

and thus the total length of edges belonging to either is 9. In this case UF uA,B = 6/9.

While the property of being ultrametric is not necessary in the de�ntion of UniFrac, in

either its quantitative or qualitative forms, the existence of disparities in branch lengths

yield over-weighting of quickly evolving taxa, that is, those with longer edge lengths [68].

In such cases it may be advisable to compute normalized versions of UniFrac as follows.
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Let dT be the distance function in T , and de�ne D by

D =
∑
v∈T

dT (v, ρ) · (pA(v) + pB(v)).

Thus D is the weighted average distance between OTUs from A and B to the root ρ.

De�nition 1.1.15 (Normalized UniFrac). Given samples A and B, with UniFrac dis-

tances UF uA,B and UFA,B, de�ne the normalized UniFrac distances UF
u
A,B and UFA,B by

UF
u
A,B = UF uA,B/D and UFA,B = UFA,B/D.

In this section we have addressed a variety of ways in which biologists compare groups

of organisms, in particular the formulation of β-diversity metrics. Each of the metrics

discussed thus far require the construction of an underlying phylogenetic tree in comparing

groups of organisms. We turn next to metrics that do not have this requirement, so-called

reference-free metrics in metagenomics.

1.1.5 Survey of Methods in Reference-free Metagenomic Comparison

The methods for comparing communities of microbial organisms outlined in Section 1.1.4

share one common constraint, they require the determination of precisely which species or

OTUs are present in a sample before making comparisons between communities. A dataset

of sequence reads needs to be transformed into a list of species or OTUs and, hopefully, rel-

ative abundances. This generally requires that those sequences be assembled and aligned.

These are generally referred to as binning methods [73], wherein community composi-

tion and relative abundance are derived from placing contigs into `bins' which have been

assigned to species or OTUs via the use of reference databases. Such methods are power-

ful but su�er from the di�culties related to sequence alignment and assembly described

in Section 1.1.2. Here we describe reference-free methods for genomic and metagenomic

comparison, which do not rely on sequence alignment and assignment to species or OTUs.
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The �rst of such methods are variations on the notation of factor frequencies. In these

methods an information-theoretic framework is adapted wherein k-mer frequencies (see

Section 1.3.4 for notation and de�nitions related to theory of words) from sequence reads

are analyzed directly by application of a variety of tools. In the description that follows,

let A be B metagenomic samples and let WA and WB be collections of sequence reads

from each, respectively.

The simplest such tool is the dinucleotide odds ratio [54], derived for genomic comparison.

De�nition 1.1.16 (Dinucleotide Odds Ratio). Given symbols X and Y , let XY denote

their concatenation. De�ne the dinucleotide odds ratio ρXY to be

ρXY =
freqWA

(XY )

freqWA
(X) · freqWA

(Y )

for each ordered pair (X,Y ) from {A,C, T,G}2.

The 16 dinucleotide odds ratios measure the deviation from uniformly random expectation

of the occurrence of 2-mers, strings of symbols from {A,C,G, T} of length 2, in a genome

based on letter frequency. This discriminant, when applied to genes from a variety of

organisms, has been shown [54, 50] to be a sort of `genomic signature' capable of both

identifying taxa and characterizing the evolutionary distance between taxa.

Applying more robust tools from information theory has led to the use of the Jensen-

Shannon divergence dJS (De�nition 1.2.4) based upon the Kullback-Leibler divergence.

These methods have been applied successfully to factor frequencies of k-mers as a dis-

tance metric for phylogenetic tree construction in mammals [104] and Hepatitis viruses by

neighbor-joining (See Section 1.1.3 for information related to phylogenetic trees and their

construction).

Sims et al. [104] also explored the ideal range of values for k in such metrics, giving

lower and upper bounds as follows, albeit in di�ering notation. Let G be a collection



23

of sequence reads from a genome. They establish lmin = maxn∈N fG(n), where fG is

the complexity function for the set G (De�ntion 1.3.11), as the minimum value to achieve

maximum discrimination power for Jensen-Shannon based factor frequency methods. They

empirically approximate the value for a genome of length n as lmin = log4(n), and give

explicit computations for rat mitochondrial genomes (n=16 kBps) and human chromosome

1 (n=230 MBps) as lmin = 7 and lmin = 14, respectively. This lower bound is somewhat

obvious, the discriminating power of a metric only improves as it is able to consider more

distinct features.

Their upper bound is derived as follows. We �rst extend the idea behind the dinucleotide

odds ratios to more general k-mers. Let i = w2 . . . w(k−1) be a word of length (k−2) in the

genetic alphabet. Let p = w2 . . . wk and let s = w1 . . . w(k−1) be words of length (k − 1)

containing i as a pre�x and su�x, respectively. Then the expected frequency f̂ reqw of the

k-mer w = w1w2 . . . wk, given the observed (k − 2)-mer and (k − 1)-mer frequencies, is

f̂ reqw =
freqs · freqp

freqi
.

Let f̂ req
k
(G) be the vector of expected k-mer frequencies for a genome G, given the

observed frequencies freq(k−1)(G) and freq(k−2)(G). Then dKL( ˆfreq
k
(G), freqk(G)) is a

measure of the additional information gained by considering k-mer frequencies, relative to

the information already contained in the distributions of (k − 1) and (k − 2)-mers. Let ε

be small and positive, and set lmax = minn∈N{n
∣∣ dKL(f̂ req

n
(G), freqn(G)) > ε}. That is,

a measure based in analyzing k-mers stops gaining discriminating power when considering

larger values of k no longer garners new information regarding factor frequencies. They

empirically approximate this in their application to phylogenetic tree construction via

neighbor-joining to be the least k such that the phylogenetic tree generated ceases to

change. For rat mitochondrial genomes (n=16 kBps) they determined lmax = 14.

An alternate, purely experimental approach, was taken to determining optimal k-mer sizes
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in [129]. Wu et al. analyzed synthetic sequences in which a �xed `mother' sequence was

generated under the assumption of uniform and independent nucleotide distribution and

`son' sequences were derived by mutating the mother sequence at each base with �xed

probability p = 0.01, 0.02, . . . , 0.99, 1.00. Here the goal was to determine which size k-

mer best balanced capturing the similarity transmitted from mother to son with the noise

introduced by mutation. They experimentally derived optimal k values of 7, 8 and 9

for comparison of sequences of length approximately 700-2500, 2500-5000 and 5000-6100,

respectively.

Having discussed a variety of measures of diversity used in microbial ecology, including

their formulation, scope and parameter values, we turn brie�y to their analysis. Each of

the above returns a number or collection of numbers when used to describe the diverity

observed in di�ering microbial communities. When used to compare many such samples,

ecologists are faced with many, many such numbers. We next discuss how ecologist give

signi�cance to individual measurements and interpret large collections of pairwise mea-

surements for the purpose of generating hypotheses.

1.1.6 Survey of Techniques in Ecological Data Analysis

As we have stated, the revolution in high-throughput metagenomic sequencing has led to

the generation of tremendous amounts of data containing new insights into how microbial

communities are composed, interrelated and varying in both time and space. Uncovering

those insights, detecting the biological signals inside large datasets, requires not only an-

alytic tools for interpreting metagenomic datasets directly, but also tools for interpreting

and understanding the measurements, models and inferences built from those datasets.

Here we brie�y describe the means by which microbial ecologists answer the following two

questions. Given a model or metric, how do I understand the signi�cance or sensitivity

to error of the results? Given a large collection of measurements relating communities of
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organisms, how do I detect structure or order in a dataset so as to infer structure or order

in biological communities? Understanding and addressing the ways in which biologists use

data motivates the construction and improvement of the tools which generate data.

While the �eld of metagenomics is new, the desire to understand the distribution and

evolution of species abundance is not and has led to many theories [84] regarding the the

relative abundance of species in communities. Under the recent `Uni�ed Neutral Theory of

Biodiversity' [10, 84] relative abundances of species are described by Dirichlet-multinomial

distributions. This, in addition to the analytic tractability and simplicity of the Dirichlet-

multinomial distribution, has led to its frequent use in modeling metagenomic datasets

[85, 6]. We �rst de�ne the multinomial distribution.

De�nition 1.1.17 (Multinomial Distribution). Let X1, X2, . . . , Xn be a sequence of n

independent trials, each with k mutually exclusive and exhaustive possible outcomes. For

each i ∈ {1, . . . , k}, say outcome i occurs with �xed probability pi. Then the number of

occurrences for each of the k possible outcomes after our n trials is a random variable

given by the multinomial distribution.

The multinomial distribution is a discrete probability distribution with parameters n > 0

and {p1, . . . , pk} such that
∑k

i=1 pi = 1 supported on the set (x1, x2, . . . , xk) such that

each xi ∈ {0, . . . , n} and
∑

i xi = n. The probability mass function for the multinomial

distribution is given by

f(x1, . . . , xk;n, p1, . . . , pk) =
n!

x1! . . . xn!
px11 · · · · p

xk
k

for the parameters described above.

In applications to metagenomics, the pi represent the assumed fraction of OTU i in the

communities genomic information, as sampled in a collection of sequence reads. This

information is not generally known beforehand, thus the vector of pi is more often assumed

to be a random variable itself. If we assume that the pi are Dirichlet distributed, we
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arrive at the Dirichlet-multinomial distribution. We proceed with a few relevant de�nitions

related to the Dirichlet-multinomial distribution and its formulation. We �rst recall the

de�nition of the Gamma function Γ(z) and the Beta function B(α).

De�nition 1.1.18 (Gamma function). For a z ∈ C with nonnegative real part, we de�ne

the Gamma function Γ(z) by

Γ(z) =

∫ ∞
0

xz−1e−xdx.

De�nition 1.1.19 (Multivariate Beta function). For α = (α1, . . . , αn), with each αi > 0,

the multivariate beta function B(α) is given by

B(α) =

∏n
i=1 Γ(αi)

Γ (
∑n

i=1 αi)
.

We are now prepared to give a formal de�ntion of the Dirichlet distribution and the related

Dirichlet-multinomial distribution.

De�nition 1.1.20 (Dirichlet Distribution). The Dirichlet distribution is a probability

distribution with parameters α = (α1, . . . , αn) de�ned on the open (n − 1)-dimensional

simplex in Rn such that the probability density funciton is

f(x1, . . . , xn;α1, . . . , αn) =
1

B(α)

n∏
i=1

xαi−1
i .

De�nition 1.1.21 (Dirichlet-Multinomial Distribution). The Dirichlet-multinomial dis-

tribution is a compound probability distribution describing a random variable x =

(x1, . . . , xk) such that x is distributed by the multinomial distribution with parameters

p1, . . . , pk drawn from the Dirichlet distribution.

In addition to comparison against such probabilistic models describing metagenomic

datasets, Monte Carlo permutation tests [41] are often [114, 132, 116] used in measur-

ing the signi�cance of metrics in metagenomic studies. The idea is very straightforward.
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Given a measurement between two communities or samples A and B of sizes m and n,

respectively, we wish to know whether the measured di�erence between A and B is greater

than would be expected due to chance. So we repeatedly select random samples or com-

munities S1 and S2 of sizes m and n, generally 1000s or 10,000s of such pairs, and measure

the di�erence between them. This estimates the distribution of the measurement, and

the fraction of simulated pairs which fall above the distance between A and B gives an

indication of the signi�cance.

We next address the ways in which analytic measures are used in metagenomics, particu-

larly with respect to exploratory data analysis. Here researchers are interested in seeing

large scale structure in a dataset so as to formulate scienti�c hypotheses. The broad term

for such tools in statistics are ordination techniques. The idea is to organize a set of ob-

jects or observations such that object which lie close together with respect to some easily

observed distance, such as the Euclidean metric in the plane, are more related. Two of

the most utilized such tools, particularly in microbiology, is that of principal component

analysis (PCA) and principal coordinate analysis (PCoA) [95, 136].

PCA takes as input a dataset of m observations x1,x2, . . . ,xm of a multivariate random

variable with n quantitative components, that is xj = (x1,j , x2,j , . . . , xn,j) for each 1 ≤ j ≤

n. PCA seeks to produce the coe�cients ci = (ci,1, ci,2, . . . , ci,n), for each 1 ≤ i ≤ n, of a

set of n uncorrelated linear combinations of the components of the xi, known as principal

components, such that

ct1 · xj =
∑
i

c1,i · xi,j

has maximum variance, and that each subsequent ci captures as much of the remain-

ing variance as possible while remaining uncorrelated. We follow [52] in deriving these

components. We �rst recall a minor result necessary for our work.

Proposition 1.1.1 (Covariance of a linear transformation of a multivariate random vari-

able). Say x = (x1, x2, . . . , xn) is a multivariate random variable such that each xi has
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�nite variance and T is a linear transformation, then

cov(Tx) = TtΣT

where cov(x) = Σ.

Proof. Let E(x) = m. Then the covariance matrix of x is de�ned as cov(x) = E((x −

m)(x−m)t). Thus we have, by the linearity of the expectation, that

cov(Tx) = E((Tx− E(Tx))(Tx− E(Tx))t)

= E((Tx−TE(x))(Tx−TE(x))t)

= E((T(x−m))(T(x−m))t)

= E(T(x−m)(x−m)t)Tt)

= TE((x−m)(x−m)t)Tt

= TΣTt

as required.

Returning to our consideration of PCA, let Σ be the known covariance matrix, or a sample

covariance matrix S which estimates Σ, for the n components of our multivariate random

variable. Let c1 be the vector which maximizes var(ct1 · x) = ct1Σc1. As written, the value

is not �nite for nonconstant x, thus we constrain c1 to have unit norm, that is ct1c1 = 1.

The multivariate optimization problem of maximizing ct1Σc1 subject to ct1c1 = 1 can be

solved by use of Lagrange multipliers. That is, maximize

ct1Σc1 − λ(ct1c1 − 1)

for Lagrange multiplier λ.

Taking the derivative with respect to c1 and setting this equal to zero we see that

2Σc1 − 2λc1 = 0
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so that

(Σ− λI)c1 = 0.

Thus c1 is a eigenvector with corresponding eigenvalue λ. To determine our choice of

eigenvector, recall that we wish to maximize

ct1Σc1 = ct1λc1 = λ

and thus we take the largest possible eigenvalue for Σ. Note that since the covariance ma-

trix is always positive semi-de�nite, the eigenvalues are all non-negative. It can be shown

[52] that c2 is the unit norm eigenvector corresponding to the second largest eigenvalue,

and so on.

Alternately [31], we can consider ourmmultivariate quantities as anm×nmatrixM whose

columns are the observations, and we may perform the same eigenvalue decomposition on

a related matrix to yield our principal components.

De�nition 1.1.22. GivenM above, de�neMc by subtracting from each column its mean.

We then de�ne the Gram matrix G = McM
t
c

The Gram matrix of inner products de�ned above di�ers from our covariance matrix by

transposition and scaling, and yields the same principal components as above [31].

PCA is frequently used in biology for ordination of taxa or OTU distribution by selecting

the �rst few, say 2 or 3, principal components and plotting the dataset in these trans-

formed coordinates. In these applications it is less than ideal [95], as we are maximizing

the retained variation in the Euclidean distance given by embedding the dataset in lower

dimensions. If the Euclidean distance between taxa or OTU distributions is not mean-

ingful, then there may be little meaning in preserving it. Our next ordination technique,

PCoA, is similar but seeks to maximize the retained variance given by some hopefully

more meaningful metric.
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PCoA, also known as metric multidimensional scaling takes as input an n × n matrix D

of metric similarity, or dissimilarity, measures between n objects of interest and seeks to

embed the those n objects into low dimensional Euclidean space, typically of dimensions

2 or 3, in such a way as to preserve relationships between objections. We follow [61] in

giving a brief description of the method. Given a matrix of pairwise distances D, we �rst

transform D into the related matrix A by

A(i, j) = −1

2
D2(i, j).

De�ning Ai,·,A·,j and A as, respectively, the row, column and overall means for the

elements of A, we then we then de�ne the matrix ∆ so that

∆(i, j) = A(i, j)−Ai,· −A·,j +A.

It can be shown [61] that these transformations preserve the encoded metric information

in D. The principal coordinates are then the eigenvectors of ∆, the �rst cooridinate

corresponding to the largest eigenvalue and so on.

PCoA is frequently used in examining the sets of pairwise distances generated from the

community or genomic metrics discussed in Sections 1.1.4 and 1.1.5, such as UniFrac.

An example of PCoA as applied to the Human Microbiome Project data utilizing the

Bray-Curtis metric for pairwise distances is given in Figure 1.4 [65].

One framework for the application of PCoA is an adaption of Rao's Dissimilarity Index,

De�nition 1.1.11, for the generation of the underlying distance matrix. This application

of the Dissimilarity Index, utilizing a measure of OTU or species di�erence given by the

metric distance in a phylogenetic tree, was developed into an ordination method given

in [89] as Double Principal Coordinate Analysis. The `double' in the title refers to the

inclusion of two sorts of data, relative abundance and OTU dissimilarity. In the language

we have adapted this is a phylogenetically-aware β-diversity metric packaged together with

PCoA for ordination.
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FIGURE 1.4: An example of Principal Coordinate Analysis (PCoA) for the

purpose of dataset ordination in microbial ecology. In this plot pairwise dis-

tances between microbiome samples from a variety of body locations were gen-

erated utilizing Bray-Curtis and then the dataset was projected onto the �rst

two principal coordinates. Such plots are used for exploratory data analysis

[65].

De�nition 1.1.23 (Double Principal Coordinate Analysis). Let samples A and B assigned

to a phylogenetic tree T be given. Let pA and pB. Let dT be the induced path-length

metric in T and let Dh be the Dissimilarity Index de�ned from pairwise distances given by

dT . Then DPCoA is ordination using PCoA given a distance matrixM generated pairwise

distances using Dh.

There is a direct connection between PCoA and PCA in the case where our D matrix is

given by the L2 distances between points. Let M an n × m matrix whose columns are

xk for 1 ≤ k ≤ n. Let D be the m ×m matrix of L2 distances between columns of M .
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Abusing notation, let D2 denote the component-wise squared matrix of distances and let

D denote the mean value of D. Then, applying the parallelogram law, we have that [31]

D2(i, j) = ‖xi − xj‖22

= 〈xi,xi〉+ 〈xj ,xj〉 − 2 · 〈xi,xj〉

= 〈xi,xi〉+ 〈xj ,xj〉 − 2 · 〈xi,xj〉

= 〈xi −D,xi −D〉+ 〈xj −D,xj −D〉 − 2 · 〈xi −D,xj −D〉

Letting G denote the Gram matrix given above, we see that

G(i, j) = 〈xi −D,xj −D〉

so that

G(i, j) = −1

2
·
(
D2(i, j)− 〈xi −D, xi −D〉+ 〈xi −D,xi −D〉

)
.

That is

G = −
(
I− 1n

n

)
D2

2

(
I− 1n

n

)
.

Note that this is precisely the transformation, though in compacted form, utilized in PCoA

to produce the Gram matrix whose eigenvectors form the principal coordinates. That is,

PCoA is PCA when the distance is L2.

In the above we have covered some of the mathematical tools and techniques used by

biologists in interpreting metrics between biological communities. We next turn to a purely

mathematical discussion regarding metrics in probability spaces that will ultimately help in

understanding the mathematical foundations to the biological analyses we have discussed.
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1.2 Introduction to the Wasserstein Metric

1.2.1 Introduction to the Wasserstein Metric

One of the �rst moments in the education of a mathematics student in which they see the

real power of their �eld is optimization. In calculus you discover that you don't need to

guess endlessly to determine how large a pasture you can build adjacent to your barn with

200 feet of fencing, a simple application of the derivative does the trick.

The utility of optimization, �nding minima and maxima for a given function on a given

domain, is endless, and, unfortunately, often far more di�cult than encountered fencing

in that pasture. Consider the following example, an example which will motivate much of

our remaining discussion. Imagine that an otherwise level �eld has been excavated, holes

dug and dirt piled randomly. How much work is required to �ll the holes back in? Is

there a plan which describes how to go about �lling in the holes most e�ciently? This is

an example of an important class of problems [120] known broadly as optimal transport

and the measure of the optimal amount of work required, however work might be de�ned,

is known broadly as the transport metric. This measure of the minimal amount of work

required to move all that dirt becomes a very useful measure of distance with a multitude

of applications.

The theory of optimal transport began in 1781 with the work of Gaspard Monge [120], a

French mathematician who formalized the problem in precisely the same soil-moving con-

text we described above. He called his problem `Les de'blais et les remblais' or `Excavation

and embankments', and was concerned with the optimal transport of soil for construction

of forts and roads.

Pursuit of this theory was continued by the Soviet mathematician and economist Leonid

Vital'evich Kantorovich in the early twentieth century [119]. He developed the tools of

linear programming to tackle this and other optimization problems arising in economic
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models. Much as linear programming was rediscovered in the West, in particular in the

work of George Dantzig during World War II [119], the theory behind optimal transport

was rediscovered in many guises throughout the years.

The transport metric devised by Kantorovich in the �eld of economics was also described

by Vaserstein [118] (transliterated as Wasserstein) in the �eld of probability, Mallows [72]

in the �eld of statistics, and Rubner [100] in the �eld of computer science. As such, it has

collected a variety of names; Kantorovich-Rubinstein metric, Wasserstein metric, Mallows

distance and the Earth mover's distance. In referring to the transport metric we will

primarily use the names Wasserstein metric and Earth mover's distance, as these are the

names most common in the literature related to mathematics and computer science. We

continue our discussion with a more formal de�nition of the Wasserstein metric.

1.2.2 De�nitions Related to the Wasserstein Metric

We begin our more rigorous discussion of the Wasserstein metric by recalling a few standard

de�nitions and results related to probability.

Let (X, d) denote a complete metric space. Let B be the Borel σ-algebra of sets from X

generated by d. We say the pair (X,B is a Polish space when (X, d) is separable.

We say a probability measure is locally �nite if for every x ∈ X there exists a U ∈ B of

�nite measure such that x ∈ U . We say that a probability measure is inner regular if for

every U ∈ B we have that the measure of U is equal to the supremum over measures of

compact subsets of U . We say a measure de�ned on B is a Radon measure if it is inner

regular and locally �nite. Let M(X) denote the set of all Radon probability measures on

X.

We say that a measure has �nite pth moment for 1 ≤ p ≤ ∞ if for some x0 ∈ X we have

that ∫
X
d(x, x0)pdµ(x) <∞.
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Note that this de�nition is independent of the choice of x0, since for another choice x1 we

have that d(x, x1)p ≤ 2p−1(d(x, x0)p + d(x0, x1)p).

Let Mp(X) denote the set of all Radon measures on (X, d) with �nite pth moments.

Now let µ and ν be elements of Mp(X) for some p and de�ne Γ(µ, ν) to be the set of all

measures γ on X×X such that for all measurable sets A ∈ B we have that γ(A,X) = µ(A)

and γ(X,A) = ν(A). Notice that Γ(µ, ν) is nonempty, as we may always take the product

measure of µ and ν.

For a �xed measure γ we refer to the related measures µ and ν as de�ned above as its

marginals. We will refer to γ as a coupling or �ow between µ and ν. Allowing for greater

generality, we can extend this de�nition of a coupling to the case where (X,µ) and (Y, ν)

are a pair of probability spaces and γ is a measure on X × Y with appropriate marginals.

We are now equipped to de�ne one of our principal objects of study, the p-Wasserstein

metric.

De�nition 1.2.1. (p-Wasserstein distance) The p-Wasserstein distance Wp(µ, ν) on

Mp(X) is de�ned as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×X

d(x, y)pγ(dx, dy)

)1/p

.

Notice that by applying Minkowski's inequality and the triangle inequality, we see that

the integral above is bounded by the sum of the pth moments of µ and ν and is thus �nite,

by hypothesis.

Our de�nition is quite general, but our interest lies in the particular case in which X is the

vertex set of some graph G endowed with a metric induced by path length (see Proposition

1.3.1). Thus we will ultimately restrict our discussion of the Wasserstein metric to this

more �nite setting. In our next section we proceed to related some of the standard theory

of the Wasserstein metric, in particular alternate formulations.
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1.2.3 Summary of Standard Results Related to the Wasserstein Metric

We now discuss some properties of the Wasserstein distance. While it is clear that the

Wasserstein distance is well-de�ned, that does not guarantee the existence of a coupling

which realizes the distance. There does happen to exist such a coupling, and so we start

with demonstrating that fact. We follow the treatment in [120] to outline the proof. In all

that follows X is a Polish space equipped with its Borel σ-algebra.

Recall that a sequence of probability measures {µn}∞n=1 converges weakly on X to a proba-

bility measure µ if En[f ] converges to E[f ] for all bounded, continuous functions f . Further,

we say a set of probability measures U on X is tight if for every ε > 0 there exists a compact

subset Xε of X such that for all µ ∈ U we have that µ(X\Xε) < ε.

For completeness we state the following useful result related to the compactness of sets of

measures.

Theorem 1.2.1 (Prokhorov 1956). Let X be a Polish space and P(X) the set of all

probability measures on X. Then there is a complete metric on P(X) equivalent to the

topology of weak convergence and K ⊂ P(X) has compact closure with respect to this

metric if and only if K is tight [120].

We now prove that there does exist a coupling realizing the Wasserstein distance between

probability measures µ, ν ∈Mp(X).

Theorem 1.2.2 (Existence of a Coupling Realizing the Wasserstein Distance). For µ, ν ∈

Mp(X) of a Polish space X there exists [120] γ ∈ Γ(µ, ν) which minimizes∫
X×X

d(x, y)pγ(dx, dy).

Proof. Using the notation of the statement of the proof, we �rst show that Γ(µ, ν) is tight.

First note that {µ} and {ν} are tight subsets of X, as X is a Polish space. Let ε > 0.
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Then there exists Uµ, Uν ⊂ X such that µ(X\Uµ) < ε/2 and ν(X\Uν) < ε/2. Thus for

any γ ∈ Γ(µ, ν) we have that

γ
(

(X ×X)\(Uµ × Uµ)
)
≤ µ(X\Uµ) + µ(X\Uν) ≤ ε.

Thus Γ(µ, ν) is tight. It follows from Prokhorov's theorem that Γ(µ, ν) has compact

closure. In fact, Γ(µ, ν) is closed and so is compact. To see this, let {γn} converge weakly

to γ in X ×X. Let A be compact in X and let fk be a sequence of continuous functions

converging to the indicator function of A in the �rst component. Then, by dominated

convergence, we see that

µ(A) = lim
n→∞

γn(A×X)

= lim
n→∞

∫
X×X

(
lim
k→∞

fk

)
dγn

= lim
k→∞

(
lim
n→∞

∫
X×X

fkdγn

)
= lim

k→∞

∫
X×X

fkdγ

=

∫
X×X

(
lim
k→∞

fk

)
dγ

= γ(A×X)

As our space is Polish, it is Radon. Hence our measures are inner regular, and so it follows

by approximation from within by compact sets that γ(U ×X) = µ(U) for all measurable

sets U . A symmetric argument in the second components shows that γ ∈ Γ(µ, ν) and thus

Γ(µ, ν) is compact.

Now suppose {γn} is a sequence of probability measures such that

limn→∞
∫
X×X d(x, y)pγn = Wp(µ, ν)p. By passing to some subsequence if neces-

sary, we can assume that {γn} converges to some γ ∈ Γ(µ, ν). Then by, passing to a

sequence of bounded and continuous approximations of the distance function and utilizing
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monotone convergence, we have that

Wp(µ, ν)p = lim
n→∞

∫
X×X

d(x, y)pdγn

= lim
n→∞

∫
X×X

(
lim
k→∞

min(k, d(x, y)p)

)
dγn

= lim
k→∞

lim
n→∞

∫
X×X

min(k, d(x, y)p)dγn

=

∫
X×X

(
lim
k→∞

min(k, d(x, y)p)

)
dγ

=

∫
X×X

d(x, y)pdγ

Thus γ is a minimizer for the Wasserstein distance.

We now proceed to show that the Wasserstein distance indeed de�nes a metric on Mp(X).

Recall that for separable metric spaces X,Y we say that a map f : X → Y is Borel if the

inverse image of any open subset of Y is a Borel subset of X. We say that a map which

assigns to each x ∈ X a measure µx of Y is Borel if for all Borel subsets U ⊂ Y the map

which sends each x to the quantity µx(U) is Borel.

For a probability measure µ of X and Borel map f : X → Y we de�ne the push-forward

measure f#µ of Y by f#µ(U) = µ(f−1(U)) for all measurable subsets U of Y . It is a

straightforward exercise to show that this de�nes a measure on the Borel subsets of Y .

Given a product space X × Y let πx : X × Y → X be the canonical projection onto the

�rst component.

To begin, we state without proof a technical lemma on the existence of couplings with

�xed marginals in a product of three probability spaces.

Lemma 1.2.1 (Gluing lemma). Let (X,µx), (Y, µy) and (Z, µz) be Polish probability

spaces. If γx,y is a coupling of (µx, µy) and γy,z is a coupling of (µy, µz) then one can con-
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struct a measure γx,y,z on X × Y ×Z such that πX×Y# γx,y,z = γx×y and π
Y×Z
# γx,y,z = γy,z

[120].

Clearly gluing lemma is an appropriate title, as we `glue' the couplings γx,y and γy,z

together along their common marginal µy. We can leverage this fact to show that the

Wasserstein distance is indeed a metric.

Theorem 1.2.3 (Wasserstein Metric). For all p ≥ 1 the p-Wasserstein distance given in

De�nition 1.2.1 satis�es the mathematical de�ntion of a metric for the �nite pth moment

measures of a Polish space X [120].

Proof. Let X be a Polish space, let p ≥ 1 be �xed and let µ, ν, ω be probability measures

on X with �nite pth moments. By symmetry of the integral de�ning Wp it is clear that

Wp(µ, ν) = Wp(ν, µ).

Now suppose Wp(µ, ν) = 0. Then there exists a coupling γ for µ and ν which is con-

centrated on the diagonal in X × X, that is, it is assigns to any subset not lying on the

line y = x measure zero. Letting π1, π2 denote the projections into the �rst and second

components of X ×X, respectively, we see that π1
#γ = π2

#γ since y = x on the support of

γ and thus µ = ν.

Now suppose γµ,ν is an optimal coupling for µ and ν and γν,ω is an optimal coupling for

ν and ω. By the gluing lemma there exists a measure γµ,ν,ω on X ×X ×X such that the

push-forward measure into the �rst two components is γµ,ν and the push-forward measure

into the second two components is γν,ω. It follows that the push-forward measure of γµ,ν,ω

by projection into the �rst component is µ and the push-forward measure of γµ,ν,ω by

projection into the third component is ω. So we have that

Wp(µ, ω) ≤
(∫

X×X
d(x, z)pγµ,ν,ω(dx, dz)

)1/p



40

=

(∫
X×X×X

d(x, z)pγµ,ν,ω(dx, dy, dz)

)1/p

≤
(∫

X×X×X
(d(x, y) + d(y, z))pγµ,ν,ω(dx, dy, dz)

)1/p

≤
(∫

X×X×X
d(x, y)pγµ,ν,ω(dx, dy, dz)

)1/p

. . .

. . .+

(∫
X×X×X

d(y, z)pγµ,ν,ω(dx, dy, dz)

)1/p

=

(∫
X×X

d(x, y)pγµ,ν(dx, dy)

)1/p

+

(∫
X×X

d(y, z)pγν,ω(dy, dz)

)1/p

= Wp(µ, ν) +Wp(ν, ω)

The third and fourth equalities above are justi�ed by the triangle inequality in X and

Lp(γµ,ν,ω). It follows that Wp satis�es the triangle inequality and thus is a metric.

We now proceed to state an important duality formula for the Wasserstein metric. Our

principal interest is in the Wp metric for p = 1 and p = 2 and so we will restrict ourselves

to those cases for the remainder of our discussion.

Recall that a function is Lipschitz if the di�erence quotient is uniformly bounded. More

precisely, for a function f : X → R let

Lip(f) = sup

{
|f(x)− f(y)|

d(x, y)

∣∣∣∣ x, y ∈ X,x 6= y

}
.

When Lip(f) is �nite, f is Lipschitz and Lip(f) is its Lipschitz constant.

Let Lip1(X) denote the set of all f : X → R such that Lip(f) ≤ 1. Note that for

f ∈ Lip1(X), |f(x)| ≤ |f(x0)| + d(x, x0). Hence for every f ∈ Lip1(X), f is integrable

with respect to every measure in M1(X). We shall see that in seeking the value of the W1

between measures µ and ν we may, instead of asking for a coupling which minimizes, ask

for a Lip1 function which maximizes. We state, without proof, this famous theorem.
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Theorem 1.2.4 (Kantorovich, Rubinstein 1958). Let (X, d) be a Polish space and let

µ, ν ∈M1(X). Then [120]

W1(µ, ν) = sup

{∫
X
fdµ−

∫
X
fdν,

∣∣∣∣ f ∈ Lip1(X)

}

To summarize our discussion so far, the p-Wasserstein distance over a Polish space X

between a pair of measures is realized by some optimal coupling of those measures. The

Wp distance satis�es the de�nition of a metric on the Borel measures of X with �nite

pth moments. In the case of p = 1, there is a dual formulation of the metric in terms of

Lipschitz-1 functions. We next turn to a comparison of the metric Wp to other senses of

distance on probability spaces, with applications to both mathematics and biology.

1.2.4 Comparison of the Wasserstein Metric to Other Metrics in Probability

Spaces

We continue our discussion of the Wasserstein metric by discussing other measures of

di�erence in probability spaces and their relationship to the Wasserstein metric. The

metrics below were chosen for discussion due to their theoretical signi�cance, relationship

to the Wasserstein metric [37] or use in applications. We follow the treatment in [37] in

the following discussion.

We begin with the de�nition of a few metrics, and less formal senses of distance, on

probability measures.

De�nition 1.2.2 (Discrepancy). Let X be a metric space. We de�ne the discrepancy

metric dD on the probability measures of X by

dD(µ, ν) = sup
closed balls C

|µ(C)− ν(C)|.

Recall that we say a measure µ dominates a measure ν if, for any measurable set A, we

have that µ(A) = 0 implies that ν(A) = 0.
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De�nition 1.2.3 (Relative Entropy (Kullback-Leibler Divergence)). Let Ω be any measur-

able space. Let f, g be densities of µ, ν, respectively, with respect to a dominating measure

ω and let Sµ be the support of µ in Ω. We de�ne the relative entropy or Kullback-Leibler

divergence dKL of µ and ν as

dKL(µ, ν) =

∫
Sµ

f log(f/g)dω.

As a consequence of the Radon-Nikodym theorem, this de�nition is independent of the

dominating measure. Further, note that the relative entropy is not a metric. It is neither

symmetric nor does it satisfy the triangle inequality. It is, however, non-negative and zero

precisely when µ = ν. It was de�ned by Kullback and Leibler in 1951 as a generalization

of the Shannon's information theoretic de�nition of entropy. The symmetric version of the

Kullback-Leibler divergence is the Jensen-Shannon divergence.

De�nition 1.2.4 (Jensen-Shannon Divergence). Let Ω be any measurable space. Let f, g

be densities of µ, ν, respectively, with respect to a dominating measure ω. We de�ne the

Jensen-Shannon Divergence dJS of µ and ν as

dJS(µ, ν) =
1

2
· dKL(µ, ν) +

1

2
· dKL(ν, µ).

De�nition 1.2.5 (Hellinger). Let Ω be any measurable space. For measures µ and ν on

Ω, having densities f and g, respectively, with respect to some dominating measure λ we

de�ne the Hellinger distance dH to be

dH(µ, ν) =

[∫
Ω

(
√
f −√g)2dλ

]1/2

.

In the case that Ω is countable we can express the Hellinger distance as dH(µ, ν) =[∑
ω∈Ω(

√
µ(ω)−

√
ν(ω))2

]1/2
.

De�nition 1.2.6 (χ2-distance). Let Ω be any measurable space. For measures µ and ν

on Ω, having densities f and g, respectively, with respect to some dominating measure λ,
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let the support of each be Sµ and Sν . We then de�ne the χ2-distance dχ2 to be

dχ2(µ, ν) =

∫
Sµ∪Sν

(f − g)2

g
dλ.

Note that the χ2-distance is not a metric, nor even symmetric in the arguments.

De�nition 1.2.7 (Prokhorov). Let X be any metric space. For any Borel set U and ε > 0,

let Uε = {x| infy∈U d(x, y) ≤ ε}. We then de�ne the Prokhorov metric dP by

dP (µ, ν) = inf{ε > 0|µ(U) ≤ ν(Uε) + ε for all Borel U}.

The Prokhorov metric does satisfy the de�nition of a metric [47] and is of theoretical

importance as it metrizes weak convergence of measures on a separable metric space.

De�nition 1.2.8 (Total Variational Distance). Let X be any measurable space. We then

de�ne the Total Variational Distance dTV by

dTV (µ, ν) = sup
A⊂X

|µ(A)− ν(A)|.

Letting D = {(x, y) ∈ X ×X|x 6= y}, an alternate characterization of the total variational

distance in terms of couplings is dTV (µ, ν) = inf{γ(D)|γ ∈ Γ(µ, ν)}.

Having de�ned several metrics or other measures of distance related to probability mea-

sures, we now state and recount proofs of several relationships between these and the

1-Wasserstein metric W1. We begin with an important relationship between the Wasser-

stein and Prokhorov metrics on the probability measures of a bounded metric spaces.

Theorem 1.2.5 (Prokhorov and Wasserstein). For a bounded metric space X, the

Prokhorov metric dP and the 1-Wasserstein metric W1 satisfy the following relationship

(dP )2 ≤ w1 ≤ (diam(X) + 1) · dP

for diam(X) = sup{d(x, y)|x, y ∈ X} [37].
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Proof. Let ε > 0. Let Dε = {(x, y) ∈ X × X|d(x, y) ≤ ε}. Then for any coupling

γ ∈ Γ(µ, ν) we have∫
X×X

d(x, y)γ(dx, dy) =

∫
Dε

d(x, y)γ(dx, dy) +

∫
(X×X)\Dε

d(x, y)γ(dx, dy)

≤ ε · γ(Dε) + diam(X) · γ
(

(X ×X)\Dε

)
= ε+ (diam(X)− ε) · γ

(
(X ×X)\Dε

)
By Strassen's theorem [111] we see that if dP (µ, ν) ≤ ε then there exists a γ ∈ Γ(µ, ν) such

that γ((X ×X)\Dε) ≤ ε.

Therefore we have that∫
X×X

d(x, y)γ(dx, dy) ≤ ε+ (diam(X)− ε) · ε ≤ (diam(X) + 1) · ε.

Thus, by taking the in�mum over all couplings and setting ε = dP (µ, ν), we see that

W1 ≤ (diam(X) + 1)dP .

To prove the other bound, we set ε =
√
W1(µ, ν) and use Chebyshev's inequality's to

deduce that ∫
Dε

γ(dx, dy) ≤ 1√
W1(µ, ν)

∫
X×X

d(x, y)γ(dx, dy) ≤
√
W1(µ, ν).

Finally, by using Strassen's theorem in the other direction and recalling the notation of

De�nition 1.2.7, we note that
∫
Dε
γ(dx, dy) ≤ ε implies that for all Borel sets B we have

that µ(B) ≤ ν(B) + ε so that dP ≤
√
W1(µ, ν), as required.

As we have already stated, the dP metrizes weak convergence in separable metric spaces.

We now see that W1 generates the same topology, and so we garner the following result.

Corollary 1.2.1 (Wasserstein Metrizes Weak Convergence of Measures on Bounded Met-

ric Spaces). Let X be a bounded metric space. Then the 1-Wasserstein metric W1 metrizes

the weak topology on the probability measures of X [37].
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We now state and prove a relationship between W1 and the discrepancy metric dD over

the probability measures of a �nite metric space [37].

Theorem 1.2.6 (Wasserstein and Discrepancy). Let X be a �nite metric space. Let

dmin = minx 6=y d(x, y). Then [37] we have that

dmin · dD ≤W1.

Proof. Recalling Theorem 1.2.4, we de�ne for a closed ball B in X the function

h(x) =

 dmin x ∈ B

0 else

Clearly Lip(h) ≤ 1. We then see that for any pair of probability measures µ and ν that

dmin · |µ(B)− ν(B)| = |
∫
X
hdµ−

∫
X
hdν|

≤W1(µ, ν)

Taking that B which maximizes the left hand side yields the desired result.

In the last of our analytic comparisons between metrics on probability measures, we com-

pare the 1-Wasserstein metric with the Total Variation metric dTV on bounded or �nite

metric spaces.

Theorem 1.2.7 (Wasserstein and Total Variation). Let X be a bounded metric space.

Then [37]

W1 ≤ diam(X) · dTV .

Now supposed X is a �nite metric space. Then setting dmin = minx 6=y d(x, y) we have that

dmin · dTV ≤W1.
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Proof. Recalling the coupling characterization of dTV we see that for D = {(x, y)|x 6= y}

and any coupling γ ∈ Γ(µ, ν) we have that∫
X×X

d(x, y)dγ = diam(X) ·
∫
X×X

d(x, y)dγ

≤ diam(X) · γ(D)

By taking the in�mum over all couplings we yield our �rst result.

Now suppose X is �nite. We then get that

∫
X×X

d(x, y)dγ = diam(X) ·
∫
X×X

d(x, y)dγ

≥ dmin · γ(D)

and thus our second result.

We now have a sense of the 1-Wasserstein metric's relationship to other notions of distance

between probability measures in metric spaces. We have also shown that for bounded met-

ric spaces the 1-Wasserstein metric metrizes the topology of weak convergence of measures.

We now turn to discussing the applications of the Wasserstein metric in mathematics, sci-

ence and engineering.

1.2.5 Survey of Applications of the Wasserstein Metric

The Wasserstein metric is a natural and powerful sense of distance between probability

measures which has found applications in a variety of �elds. It has been independently

discovered in various branches of both pure and applied mathematics [119]. Here we will

discuss a few examples of the application and formulation of the Wasserstein metric used

in the study optimization, statistics and computer science.
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Optimization

As mentioned in our introduction to this subject, Gaspard Monge �rst formulated the op-

timal transport problem in 1781 [120] in the context of the following very applied problem.

Suppose you wish to construct an earthen structure at a �xed location by excavating soil

from a predetermined set of locations. What is the optimal method of going about moving

the dirt?

Formalizing the problem slightly, let R be a bounded region in R2. Let c(r1, r2) : R2 → R≥0

be the cost of transporting a unit of material r1 ∈ R to r2 ∈ R. Let S(r) : R → R≥0 be

the amount soil required to build our structure at location r ∈ R and let E(r) : R→ R≥0

be the amount of soil to be excavated at location r ∈ R.

Since we would rather not dig up any soil that is not going to be put to use in our structure,

we will require that
∫
R S(r) dr =

∫
RE(r) dr.

Now let a transport plan T between E and S be a function T : R2 → R≥0 such that for each

r0 ∈ R we have that
∫
R T (r0, r) dr = E(r0) and

∫
R T (r, r0) dr = S(r0). This is merely a

description of the ultimate destination of our excavated soil for each point r ∈ R, our �rst

condition, and an assurance that each location r ∈ R received precisely enough material

for construction, our second condition.

To determine how much it might cost to build our structure, we do the following: pick a

transport plan, look at every pair of points in R, see how much dirt was moved from here

to there for that transport plan, multiply that by the cost of moving dirt from here to

there and then total those costs. Invoking a little calculus, the cost of building our bit of

earthworks is then

CE,S =

∫
R2

c(r1, r2) · T (r1, r2) dr1dr2

for a given transport plan T . Letting TE,S be the set of all transport plans between E and

S we see that �nding the minimal cost corresponds to the T ∈ TE,S which minimizes the
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integral.

We now simplify and abstract the problem. First, we choose units such that
∫
R S(r) dr =∫

RE(r) dr = 1. Next, we take the cost function c of moving the soil to be proportional to

the work, in the physics sense of force times distance. For a material of uniform density,

this means the cost is proportional to the distance traveled. Simplifying, we take that

constant of proportionality to be 1.

Notice that after our simpli�cation, our functions E and S are now probability measures

on R and that TE,S is the set of all couplings of those measures. That is, the minimal cost

of construction under these assumptions is

inf
T∈TE,S

∫
R2

d(r1, r2) T (dr1, dr2)

or the 1-Wasserstein distance between E and S.

Monge attacked this problem using the tools of descriptive geometry [120], while some

150 years later Kantorovich developed linear programming, that is optimization of linear

objective functions subject to linear constraints, to address the problem in the context of

the mathematical theory of economics. The problem presented above in terms of soil and

structures can just as easily be recast in terms of goods and consumers. Before continuing,

we de�ne a few terms related to �nite metric spaces that will be useful for this problem

and, indeed, the rest of our discussion.

De�nition 1.2.9 (Distance Matrix). Let (X, d) be a �nite metric space and let n = |X|.

The distance matrix D for X with respect to d is the n×n matrix, indexed by the elements

of X, such that D(i, j) = d(i, j) for all i, j ∈ X.

De�nition 1.2.10 (Marginals of a Matrix). Let M be an n by m matrix. Let 1n and 1m

be the column vectors of length n and m, respectively, whose entries are identically 1. We

say the pair of vectors µ and ν are the marginals of M if 1tn ·M = µ and M · 1m = ν. We

may also say µ is the column sum of M and ν is the row sum of M .
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Returning to our economic problem, we pass to a �nite metric space (X, d), say |X| = n,

let µ(x) to be the number of goods ready for delivery at each x ∈ X, and let ν(x) denote

the number of goods required at each location x ∈ X. Suppose that k goods are required,

and that this quantity is equal to the number available. Let D be the distance matrix for

X. Let Tµ,ν be the set of all matrices T which have µ and ν as marginals. If we again

assume that the cost of transporting good is proportional to the distance traveled, and,

by normalizing if necessary, take the constant of propotionality to be 1, we see that the

minimum cost of associated with this economic allocation problem is

min
T∈Tµ,ν

∑
i

∑
j

D(i, j) ·T(i, j).

Normalizing each of µ and ν by k, we see that this again corresponds to the Wasserstein

metric. Further, it is now a linear programming problem, where multiplication against the

distance matrix forms our linear objective function and satisfying the marginals form our

set of linear constraints. It was in this context that Kantorovich developed the theory of

both linear programming and optimal transport [119].

Dynamical Systems and Partial Di�erential Equations

In 1970, Dobrushin [25] coined the term `Vasershtein metric' in a paper regarding the ex-

istence and uniqueness of random �elds. This was in reference to Vasershtein's 1969 paper

[118, 101] which used the metric between distributions P and Q given by inf[Ed(X,Y )]

where this in�mum is taken with respect to all random variables X,Y with distributions

P,Q in studying dynamical systems.
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Statistics

In a statistical context, studying the asymptotic distribution of a sequence of jointly dis-

tributed random variables, Mallows [72] constructed the metric

ρ2(F,G) =

∫ 1

0
(f(w)− g(w))2dw

for F,G distributions of �nite variance and zero mean, and f the essentially unique mono-

tone function such that f(F (x)) = x almost everywhere with respect to F .

Mallows demonstrated that ρ metrizes convergence of distributions in the Lévy metric, of

which the Prokhorov metric from De�nition 1.2.7 is a generalization, and that ρ has as an

equivalent formulation as

ρ2(F1, F2) = min
λ∈Λ(F1,F2)

∫
(x− y)2dλ(x, y)

where Λ(Fl, F2) is the set of bivariate distribution functions on R×R with marginals equal

to F1 and F2, respectively. That is, the 2-Wasserstein distance between the distributions.

Computer Science

In 1999 Rubner et al. [100] de�ned a distance between distributions they called the Earth

mover's distance for the purpose of content based computer image retrieval. Here the

problem is to identify a given image by comparison against a set of previously identi�ed

reference images. Clearly some sort of metric or other means of comparison on the set of

images is necessary.

As a way of constructing such a metric, they �rst de�ne a histogram as a mapping from

a set of d-dimensional integer vectors in i into R≥0. Here the vectors i are called bins

and represent the a range of values in the spectrum of some image feature, such as color

content or intensity, and the value of hi is the number of pixels in an image which fall into

the range de�ned by i.
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They next de�ne a ground distance as a measure of dissimilarity, metric of otherwise,

between the bins in a histogram. Using this ground distance they de�ne the signature

{sj = (mj , wj)} of an image as a set of clusters of image features, or bins, where each

cluster sj is represented by some measure of central tendency mj for the cluster and then

weighted by the number or fraction wj of pixels belonging to that cluster. Here the number

of clusters in a signature may vary, depending on the complexity of an image.

Given signatures P = {(p1, wp1), . . . , (pm, wpm)} and Q = {(q1, wq1), . . . , (qm, wqn)} of m

and n clusters, respectively, and an m × n matrix D such that D(i, j) is the distance

between clusters pi and qj they solve the following transport problem. Determine the

m× n matrix F which minimizes

WORK(P,Q, F ) =
m∑
i=1

n∑
j=1

D(i, j)F(i, j)

subject to the constraints

F(i, j) ≥ 0, ∀i, j
n∑
j=1

F(i, j) ≤ wpi , ∀i

n∑
i=1

F(i, j) ≤ wqj , ∀j

m∑
i=1

n∑
j=1

F(i, j) = min(
∑m

i=1wpi ,
∑m

j=1wqj ).

Having solved for an optimal matrix F, they �nally de�ne the Earth mover's distance

EMD by

EMD(P,Q) =

∑m
i=1

∑n
j=1D(i, j)F(i, j)∑m

i=1

∑n
j=1F(i, j)

.

The normalization factor here helps to avoid skewing toward signatures with fewer clusters.

In the case that P and Q given by proportions of pixels of a common set of clusters and the

ground distance is a mathematical metric, we see that EMD is the 1-Wasserstein metric

over a �nite metric space.
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They demonstrate that EMD is an e�ective metric for image recognition which is in-

sensitive to noise and which allows for partial matches between images, that is, matches

between regions of images.

The Wasserstein metric, under the name EMD or otherwise, has since appeared in a

variety of computer science applications, such as image tracking [135], machine learning

[62, 4] and text analysis [59].

In this section we have discussed the ways in which the Wasserstein metric has been applied

in a variety of contexts, reaching from its �rst formulation more than two hundred years

ago to its recent applications in computer science. In particular, we have discussed the use

of the Wasserstein metric in image analysis as a valuable way to lift notions of distance

between small components of a set, in this case pixels or regions of pixels, to comparisons

of the large scale structure of sets, entire images. This provides valuable motivation in

some of the work which follows. We note that we have yet to determine how to compute

the value of the metric in any setting, and so this is the subject of our next discussion.

1.2.6 Survey of Computational Methods for the Wasserstein Metric

A variety of numerical methods have be devised over the years with which to compute

or approximate the Wasserstein metric in various settings. In particular, its utilization in

computer science as the Earth mover's distance have lead to a number of novel solutions

and approximations. In their initial formulation of the Earth mover's distance, Rubner et

al [100] utilized the classic Transportation Simplex algorithm as a solution method. The

Transportation Simplex algorithm is an adaption of Dantzig's original Simplex algorithm

for linear programming [45] to the solution of the optimal transport problem. We begin

with a brief discussion of linear programming and the Simplex algorithm.

The traditional form of a linear programming problem is, for �xed vectors b, c ∈ Rn and

matrix M ∈ Rn×n, to �nd x ∈ Rn which maximizes the objective function Z = ct · x
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subject to the constraints that Ax ≤ b and that the entries of x are nonnegative. It can

be shown [81] that problems in which we seek to minimize Z or satisfy constraints which

are equalities can be solved by the Simplex method either through merely negating our

objective function or introducing additional slack variables to enforce equality.

We call the set of potential solutions to Ax ≤ b for x in the nonnegative orthant of Rn

the feasible region. It can be shown [45] that the feasible region is a potentially unbounded

convex polytope in Rn. We state the following very useful theorem related to the existence

and location of extreme values for a linear programming problem.

Theorem 1.2.8. Given a linear programming problem of the form maxZ = ct ·x subject to

the constraints that Ax ≤ b de�ned above, if an extreme value for Z occurs in the feasible

region, then it occur on one or more of the vertices of the convex polytope de�ned by the

feasible region [45].

We call these vertices basic feasible solutions.

We now demonstrate how to cast the Wasserstein metric as a linear programming problem,

known generally as the Transportation or Network Simplex problem. Given a �nite metric

space (X, d), with |X| = n, we can view the distance matrix D as

D =



d(x1, x1) d(x1, x2) . . . d(x1, xn)

d(x2, x1) d(x2, x2) . . . d(x2, x1)

...
...

. . .
...

d(xn, x1) d(xn, x2) . . . d(xn, xn)


as the vector

cD = (−d(x1, x1),−d(x1, x2), . . . ,−d(x1, xn),−d(x2, xn), . . .

. . . ,−d(xn−1, xn),−d(xn, x1), . . . ,−d(xn, xn))

in Rn2
.



54

De�ne the 2n× n2 matrix A

A =



1 . . . 1 0 . . . . . . . . . . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

...
...

...
...

...
...

...
. . .

...

0 . . . . . . . . . . . . 0 1 . . . 1

1 . . . 1 0 . . . . . . . . . . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

...
...

...
...

...
...

...
. . .

...

0 . . . . . . . . . . . . 0 1 . . . 1


where each row contains n consecutive entries of 1 and for row i, the �rst nonzero entry

appears in the n · (i− 1) + 1 column.

Given measures µ, ν on X we can de�ne the vector

b = (µ(x1), µ(x2), . . . , µ(xn), ν(x1), ν(x2), . . . , ν(xn))

in R2n.

For these de�nitions of A,b, cD the Wasserstein metric is a linear programming problem.

The Wasserstein metric between µ and ν is given by the vector x in Rn2
which minimizes

ctD · x.

Simplex algorithms solve a linear programming problem iteratively. It can be shown [45]

that if a vertex of the feasible region is not a maximizer for the objective function Z,

then it is adjacent to an edge on which Z is strictly increasing. Thus, intuitively, Simplex

algorithms select a vertex of the polytope and at each iteration traverse an edge which

increases Z. This choice of an edge is known as a pivot rule and generally involves solving

a system of linear equations to determine a new choice of edge [81]. If this edge is in�nite

in length, then Z is unbounded and thus the linear programming problem has no solution.
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Otherwise, this edge terminates in another vertex. Either this vertex maximizes Z, and

thus we terminate, or we select another edge and continue.

We pause from our discussion on solutions to the optimal transportation problem to de�ne

a few useful terms related to the study of algorithms.

De�nition 1.2.11 (Big O Notation). For functions f, g : R → R, such that g(x) is

eventually strictly positive, we say f(x) has order of growth O(g(x)) if there exists an

N ∈ R>0 such that f(x) ≤ N · g(x) for all su�ciently large x.

De�nition 1.2.12 (Algorithmic Time Complexity). Given an algorithm A, let n be a

measure of the size of the input to A. Typical examples of such a measure of size are the

number of unknown variables to be determined or the number values to be processed. We

say that the time complexity of A is g(n) or O(g(n)), for a function g(n) : N → R, if, for

an input of size n, the number of elementary mathematical operations required for the

algorithm to terminate has order of growth O(g(n)).

The time complexity of an algorithm is frequently not uniform accross all inputs of a

given size. In such cases, we may refer to the worst-case time complexity, average time

complexity or best-case time complexity, that is, the rate of growth of the maximum, average

or minimum number of elementary operations required for the algorithm to terminate.

Although Dantzig's original Simplex algorithm has enjoyed a tremendous amount of success

in practical application due to an observed number of iterations which is linear in the size

of the linear programming problem, the Simplex algorithm has demonstrated exponential

worst-case time complexity [55, 81]. The Transportation Simplex problem described above

has additional structure to the objective function and constraints which allows for more

e�cient solution techniques.

The Transportation Simplex method [1] interprets a vertex of the feasible region as a

spanning tree for the underlying graph. The algorithm, through a variety of pivot rules,
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selects an edge to add to the spanning tree. This necessarily introduces a cycle to the

spanning tree. Flows are reduced around this cycle until the the algorithm returns to a

new spanning tree, and thus a new vertex of the feasible region. This continues until no

choice of new edge reduces our �ow.

Let G = (V,E) be a graph with n vertices, m edges and where C is a bound for the

length of each edge. The best known Simplex algorithm for optimal transport over a

graph [113] has time complexity O((nm log(n)) min(log(nC),m log(n)) for a graph with.

That algorithm improves, through the use of more e�cient data structures, the algorithm

presented in [87], which is in turn a variation on the classic Network Simplex method.

There are several methods for the selection of a starting point from which to iterate for

the Transportation Simplex algorithm [45]. The most simplistic is that of the Northwest

corner rule. Letting M be our initial basic feasible solution, we build M iteratively. We

increase M(1, 1) until we meet one of the two marginal contraints and then stop. In the

case that we have satis�ed the marginal constraint for the row, we proceed to the M(2, 1)

element and repeat. Else we proceed to the M(1, 2) element and repeat. We iterate this

process until we have satis�ed all of the marginal contraints and generated a basic feasible

solution.

While this method is easy to implement, it is ignorant of the costs involved in transport

and varies given a reordering of the variables. The minimum cost method is an alternate

approach to generating a basic feasible solution which improves on this method by con-

sidering cost in the selection of elements of the initial �ow to saturate. In this method we

begin by selecting the minimum cost between between distinct elements for the transport

problem, and sets the �ow between these elements to a value which satis�es one or other

of the constraints de�ned by the marginals. This process iterates, satisfying all low cost

pairs before advancing to higher cost pairs.

In the above we have discussed methods for producing the exact minimizing value to



57

the problem of optimal transport. We turn now to a discussion of a set of methods

for approximating the optimal transport metric via regularization. Regularization is the

inclusion of additional constraints on an objective function so as to make the minimization

problem more computationally tractable [107], and is common in optimization. A useful

form of regularization for optimal transport is entropic-regularization. We now de�ne the

entropy of a probability measure in a �nite setting.

De�nition 1.2.13 (Entropy). Let µ be a measure on a �nite set X such that µ(x) > 0

for all i ∈ X. Then the entropy of µ is given by

H(µ) = −
∑
i

µ(i) log(µ(i)).

The notion of entropically-regularized transport is to include some fraction of the entropy

of a coupling γ between measures as an additional constraint in the minimization problem

underlying optimal transport. We follow the treatment in [107] in the derivation of the

following.

De�nition 1.2.14. Let measures µ and ν on a �nite metric spaceX be given, say |X| = m,

and recall that Γ(/mu, /nu) is the set of all �ows or couplings between µ and ν. Let D be

the distance matrix in X and let α > 0 be �xed. We then de�ne the entropically-regularized

transport problem by

W1,α(µ, ν) = min
γ∈Γ(µ,ν)

−αH(γ) +
∑
i,j

D(i, j)γ(i, j).

We can express the function being minimized in the above as follows

−αH(γ) +
∑
i,j

D(i, j)γ(i, j) =
∑
i,j

αγ(i, j) log(γ(i, j)) +D(i, j)γ(i, j)

= α
∑
i,j

γ(i, j) (log(γ(i, j)) +D(i, j)/α)

= α
∑
i,j

γ(i, j)

(
log(

γ(i, j)

e−D(i,j)/α
)

)
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Letting Kα the matrix such that Kα(i, j) = e−D(i,j)/α we note that

α
∑
i,j

γ(i, j)

(
log

γ(i, j)

e−D(i,j)/α

)
= αdKL(γ,Kα)

where dKL is the Kullback-Leibler divergence from De�nition 1.2.3.

The above is a multivariate calculus problem, the optimization of a di�erentiable function

subjection to set of equality constraints, and thus we can apply the method of Lagrange

multipliers. Let λµ and λν be vectors of Lagrange multipliers for each of the constraints

de�ned by the marginals of our coupling γ. We then have a Lagrange multiplier function

Λ(γ,λµ,λν) of the form

Λ(γ,λµ,λν) =
∑
i,j

D(i, j)γ(i, j) + α
∑
i,j

γ(i, j)D(i, j)

+
∑
i

λµ(i)

µ−∑
j

γ(i, j)

+
∑
j

λν(j)

(
ν −

∑
a

γ(i, j)

)

Now let 1 be a column vector of ones and let the log(γ) be given as the component-wise

logarithm. Taking the gradient of the above and setting it equal to 0 yields

0 = γ + α11t + α log(γ)− λµ1
t − 1λν

so that

log(T ) =
(λµ − α1)

α
+
1λν

t

α
+ log(Kα).

Letting p = exp[
λµ−α1

α ], q = exp[λν
α ] and, for a vector v, letting diag(v) be the matrix

whose diagonal elements are v, we then have that

γ = diag(p)Kαdiag(q).

Hence by a change of variables we now seek the 2n components of p and q instead of the

n2 components of γ. Further, recalling the constraints imposed by our marginals, we have,

after a bit of reassociation of matrix products, that

p⊗ (Kαq) =µ
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q⊗ (Kt
αp) =ν

where ⊗ denotes the element-wise product of vectors, also known as the Hadamard product.

This also inspires an extremely succinct algorithm for the computation of entropically-

regularized transport, the Sinkhorn algorithm. Let � denote component-wise division.

De�nition 1.2.15 (Sinkhorn Algorithm). Using the notation above, let p0, q0 be arbitrary

probability distributions on X such that both are strictly positive. Then the Sinkhorn

algorithm for entropically-regularized transport is given by iteration of

pk+1 = µ� (Kαq
k)

qk+1 = ν � (Kαp
k+1)

until the quantity

diag(pk+1)Kαdiag(qk+1)

converges.

It can be shown [8] that the above algorithm converges asymptotically and e�ciently to the

optimal γ. Thus we have a tool for computing an approximation of the optimal transport

metric which circumvents some of the time-complexity shortcomings of thr Transportation

Simplex algorithm.

We have discussed a classic solution technique for optimal transport problems, the Simplex

algorithm, and its re�nements in the case of optimal transport. This discussion also

highlighted facets of the geometry of the solution set to optimal transport problems, and

thus to the Wasserstein metric. We have also discussed a method to approximate the

optimal transport metric via entropic regularization as well as described an algorithm

which converges to the optimal value for the entropically-regularized Wasserstein metric.

We next shift emphasis from a discussion of the ways of measuring distance between
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probability measures de�ned on metric spaces to metric spaces themselves, in particular

to those of graphs.
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1.3 Introduction to Graph Theory and its Applications to Biology

1.3.1 Introduction to Graph Theory and Combinatorics

A classic problem in mathematics is that of attempting to pass from local information to

that of global information. In what ways can information about the immediate vicinity

of a point tell us about the large scale structure of a mathematical object? Indeed many

basic notions in mathematics, such as that of compactness or continuity, are valued for

precisely this reason. They describe mathematical settings in which we are able to make

this leap. The birth of the theory of graphs can be cast as precisely such a question and

an introduction to the subject would be incomplete without the obligatory mention of the

story.

a

b

c

d

FIGURE 1.5: Figure from Euler's 1735 paper `Solution problematis as geometriam situs

pertinentis' on the solution to the Seven Bridges problem [MAA Euler Archive] and a

more modern presentation of the same graph.

The city of Königsberg, present day Kalingrad, is bisected by the Pregel River. In addition

to the components of the city on each of the banks, two large islands in the river are also

inhabited. There are seven bridges which interconnect the various components of the city.

Leonhard Euler considered the problem of whether one might be able to wander the city in
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such a way as to cross each bridge precisely once, abstracted by him in Figure 1.5. In 1735

he presented the paper 'Solution problematis as geometriam situs pertinentis' in which he

proves that such a tour of the town is not possible. His solution relates the local structure

of the graph, the number of bridges departing from a given landmass in this case, to a

global graph property, that of a particular sort of path through the graph.

The application of graph theory in this often recounted story of the origins of the �eld is

actually quite close to one of the chief applications of graphs in our further discussion. We

will be concerned with two classes of graphs, those of trees (De�ntion 1.3.4) and de Bruijn

graphs (De�ntion 1.3.9). While trees are very common, de Bruijns graphs are a bit more

exotic and have their origin in the study by Nicolaas Govert de Bruijn [23] of the following

problem.

Let A be a set of n symbols, and let k ∈ N be �xed. There are clearly nk distinct words or

ordered tuples of length k we can construct from a set n things. If we took all nk words of

length k and concatenated them together we would have a word made from k ·nk symbols

which contained within it each of our nk. It is easy to imagine we can do better and �nd

a shorter word satisfying the same constraint. At a minimum such a word must have nk

starting positions, one for each of our nk distinct words, and the �nal starting position

must end with an additional (n− 1) symbols, to �nish forming that last word. Is there a

word that achieves this minimum length of nk + (n − 1)? Take (A) = {0, 1, 2, 3}, so that

k = 4, and n = 3. Then nk + (n− 1) = 43 + 2 = 66. Consider this string of 66 symbols

000100200301101201302102202303103203311121131221231321332223233300.

This one does the trick and we shall see that this is not a special property of the numbers

3 and 4, but rather a general property of a certain graph upon which Euler would have

been able to take his tour.

We recount both of these problems not only before their inherent aesthetic appeal, which
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we see as self-evident, but also because they underlie a very useful application of graphs

to computational biology. Building up big words from little ones in an e�cient manner,

the process at the heart of our string of 66 symbols above, is more than a novelty when

applied to genomes. It is also a useful motivation for a novel sense of distance on strings

of symbols which we hope to show has applications to metagenomics. We next establish

some useful de�nitions for the theory of graphs.

1.3.2 De�nitions Related to Graph Theory and Combinatorics

We begin with the de�nition of a multigraph G. Let V be a nonempty, �nite set and let E

be a multiset of two-element multisets containing elements from V . The pair (V,E) form

a multigraph and we write G = (V,E). We refer to the elements of V as the vertices or

nodes of G. We refer to the elements of E as the edges of G and say an element {u, v} ∈ E

is a edge between u and v.

De�nition 1.3.1 (Graph). A graph is a multigraph such that each element of E is distinct

and for each {u, v} ∈ E we have that u 6= v. That is there are not multiples edges between

vertices and there are no edges between a vertex and itself.

A digraph is a graph whose edge set consists of ordered pairs of elements from V , that is,

the edges have a �xed orientation. For brevity's sake we will restrict our references from

this point forward to graphs, though these de�nitions apply to each of these objects, given

the appropriate modi�cations.

Let v ∈ V and let Ev be the subset of E whose elements contain v. The degree of v is the

cardinality of Ev. For u ∈ V , we say u and v are adjacent if {u, v} ∈ E. The order of G

is the cardinality of V . We now de�ne a very useful way of encoding the connectivity of a

graph, that of the adjacency matrix.

De�nition 1.3.2 (Adjacency Matrix). The adjacency matrix of a graph G = (V,E) is a
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square matrix A, indexed by V × V such that A(i, j) = 1 if (i, j) ∈ E and A(i, j) = 0

otherwise.

We say a graph H is a subgraph of G if the vertices and edges of H are subsets of V and E,

respectively. For a subset U of V , the subgraph induced by U is the subgraph of G whose

vertices are precisely U and whose edge set is maximal, with respect to set inclusion, as a

subset of E. Similarly for a subset F of E, the subgraph induced by F is the subgraph of G

whose edges are precisely U and whose vertex set is minimal, with respect to set inclusion,

as a subset set of V .

We say a graph is edge-weighted when considering a strictly positive function l : E → R.

We call l a weight function for G or that it de�nes a length for the edges of G. Note that we

can always consider a graph to be edge-weighted by taking the weight which is identically 1.

We similarly de�ne a graph to be vertex-weighted when considering a nonnegative function

p : V → R.

A path P from v to u in G is a sequence of n+1 elements {x0, x2, ..., xn} from V such that

u = x0, v = xn and xi is adjacent to xi+1 for all i ∈ {0, ..., n− 1}. A cycle is a path from

v to v in G.

For a graph without explicit edge-weights the length of the path {x0, x2, ..., xn} is n, the

number of edges involved. For an edge-weighted graph with weight function l, we de�ne

the length to be
∑n−1

i=0 l(xi, xi+1), the sum of edge-weights along the path.

We say a graph is connected if, for all u and v in V , there exists a path from u to v. For

v ∈ V we de�ne the connected component containing v as the maximal connected subgraph

containing v as a vertex. Similarly, for e ∈ E we de�ne the connected component containing

e as the maximal connected subgraph containing e as a edge.

De�nition 1.3.3 (Bridge). We say an edge e ∈ E is a bridge if the connected component

containing e in G fails to remain connected in the subgraph of G induced by E\{e}.
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De�nition 1.3.4 (Tree). A tree is a connected graph T containing no cycles.

In a tree T we may distinguish a single vertex ρ ∈ V as the root of T . When drawing

T we typically place ρ at the top of the page. A tree with a root is called rooted. A

vertex adjacent to precisely one additional vertex in a tree is called a leaf. We call a vertex

internal if it is not a leaf.

De�nition 1.3.5 (Ultrametric Tree). If the length of the path from the root ρ to any leaf

vl in T is precisely d, for some �xed d we say T is an ultrametric tree of depth d.

We say a rooted tree T is binary if the root ρ is adjacent to precisely two vertices, which

we call daughters and, inductively, each internal vertex has in turn precisely two daughters

of its own.

De�nition 1.3.6 (Perfect Binary Tree). We a binary tree is perfect if, for the trivial

edge-weighting, it is ultrametric of depth d, for some d ≥ 1.

Having established a bit of the language of graph theory, we turn to a few simple results

in the �eld which will be useful for our future discussion.

1.3.3 Summary of Standard Results Related to Graph Theory

We �rst consider some standard results related to the mathematical theory of graphs in

general before more speci�cally discussing the properties of trees. In the following, let

G = (V,E) be a graph.

Proposition 1.3.1 (Classic). Given a connected graph G = (V,E), there is a natural

metric space structure on the set of vertices V . That is, given u, v ∈ V let l be the minimal

length of a path from u to v. Then d(u, v) = l de�nes a metric on V .

Proof. We need to prove that the metric de�ned above is well-de�ned, symmetric, positive-

de�nite and satis�es the triangle inequality.
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As G is connected, there exists a path between any pair of vertices u and v in V . The

lengths of paths from u to v is thus a non-empty, �nite set of non-negative numbers, and

thus contains a minimal element. So d(u, v) is well-de�ned.

The path from u to v of minimal length can be traversed backwards, de�ning a path from

v to u, which is clearly of minimal length. Hence d(u, v) = d(v, u).

As we are counting, d ≥ 0, and a path is of length 0 precisely when it contains no edges,

that is it contains only one vertex. Hence d is positive-de�nite.

Finally, say u, v, w ∈ V and d(u, v) = l, d(v, w) = m. By concatenating our paths, from u

to v and then from v to w, we see that there exists a path from u to w of length bounded

by l +m. That is, d(u,w) ≤ l +m.

It follows that d de�nes a metric on V .

De�nition 1.3.7 (Path metric). The metric described above, given by the length of the

minimal path between vertices in graph G is known as the induced path metric in a graph

G.

We recount a famous result [27] related to the origins of graph theory recounted in our

introduction to the subject and which is related to an important application of graph

theory in computational biology. We say a graph G is Eulerian if there exists a cycle in G

which traverses each edge of G precisely once.

Theorem 1.3.1 (Euler 1735). A connected graph G is Eulerian if and only if the degree

of each vertex is even.

Having described a few a few result related the to Graph theory in general, we specialize

for a moment and describe results explicitly related trees. In the following discussion, let

T = (V,E) be a tree.
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Proposition 1.3.2 (Classic). In a tree T , for each pair u, v ∈ V there exist a unique path

from u to v.

Proof. Since T is connected, by our de�nition of a tree, it su�ces to show uniqueness.

To produce a contradiction, suppose not, and let {x0, x1, ..., xn} and {yo, y1, ..., ym} be a

pair of distinct paths from u to v, where u = x0 = y0 and v = xn = ym. Without loss of

generality, assume n ≤ m. Now let i be the �rst index such that xi 6= yi and let {j, k} be

the �rst pair of indices such that each is greater than i and that xj = yk.

By construction, i 6= 0 and {j, k} exist, as {n,m} satisfy all but the minimality.

By the de�nition of {j, k}, the elements {xi, xi+1, ..., xj−1} and {yi, yi+1, ..., yk−1} are

all pairwise distinct. Further, consecutive elements from each set are adjacent in T ,

as they are consecutive elements in a path. As xj = yk and xi = yi it follows that

{xi, xi+1, ..., xj , yk−1, yk−2, ..., yi} is a cycle. This is a contradiction, as T is a tree, and

hence the statement is proved.

Corollary 1.3.1 (Classic). In a tree T , each edge is a bridge.

Proof. Let e ∈ E be arbitrary. Say e = {u, v}. Then e is the single edge on the path from

u to v. By uniqueness, this is the only path from u to v in T , and thus the graph induced

by removing e is disconnected.

Thus the deletion of an edge e in a graph leaves the graph having two connected compo-

nents. As these are connected acyclic graphs, they are in turn trees, subtrees of T .

De�nition 1.3.8 (Branch). Let T be a rooted tree, with root ρ and let v 6= ρ be a vertex

in T . Let Bv and Bρ be the subtrees formed by the deletion of an edge adjacent to v in

the path from v to ρ, such that v ∈ Bv and ρinBρ. Then we say that Bv is the branch of

T de�ned by v.
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In this section we have established the natural metric structure on graphs. Additionally,

we have noted a few of the useful topological properties of trees, properties which will

be useful in our following discussion. We next turn to the second collection of graphs of

interest, that of de Bruijn graphs.

1.3.4 Summary of De�nitions and Results Related to de Bruijn Graphs

We begin with some de�nitions related to the theory of words. An alphabet A is a �nite

set of symbols. Examples include A = {0, 1} the binary alphabet, and what we will refer

to as the genetic alphabet A = {A,C,G, T}, the alphabet representing the four genetic

nucleotides.

A word is a �nite tuple of elements from A. We will denote a word by the concatenation

of the symbols comprising it, that is a word w is w1w2...wk for wi ∈ A.

The length of a word w is the number of symbols in the tuple comprising it. We denote the

length of a word w by |w|. We will often refer to a word of length k as a k-mer, particularly

in the context of the alphabet {A,C,G, T}. Let the empty word be the word of length 0

containing no symbols.

We denote the set of all words of length k generated by A as Ak and the set of all �nite

words generated by A as A∗ =
⋃
k∈NAk. There is a natural algebraic structure on A∗ given

by juxtaposition. That is, given words v = {v1 . . . vn} of length n and w = {w1 . . . wm}

of length ∈ A∗ de�ne their product vw as the word vw = {v1 . . . vnw1 . . . wm} of length

n+m.

We say a word v is a factor of a word w if there exist words wp and ws such that w = wpvws.

We say v is a pre�x of w in the case that v is a factor and wp is the empty word. We say v

is a su�x of w in the case that v is a factor and ws is the empty word. We say a word w

is a right-extension of v if v is a pre�x of w and |v| = |w| − 1, and say w is a left-extension

of v if v is a su�x of w and |v| = |w| − 1.



69

Let ≤ be a total ordering on the symbols in an alphabet A. We may then lift this ordering

to a total ordering on Ak by de�ning v = v1v2...vk ≤ w = w1w2...wk if either v = w or

vi ≤ wi for i the �rst index in which the letters comprising v and w di�er. We refer to this

as the lexicographical order on Ak.

De�nition 1.3.9 (de Bruijn graph). The k-dimensional de Bruijn graph Bk(A) is the

directed graph with vertex set

V = Ak

and edge set

E = {(v, w) ∈ V × V | v2v3...vk = w1w2...wk−1}.

That is, for words v and w there is a directed edge between them in Bk(A) if the su�x of

length k − 1 of v agrees with the pre�x of length k − 1 of w. Figures 1.6a and 1.6b show

representations of the de Bruijn graphs for words of length 3 on a binary alphabet and

words of lengths 2 on the genetic alphabet, respectively.
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(a) B3({0, 1})
(b) B2({A,C,G, T})

FIGURE 1.6: Depiction of B3({0, 1}) and B2({A,C,G, T}), the 3-dimensional de Bruijn

graph from a binary alphabet and the de Bruijn graph of 2−mers from the genetic

alphabet.

The k-dimensional symmetric de Bruijn graph B∗k(A) is the undirected graph with vertex

set

V = Ak

and edge set

E = {(v, w) ∈ V × V | v2v3...vk = w1w2...wk−1 or v1v2...vk−1 = w2w3...wk}.

Figure 1.7 shows a representation of the symmetric de Bruijn for 2−mers from the genetic

alphabet.
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FIGURE 1.7: Depiction of B∗
2({A,C,G, T}), the symmetric de Bruijn graph

of 2−mers from the genetic alphabet.

Our interest in de Bruijn graphs is related to genome assembly, as we shall see in the

following section, but we would be remiss to not address the problem we described brie�y

in our introduction. While this is mostly for the enjoyment of the author, it does highlight

the manner in which de Bruijn graphs are used in genomics.

Theorem 1.3.2 (de Bruijn 1946). Given an alphabet A such |A| = n and let k ∈ N be

�xed. Then there exists a word of length nk + (n− 1) containing every element of Ak as a

factor.
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Proof. Consider the de Bruijn graph B∗k−1(A). First note that the degree of each vertex

w is B∗k(A) is 2n, as we form n edges by appending each of our n symbols to the end

of w and another n edges by appending our n symbols to the beginning of w. Thus, by

Theorem 1.3.1 our graph is Eulerian. Further note that each edge corresponds to a unique

element of Ak, as a word is uniquely de�ned by simultaneously knowing its maximal pre�x

and su�x. Hence any Eulerian cycle in B∗k−1(A) describes a cyclic string of |B∗k(A)| = nk

symbols containing each element of Ak. To generate the noncyclic version of our solution

we need to traverse the �rst (n− 1) edges of our cycle twice, once to begin our �rst factor

and a second time to complete our last factor.

We continue with a simple way of de�ning a measure on de Bruijn graphs.

De�nition 1.3.10 (Occurrence). For v, w ∈ A∗ the number of occurrences of v in w is

occv(w) = |{i|wiwi+1...wi+|v|−1 = v}|.

Clearly occv(w) = 0 when |v| > |w|.

This is the merely the number of instances in which v appears as a factor of w.

For W a �nite subset of A∗ and v ∈ A∗, the factor frequency of v in W is

freqv(W ) =

∑
w∈W occv(w)∑

w∈W max{0, |w| − |v|+ 1}
.

De�ne freqk(W ) to be the vector, in lexicographical order, of freqv(W ) for v ∈ Ak.

Proposition 1.3.3. Using the notation de�ned above, freqk(W ) de�nes a measure on

Ak.

Proof. Since Ak is a �nite set, we need only demonstrate that freqk(W ) integrates to 1

over Ak. That is ∑
v∈Ak

freqk(W )(v) =
∑
v∈Ak

freqv(W )
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=
∑
v∈Ak

∑
w∈W occv(w)∑

w∈W max{0, |w| − |v|+ 1}

=

∑
v∈Ak

∑
w∈W occv(w)∑

w∈W max{0, |w| − |v|+ 1}

Notice that the numerator and the denominator here both count the same quantity, the

number of factors, counting with repetition, of length k appearing in the words in W . The

numerator does so by counting the occurrences over all possible factors of length k, the

denominator does so by counting the number of consecutive sequences of length k in each

w ∈W . Thus the sum is 1, as required.

We next describe a useful, and related, function when considering factor frequencies and

de Bruijn graphs, that of the complexity function of a word or collection of word.

De�nition 1.3.11 (Complexity Function). For a word w over an alphabet A de�ne the

complexity function fw : N→ N by

fw(n) = |{v
∣∣ v is a factor of w and |v| = n}|.

We extend the complexity function to a set of words W by counting the number of factors

of length n in any of the words w ∈W .

We now relate a useful formula for the computation of the path distance in each of the

above de Bruijn graphs.

Theorem 1.3.3 (Graph Distance in Bk(A)). Let v = v1 . . . vk, w = w1 . . . wk ∈ Ak. Let

ddB be the path length distance in the de Bruijn graph. Then [64]

ddB(v, w) = k −max{i| 1 ≤ i ≤ k, vk−s+1 . . . vk = w1 . . . wi}.

Theorem 1.3.4 (Graph Distance in B∗k(A)). Let v = v1 . . . vk, w = w1 . . . wk ∈ Ak. Let

ddB∗ be the path length distance in the symmetric de Bruijn graph. De�ne

li,j(v, w) = max{s| s ≤ j, s ≤ k − i+ 1, vi . . . vi+s−1 = wj−s+1 . . . wj}
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ri,j(v, w) = max{s| s ≤ i, s ≤ k − j + 1, vi−s+1 . . . vi = wj . . . wj−s+1}

Then [64]

ddB∗(v, w) = 2k − 1 + min
1≤i,j≤k

{i− j −max{li,j(v, w), ri,j(v, w)}}.

Note that in the case of a directed graph, our distance on vertices is not a metric as it

is not symmetric. On the other hand, utilizing the path distance on the symmetric de

Bruijn graph does yield a metric on Ak, which we will make use of later in our work. We

break from our discussion of de Bruijn graphs to introduce an alternate pair of metrics on

the space of �nite words [77]. We begin by de�ning a set of operations on words, that of

insertion, deletion and substitution. In the following let v be a word of length k from the

alphabet A.

De�nition 1.3.12 (Insertion). We say w is obtained from v by an insertion if there exists

α ∈ A and factors x and y of v such that v = xy and w = xαy.

De�nition 1.3.13 (Deletion). We say w is obtained from v by an deletion if there exists

α ∈ A and factors x and y of v such that v = xαy and w = xy.

De�nition 1.3.14 (Substitution). We say w is obtained from v by an substitution if there

exists α, β ∈ A and factors x and y of v such that v = xαy and w = xβy.

We now de�ne the edit distance and the related longest common subsequence distance

(LCS) on elements of A∗.

De�nition 1.3.15 (Edit Distance). Let v, w ∈ A∗. De�ne dE(v, w) to be the minimum

number of applications of insertion, deletion or substitution needed to obtain w from v.

De�nition 1.3.16 (Longest Common Subsequence (LCS) Distance). Let v, w ∈ A∗. De-

�ne dLCS(v, w) to be the minimum number of applications of insertion or deletion needed

to obtain w from v.
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It is clear that the above are both metrics, given the symmetry of the operations involved.

The LCS distance is so named because of the following alternate characterization.

Proposition 1.3.4 (Alternate Characterization of LCS). Let v = v1 . . . vn and w =

w1 . . . wm be words. Let I be the set of strictly increasing functions ρ : N → N. Then

[64]

dLCS(v, w) = (n+m)− 2 ·max{s| ∃ ρv, ρw ∈ I s.t. vρv(1) . . . vρv(s) = wρw(1) . . . wρw(s)}

where we take the maximum over the empty set to be 0.

That is, we may take the LCS to be the number of symbols left unmatched in a pairing

between symbols comprising words which respects order.

In this section we have de�ned the language used in understanding the theory of words and

the de Bruijn graph, a natural mathematical object which encodes information regarding

the factors of words. We have also de�ned a few natural metric structures on the space

of words, those arising from de Bruijn graphs, as well as those derived from of a set of

operations on words. We now turn to a discussion of the applications of graphs, particularly

the manner in which graphs have been used in biology.

1.3.5 Survey of the Applications of Graph Theory to Genomic Assembly

Applications of the mathematical formalism of graphs appear in a variety of contexts in the

biological sciences, including networks describing biomolecular interaction and structure

[48, 9], ecosystem ecology [14], epidemiology and phylogenetics [90] (see Section 1.1.3). In

molecular biology, of chief importance is the understanding of the structure and function

of the molecular building blocks of life. Graphs have been implemented in predicting the

shape of molecules, such as predicting RNA secondary structures [9] and protein shape

[38]. In the �eld of genomics, graph theory has been particularly useful for giving a

computational framework to the problem of de novo genome assembly. Our chief purpose
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here will to be to describe the application of graphs to this problem. See Section 1.1.2 for

information related to genomics which is assumed in the following.

Given a collection of short sequence reads, the assembly problem is that of �nding the most

parsimonious sequence, that is, the simplest genome, from which this given collection

might have arrived as factors. As we have seen, de Bruijn graphs are a useful object

when considering the manner in which longer words can be built up from a set of factors.

Indeed, de Bruijn graphs have been at the heart of solving this problem [19] by solving

an interpretation of the same Eulerian path problem described in Theorem 1.3.2, but in

a genomic context. There are many current de Bruijn graph based genomic assembly

packages, such as Velvet [134], SOAPdenovo2 [70] and SPAdes [5], which vary in their

optimization for particular genomes sizes, sequencing technologies or methods of error

correction. We describe the general method utilized by following the algorithm for EULER

[92], one of the original such assemblers.

Given that errors occur in the process of genomic sequencing, error correction is made

before assembly begins. By leveraging the relatively high coverage rates supplied by se-

quencing technologies, error correction can be done by consensus among sequence reads.

Additional processing to reduce error can be made by applying dynamic programming

techniques to determine the minimum number of edits to a set of sequences for an assem-

bly to exist and then thresholding `low-quality' reads having little agreement with the rest

of the sequences.

We begin assembly itself by selecting a positive integer k and deriving from our collection

W of sequence reads a multisetWk of all k-mers appearing inW . The optimal values for k

vary by assembler technology, sequence read length and genome length [18] and are often

chosen experimentally, by comparing the quality of assemblies under each. Typical values

are from k = 20 to k = 70.

Letting A = {A,C, T,G} we select and build the vertex set for the de Bruijn of (k − 1)-
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mers, B(k−1)(A). Note that each directed edge in B(k−1)(A) corresponds uniquely to a

k-mer, given by the word whose �rst proper pre�x is given by the originating vertex and

whose �rst proper su�x is the terminal vertex. Thus we then take our set of k-mers Wk

and populate the edges, with multiplicity, of B(k−1)(A).

A path of length n in this graph is thus a word of length n+k−1, with overlapping factors

of length k appearing among the known set of k-mers in the multiset of sequence reads. By

producing an Eulerian path which traverses each edge of the graph, we produce an assembly

of the genome. There are linear time algorithms for solving the Eulerian path problem

[53], given that the degree requirements of the graph are satis�ed so that a solution exists,

and so, in theory, we have reduced the problem of genome assembly to that of the Eulerian

path problem. Complexities arise due to unaddressed errors in sequence data, uneven or

incomplete genome coverage and boundary conditions for sequences. These constraints

are addressed otherwise, or are used to place additional constraints on the choice of an

Eulerian path.

In the above we have described the application of graphs to questions arising in genomics,

particularly to of sequence assembly. We have highlighted how adjacency in the de Bruijn

graph can be used to �nd sequences which contain a given set of k-mers as consecutive

factors. This material is important motivation for the work in Section 3. The treatment

here regarding graphs in a biological context is complementary to our discussion in Section

1.1.3 regarding the application of trees to Phylogenetics. We are now prepared to begin

the discussion of our main results, the Wasserstein metric in the context of biologically

relevant graphs.
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2 COMPUTATION AND FOUNDATIONS OF THE UNIFRAC

METRIC FOR MICROBIAL COMMUNITY ECOLOGY

2.1 Introduction

The UniFrac metric (De�nitions 1.1.13 and 1.1.14) is a robust and well-used β-diversity

metric in metagenomics. Evans and Matsen demonstrated in [28], using the dual for-

mulation of the 1-Wasserstein metric (De�nition 1.2.4), that the UniFrac metric is the

1-Wasserstein metric (De�nition 1.2.1) for path distance (De�nition 1.3.7) in a phyloge-

netic tree (De�ntion 1.1.1) and is given by integration over subtrees of the tree. They

utilized that observation to generalize the UniFrac metric, by considering alternate ex-

pressions for weighting the di�erences between relative abundances over a phylogenetic

tree, and to develop the use of Monte Carlo permutation tests for signi�cance, in both

UniFrac and their generalized metrics.

In the following we provide an alternate and elementary proof of the same fact, that

UniFrac is the 1-Wasserstein metric given by integration over the subtrees of a phylo-

genetic tree. The constructive proof builds a minimizing coupling between samples and

highlights a useful invariant behind the UniFrac metric, that of a weighted di�erential

abundance vector between relative abundances. We utilize the structure of the integral to

construct an e�cient linear time algorithm, EMDUniFrac, which computes UniFrac or-

ders of magnitude faster than previous implementations while returning more information,

that of the weighted di�erential abundance vector and a minimizing coupling between

samples. These results were published as EMDUniFrac: exact linear time computation

of the UniFrac metric and identi�cation of di�erentially abundant organisms with David

Koslicki in J. Math. Biol. (2018) https://doi.org/10.1007/s00285-018-1235-9. The ideas

contained within Algorithm 2.2.2 were incorporated into a collaborative work which is in
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revision, to be published as Striped UniFrac: enabling microbiome analysis at unprece-

dented scale with Daniel McDonald, Yoshiki VÃ¡azquez-Baeza, David Koslicki, Nicolai

Reeve, Zhenjiang Xu, Antonio Gonzalez, Rob Knight, Nature Methods (2018).

We next show how modifying the linear structure underlying the UniFrac metric allows for

the computation of a related biological ordination technique known as Double Principal

Coordinate Analyis (DPCoA, De�nition 1.1.23). We show how combining this realization

with a mathematical understanding of the principles behind DPCoA allows for an e�cient

algorithm which circumvents the need to compute pairwise distances between relative

abundances in the generation of DPCoA.

Finally, we demonstrate how considering the UniFrac metric between relative abundances

as the L1 norm of the image of their di�erence under a linear transformation allows for

the formulation for the expected UniFrac distance between Dirichlet distributed sample

relative abundances. We show how this has utility to the Dirichlet-Multinomial (De�nition

1.1.21) model frequently used for sequence read data.

We conclude by demonstrating the e�ectiveness of these tools on both real-world and

synthetic metagenomic datasets, before discussing potential work for the future.

2.2 E�cient Computation of the UniFrac Metric as the Wasserstein

Metric

2.2.1 Alternate Characterization of the 1-Wasserstein Metric over a Tree

In the following we begin our demonstration that the 1-Wasserstein metric W1(P,Q) be-

tween probability distributions P and Q over a tree T is given by an edge-weighted in-

tegration over all subtrees of the absolute value of the di�erence between P and Q by

producing an alternate characterization for the minimizing �ow realizing the Wasserstein

metric. We �rst require some de�nitions.
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Let P and Q be probability distributions on a tree T with distance matrix D and edge set

E. Recall that Γ(P,Q) is the set of all �ows or couplings between P and Q in T . By an

abuse of notation, we write i ∈ T to denote a vertex of our tree. For such a vertex i ∈ T

we will say i is a source if P (i) ≥ Q(i) and say i is a sink otherwise. Let Tsource and Tsink

denote the sets of sources and sinks, respectively.

Next, we select an arbitrary vertex and distinguish it as the root ρ of T . While the choice

of a root in a phylogenetic tree is biologically motivated, it is, for our current mathematical

purposes, merely a convenience of notation. For each i ∈ T let a(i) be the unique neighbor

of i in T which lies on the path from i to ρ in T . Thus the edges of T are determined by the

set of ordered pairs (i, a(i)) for i ∈ T . Let ei denote the edge (i, a(i)). As T is a tree, each

edge e ∈ E is a bridge. Thus the removal of an edge partitions the vertices into two disjoint

subsets. We denote the subset containing ρ by Te and the other by T ′e. Let l : E → R≥0

de�ne a set of edge weights or lengths on E. For i, j ∈ T , de�ne π(i, j) to be the set of

edges comprising the unique minimal path from i to j in T , so that D(i, j) =
∑

e∈π(i,j) l(e)

is the distance from i to j in T .

Lemma 2.2.1 (McClelland 2018). We have that

W1(P,Q) = min
M∈Γ(P,Q)

∑
e∈E

∑
i∈Te

∑
j∈T ′e

l(e) (M(i, j) +M(j, i)).

Proof. Let 1π(i,j)(e) : E → {0, 1} be the indicator function of the path from i to j in T .

That is, 1π(i,j)(e) = 1 if e is an edge in the path from i to j and is 0 otherwise. We then

have that for any �ow M ∈ Γ(P,Q)∑
i,j∈T

D(i, j)M(i, j) =
∑
i∈T

∑
j∈T

(∑
e∈E

l(e)1π(i,j)(e)

)
M(i, j) (2.2.1)

=
∑
e∈E

∑
i∈T

∑
j∈T

l(e)1π(i,j)(e)M(i, j) (2.2.2)

=
∑
e∈E

∑
i∈

Te∪T ′e

∑
j∈

Te∪T ′e

l(e)1π(i,j)(e)M(i, j) (2.2.3)



81

=
∑
e∈E

∑
i∈Te

∑
j∈T ′e

l(e)M(i, j) +
∑
i∈T ′e

∑
j∈Te

l(e)M(i, j)

 (2.2.4)

=
∑
e∈E

∑
i∈Te

∑
j∈T ′e

l(e) (M(i, j) +M(j, i)) . (2.2.5)

The above equalities are justi�ed as follows. To begin, (2.2.1) follows from the de�nition

of the distance function and the use of the characteristic function of the path between

vertices to expand the summation over all edges of the graph. Next, (2.2.2) and (2.2.3)

reorder the summation and express the vertex set in terms of the partitions de�ned above

by edge deletion. We have that 1π(i,j)(e) = 1 if and only if the vertices i and j belong to

distinct partitions Te and T ′e, from which (2.2.4) follows. Finally, in (2.2.5) we condense the

summation notation by reordering the last sum and grouping terms. Taking the minimum

over all M ∈ Γ(P,Q) yields the 1-Wasserstein metric on the left hand side, and thus the

desired result is obtained.

Next, we prove a lower bound on the summands involved in the above de�nition of the

1-Wasserstein metric.

Lemma 2.2.2 (McClelland 2018). For any �ow M ∈ Γ(P.Q) and any e ∈ E we have that

∑
i∈Te

∑
j∈T ′e

l(e)(M(i, j) +M(j, i)) ≥ l(e)

∣∣∣∣∣∑
i∈Te

P (i)−Q(i)

∣∣∣∣∣ .
Further, the vector da indexed by the edges of T and having entries da(e) =

l(e)
∑

i∈Te
∑

j∈Te′
M(i, j)−M(j, i) is unique, regardless of the minimizing �ow M .

Proof. We have that

l(e)

∣∣∣∣∣∑
i∈Te

P (i)−Q(i)

∣∣∣∣∣ =

∣∣∣∣∣∣l(e)
∑
i∈Te

∑
j∈T

M(i, j)−
∑
j∈T

M(j, i)

∣∣∣∣∣∣ (2.2.6)

=

∣∣∣∣∣∣
∑
i∈Te

l(e)
∑
j∈T

M(i, j)−M(j, i)

∣∣∣∣∣∣ (2.2.7)
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=

∣∣∣∣∣∣
∑
i∈Te

∑
j∈Te

l(e)(M(i, j)−M(j, i)) +
∑
j∈T ′e

l(e)(M(i, j)−M(j, i))

∣∣∣∣∣∣
(2.2.8)

=

∣∣∣∣∣∣
∑
i∈Te

∑
j∈Te

l(e)(M(i, j)−M(j, i)) +
∑
i∈Te

∑
j∈T ′e

l(e)(M(i, j)−M(j, i))

∣∣∣∣∣∣
(2.2.9)

=

∣∣∣∣∣∣
∑
i∈Te

∑
j∈T ′e

l(e)(M(i, j)−M(j, i))

∣∣∣∣∣∣ (2.2.10)

≤
∑
i∈Te

∑
j∈T ′e

l(e)(M(i, j) +M(j, i)). (2.2.11)

Equations (2.2.6) and (2.2.7) above follow from expanding P (i) and Q(i) in terms of

the row and column sums of M . Equations (2.2.8) and (2.2.9) reorganize the inner

sums by way of the partitions Te and T ′e and then group terms. Next we note that∑
i∈Te

∑
j∈Te l(e)(M(i, j)−M(j, i)) = 0 as each term M(i, j) occurs precisely twice, once

with each sign, which is re�ected in (2.2.10) above. This line also demonstrates the unique-

ness of da(e), as the quantity is here shown to be equal to
∑

i∈Te P (i)−Q(i), which depends

only on the distributions P and Q. Finally, we apply the triangle inequality to yield our

result.

By the lemmas above, it su�ces to demonstrate that there exists a �owM which, for every

edge e, satis�es
∑

i∈Te
∑

j∈T ′e l(e)(M(i, j) + M(j, i)) = l(e)
∣∣∑

i∈Te P (i)−Q(i)
∣∣. Further

note that the expression on the right is precisely the summands involved in De�nition

1.1.14. In our next section we present EMDUniFrac, which produces such a �ow M .

2.2.2 EMDUniFrac: Description

The pseudocode for EMDUniFrac is contained in Algorithm 2.2.1. Intuitively, the algo-

rithm begins at the leaves of the tree and `pushes' mass toward the root; satisfying the
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sources and sinks for each subtree encountered in the progression. The matrix G tracks

the mass still needed to be moved to or from each vertex by the algorithm, while the vector

w tracks the length of paths traversed by mass at each step.

To implement EMDUniFrac, we �rst choose an ordering of the set of vertices of T such that

for i, j ∈ T , i is an element of the path from j to ρ only if i ≥ j. A natural such ordering is

de�ned by partitioning the vertices of T by the disjoint circles of radius r ∈ N centered at

ρ, and then ordering vertices such that increasing indices correspond to partitions de�ned

by descreasing radii.

We now establish a bit of notation for the following algorithm. We then let G and M be

a pair of matrices whose rows and columns are indexed by the vertices of T with respect

to an ordering as above. Let Gi,· denote the ith row of the matrix G. Initialize both G

and M to be the zero matrix. Let w be a vector indexed by the vertices of T , initialized

to be the zero vector. For any vector u, de�ne skel(u) to be the binary vector of the same

dimension as u such for all i, skel(u(i)) = 1 if u(i) 6= 0 and skel(u(i)) = 0 otherwise.

2.2.3 EMDUniFrac: Algorithm

Algorithm 2.2.1. EMDUniFrac (McClelland 2018)

Input:

P,Q, ρ, T,E = {i, a(i)} For i ∈ T, l

Initialization:

M,G = 0

EMDUniFrac(P,Q) = 0

DiffAbund = 0

w = 0

Iterations:
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1: for i = 1, ..., |T | do

2: M(i, i) = min(P (i), Q(i))

3: G(i, i) = P (i)−Q(i)

4: w = w + l(i, a(i))skel(Gi,·)

5: for j such that G(i, j) > 0 do

6: for k such that G(i, k) < 0 do

7: M(j, k) = min(G(i, j),−G(i, k))

8: G(i, j) = G(i, j)−M(j, k)

9: G(i, k) = G(i, k) +M(j, k)

10: EMDUniFrac(P,Q) = EMDUniFrac(P,Q) + (w(j) +w(k)) ·M(j, k)

11: end for

12: end for

13: Ga(i),· = Ga(i),· +Gi,·

14: DiffAbund((i, a(i))) = l(i, a(i))
∑

t∈T G(i, t)

15: Gi,· = 0

16: end for

Output:

M, EMDUniFrac(P,Q) and DiffAbund

2.2.4 EMDUniFrac: Proof of Correctness, Speed and Space Requirements

What follows is a brief technical lemma used to prove that the matrix M produced by

EMDUniFrac is indeed a �ow. between distribution P and Q.

Lemma 2.1 (McClelland 2018). Let m ∈ T be arbitrary. Then for all n ∈ T such that

n is a vertex along the path from m to ρ, when i = n in the loop beginning at line 1 of

Algorithm 2.2.1 we have that one of the following hold:



85

If m is a source, then at the beginning of line 4 of Algorithm 2.2.1 we have that

P (m) = G(n,m) +
∑
k∈T

M(m, k)

Q(m) =
∑
k∈T

M(k,m).

Alternately, if m is a sink, then at the beginning of line 4 of Algorithm 2.2.1 we have that

P (m) =
∑
k∈T

M(m, k)

Q(m) = −G(n,m) +
∑
k∈T

M(k,m).

Proof. This follows by induction. Suppose m is a source and let i = m in the loop at

line 1 of Algorithm 2.2.1. Then min(P (m), Q(m)) = Q(m) and hence, by construction,

M(m,m) = Q(m), G(m,m = P (m)−Q(m). Further, before beginning the loop at line 4

of Algorithm 2.2.1, every other entry of the mth row ofM and G are zero. This is because

the elements of these rows are �rst potentially assigned nonzero values for i = m in the

midst of lines 6, 7 or 8. Thus at the beginning of line 4 of Algorithm 2.2.1, we have

P (m) = G(m,m) +
∑
k∈T

M(m, k),

Q(m) =
∑
k∈T

M(k,m).

Thus the claim holds for i = m.

Now suppose inductively that the above equalities holds when i = j for some vertex j ≥ m

on the path fromm to ρ in T . We shall show the equalities holds for i = a(j). As Algorithm

2.2.1 proceeds in the loop at line 1 to the vertex for i = a(j), we have that G(a(j),m ≥ 0

and thus by line 5 of Algorithm 2.2.1, the m-th column of M is left unchanged. Hence the

sum
∑

k∈T M(k,m) remains unchanged.
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Additionally, any change to G(a(j),m) during the loop at line 5 is compensated by a

change to
∑

k∈T M(m, k), thus

G(a(j),m) +
∑
k∈T

M(m, k) = G(j,m) +
∑
k∈T

M(m, k) = Pm.

Thus, inductively, the claims holds for all vertices along the path from m to ρ in T and m

a source. Symmetric reasoning holds for the case of m a sink.

We now prove our main result.

Theorem 2.1 (McClelland 2018). The EMDUniFrac algorithm in Algorithm 2.2.1 produces

the 1-Wasserstein distance W1(P,Q) and a corresponding minimizing �ow M .

Proof. We �rst show that M is indeed a �ow. Upon the algorithm reaching the root ρ,

that is when i = |T | in line 4 of Algorithm 2.2.1, we have traversed every vertex of T , so

that

0 = 1− 1 (2.2.12)

=
∑
k∈T

P (k)−Q(k) (2.2.13)

=
∑

k∈Tsource

P (k)−Q(k) +
∑

k∈Tsink

P (k)−Q(k) (2.2.14)

=
∑

k∈Tsource

(
G(ρ, k) +

∑
l∈T

M(k, l)−
∑
l∈T

M(l, k)

)
. . .

. . .+
∑

k∈Tsink

(∑
l∈T

M(k, l)−

(
−G(ρ, k) +

∑
l∈T

M(l, k)

))
(2.2.15)

=
∑
k∈T

∑
l∈T

M(l, k)−
∑
k∈T

∑
l∈T

M(k, l) +
∑

k∈Tsource

G(ρ, k) +
∑

k∈Tsource

G(ρ, k) (2.2.16)

=
∑
k∈T

G(ρ, k). (2.2.17)

The above equalities are justi�ed as follows. In (2.2.15) we expand the terms P (k) and

Q(k) in terms of the matrices G and M , as shown in Lemma 3, since ρ is an element of
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the path from any vertex to ρ. We then group terms in (2.2.16) and (2.2.17) by repeatedly

using that Tsource∪Tsink = T , before canceling the symmetric summations of the elements

of M .

It then follows that the sum of the positive elements of G(ρ, · is equal to the sum of the

negative elements of G(ρ, ·, and thus, by construction of the loops at lines 4 and 5 of

Algorithm 2.2.1, the algorithm must terminate with G(ρ, · identically zero. As we still

have that for each i ∈ T , P (i) =
∑

k∈T M(j, k), Q(i) =
∑

k∈T M(k, j), up to the addition

or subtraction of G(ρ, i) = 0, M must be a �ow.

Now we show that M minimizes the sum de�ning the 1-Wasserstein distance. By Lemmas

1 and 2, it su�ces to show that
∑

i∈Te
∑

j∈T ′e l(e)(M(i, j)+M(j, i)) = |
∑

i∈Te P (i)−Q(i)|

for all e ∈ E. Given the ordering of the vertices chosen for the algorithm above, let

n ∈ T −{ρ} be arbitrary. To begin, we make some observations regarding the structure of

the matrix G and its relationship to M in the algorithm. Note, that by construction, at

the termination of the loop at line 4 of Algorithm 2.2.1 for i = n, the entries of G(n, ·) all

have the same sign, as the the loops at lines 4 and 5 have the e�ect of pairwise choosing

elements of opposite signs and using one to reduce the magnitude of the other. This process

terminates when elements of one or the other sign are exhausted. Second, note that for

k ∈ T ′en and m > n, either G(m, k) = 0 or has the same sign as G(n, k), as any change to

the entries of G(·, k) is made to move the value toward zero by a quantity bounded by the

magnitude of the entry. This again follows from examination of the inner most loop of the

algorithm, as well as the evolution of rows of G.

Finally, note that across all i ∈ T ′en , j ∈ Ten either M(j, i) = 0 or M(j, i) = 0. This

follows since M(i, j), respectively M(j, i), is only assigned a nonzero value in the case of

G(m, i > 0, respectively G(m, i < 0. By the above observation regarding the signs of the

elements of G(n, ·), only one of these conditions holds across i, j.
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Now, without loss of generality, assume∣∣∣∣∣∣
∑
i∈Ten

P (i)−Q(i)

∣∣∣∣∣∣ =
∑
i∈Ten

P (i)−Q(i)

as the argument for the alternate case is analogous. We then have that∣∣∣∣∣∣
∑
i∈Ten

P (i)−Q(i)

∣∣∣∣∣∣ =
∑
i∈Ten

P (i)−Q(i) (2.2.18)

=
∑
i∈Ten

∑
j∈T

M(i, j)−M(j, i) (2.2.19)

=
∑
i∈Ten

∑
j∈T ′en

M(i, j)−M(j, i) (2.2.20)

=
∑
i∈Ten

∑
j∈T ′en

M(i, j) +M(j, i). (2.2.21)

The change of sign in moving from (2.2.20) to (2.2.21) follows from the above observation

that at least one of M(i, j) or M(j, i) must be identically zero, and that the sum must be

non-negative. Hence −M(j, i) = 0 = M(j, i). Scaling the above equality by l(en) yields∣∣∣∣∣∣
∑
i∈Ten

P (i)−Q(i)

∣∣∣∣∣∣ =
∑
i∈Ten

∑
j∈T ′en

M(i, j) +M(j, i).

Having achieved the lower bound established in Lemma 2, we must have that the �ow M

is a minimizer for the sum de�ning W1(P,Q).

Theorem 2.2 (McClelland 2018). Let |supp P |, |supp Q| denote the number of elements in

the support of the probability distributions P and Q, respectively. Let s = |supp P | +

|supp Q|. Then the EMDUniFrac algorithm has time and space complexity O(s).

Proof. We �rst consider the time complexity of EMDUniFrac. Note that each iteration of

the loop at line 5 of Algorithm 2.2.1 has the e�ect of satisfying a source i or sink j, that

is, establishing the appropriate row sum i or column sum j of the matrix M . Further, the

loop at line 5 only visits a pair of vertices (i, j) in the case that both source i and sink j
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have not been satis�ed, that is, that both P (i) 6=
∑

k∈T M(i, k) and Q(i) 6=
∑

k∈T M(k, i).

As there are s such row or column sums to satisfy, the loop at line 5 is evaluated at most

s times. Hence the time complexity of the algorithm is, in total, linear in s.

Now we examine the space requirements of EMDUniFrac. By the above, the matrix M

is sparse. That is, there are most s evaluations of the loop at line 5 of Algorithm 2.2.1

and thus, including the assignment of values to M at line 2 of the algorithm, at most 2s

non-zero entries in M . Additionally, line 3 of the algorithm assigns a nonzero entry to G

at most n times, while line 12 has the e�ect of passing non-zero entries of G from one row

to another prior to being removed in line 13. Thus the number of nonzero entries of G is

bounded by s. Finally, the vector w in Algorithm 2.2.1 is one dimensional, having at most

s nonzero entries. Hence the total space requirements of the algorithm are also linear in

s.

In this section we have demonstrated the correctness and e�ciency of an algorithm which

computes the UniFrac metric while producing an optimal �ow. In our next section we

relate a proof which demonstrates a method for the computation of the UniFrac metric

which does not produce an optimizing �ow.

2.2.5 EMDUniFrac: Linear Algebra Proof of Correctness

We present another proof of our previous result, that the 1-Wasserstein metric is given by

integration over all subtrees of the absolute value of the di�erence between distributions,

in the spirit of [28]. This does not produce a minimizing �ow M , but it does allow us to

characterize the W1 as the L1 norm of a readily constructed linear transformation W .

Consider a rooted tree T with root ρ. Identify the subtrees of T with the nodes of T ,

so that subtree i is the subtree which does not contain ρ formed by deletion of the edge

(i, a(i)) from the path from node i to the root ρ. The subtree corresponding to ρ is T . Let
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the vectors {wi| 1 ≤ i ≤ n} be such that wi is the indicator function for subtree w, that is

vi(j) = 1 for those nodes j in subtree i and zero otherwise

Let W be the n× n matrix whose rows correspond to the vectors wi scaled by the corre-

sponding edge weight l(i, a(i)). Let P and Q br probability distributions on T , given as

column vectors ordered such that entry i corresponds to the root of subtree i.

Theorem 2.2.1. Using the above de�nitions, the 1-Wasserstein metric between distribu-

tions P and Q is given by [28]

‖W (P −Q)‖L1 .

Proof. Recall that by Theorem 1.2.4 we may express the W1(P,Q) distance between dis-

tributions P and Q as

W1(P,Q) = max
f

∑
t∈T

f(t)(P (t)−Q(t))

for Lipschitz f ∈ Lip1(T ). It follows from standard facts from analysis, which are perhaps

more trivial in our current discrete setting, that f can be expressed as an inde�nite integral

for a function bounded in absolute value by the Lipshitz constant. That is, we may write

any such f as

f(t) =
∑

s∈π(t,ρ)

g(s) · l(s, a(s))

for some g : T → [−1, 1], up to the value of f(ρ), which does not alter the value of the

maximization.

For a �xed f we then have that

∑
t∈T

f(t)(P (t)−Q(t)) =
∑
t∈T

 ∑
s∈π(t,ρ)

g(s) · l(s, a(s))

 (P (t)−Q(t)) (2.2.22)

=
∑
t∈T

∑
s∈T

1π(t,ρ)(s) · g(s) · l(s, a(s)) · (P (t)−Q(t)) (2.2.23)

=
∑
s∈T

∑
t∈T

1π(t,ρ)(s) · g(s) · l(s, a(s)) · (P (t)−Q(t)) (2.2.24)
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=
∑
s∈T

g(s) · l(s, a(s))
∑

t∈T ′
(s,a(s))

(P (t)−Q(t)) (2.2.25)

Where we have again in (2.2.22) expressed summation over a path as summation against

an indicator function over T and noted in (2.2.25) that, after interchanging the order of

integration, for a �xed node s, the set of vertices t for which s is an element of the path

π(t, ρ) is precisely the subtree de�ned by s.

Letting u(i) be the ith component of the vector u = W (P−Q) we see that, by construction,

u(i) = l(i, a(i))
∑

t∈T ′
(i,a(i))

(P (i) − Q(i)). It follows that W1(P,Q) = maxg
∑

i∈T g(i)u(i)

for |g| ≤ 1. Clearly we achieve a maximum when g(i) = 1 for u(i) ≥ 0 and u(i) = −1 for

u(i) < 0, that is, when g(i)u(i) = |w(i)|. Thus W1(P,Q) = ‖W (P −Q)‖L1 as required.

We note that the above formulation allows for an more e�cient implementation of the

UniFrac metric in those instances in which we are uninterested in capturing a minimizing

�ow. By expressing the action of the matrix W implicitly we are able to recover the

UniFrac metric in time linear in the number of OTUs in a pair of samples, without having

to interact with the matrix which contains the elements of a minimizing �ow. We present

pseudocode for this simpli�ed version of the algorithm now.

2.2.6 EMDUniFrac: Algorithm without Flow

In the following algorithm let T = (V,E) have root ρ. Let m be the maximum number of

edges in a path from ρ to any vertex in T . Let Sk = {v ∈ T | d(v, ρ) = k} for d the metric

which merely counts unweighted edges, for each 1 ≤ k ≤ m. For each vertex v ∈ T let

Dau(v) be the set of daughters of v in T , that these are the vertices adjacent to v in the

branch which has v as its base.

Algorithm 2.2.2. EMDUniFrac: Without Flow (McClelland 2018)

Input:

P,Q, ρ, T,E = {i, a(i)} For i ∈ T, l
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Initialization:

EMDUniFrac(P,Q) = 0

w = 0

D = P −Q

Iterations:

1: for i = 1, ...,m do

2: for v ∈ Si do

3: for w ∈ Dau(v) do

4: D(v) = D(v) + D(w)

5: end for

6: end for

7: end for

8: for i = 1, . . . , |T | do

9: EMDUniFrac(P,Q) = EMDUniFrac(P,Q) + (l(i, a(i))) · |D(i)|

10: end for

Output:

EMDUniFrac(P,Q)

2.3 E�cient Computation of a PCoA Motivated, UniFrac-Related Met-

ric for Ordination

2.3.1 Introduction to the Rapid Computation of DPCoA

One of the chief applications of the UniFrac metric is as measure of dissimilarity for use in

ordination techniques, such as Principle Coordinate Analysis (PCoA) (see Section 1.1.6),

for the purpose of exploratory data analysis. The pairwise distances between 1,000s or

10,000s of samples are carefully computed, and then embedded on 2 or 3 dimensions in
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such a manner as maximize retained variance in the measured distances between low di-

mensional points. This embedding necessarily just approximates the relationships between

our samples, and thus we are throwing away information which we have labored to produce.

But what if we knew before hand which information we wanted to keep afterwards? What

if we only computed the aspects of the metric we were actually interested in observing? As

an aside to our work regarding the UniFrac metric, in the following we outline a solution

to precisely that question that utilizes a UniFrac-related and biologically signi�cant metric

based in the L2 distance between weighted di�erential abundance vectors. Let P and Q

be relative abundances assigned to a phylogenetic tree T and let W be the matrix de�ned

in Section 2.2.5 such that ‖W (P − Q)‖L1 is the UniFrac metric between P and Q. Let

W√
· denote the matrix formed by scaling the rows of W by the reciprocal of the length

of the corresponding edge length, so that W√
· has rows which are indicator functions for

subtrees scaled by the square root of the length of the edge de�ning the subtree.

In [28] Evans and Matsen noted that there was a biological signi�cance to the quan-

tity ‖W√
·(P − Q)‖L2 albeit in the form of a integral over subtrees of a component-wise

squared di�erence of relative abundances, and thus, as written, not a linear function of the

abundances themselves. We modify the expression to suit our purposes and notation and

denote it dUFL2(P,Q), but the result remains the same. We relate the derivation of that

signi�cance in the following. Consider

dUFL2(P,Q)2 = ‖W√
·(P −Q)‖2L2

(2.3.1)

=
∑
i∈T

(wt
iP −wt

iQ)2 (2.3.2)

=
∑
i∈T

(wt
iP )2 + (wt

iQ)2 − 2(wt
iP )(wt

iQ). (2.3.3)

For the sake clarity, we expand one of the above terms as an example

∑
i∈T

(wt
iP )2 =

∑
i∈T

∑
j∈T

1π(j,ρ)(i)
√
l(i)P (j)

2
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=
∑
i∈T

∑
j∈T

1π(j,ρ)(i)
√
l(i)P (j)

(∑
k∈T

1π(k,ρ)(i)
√
l(i)P (k)

)
=
∑
i∈T

∑
j,k∈T

l(i)1π(j,ρ)∩π(k,ρ)(i)P (j)P (k)

Note that if we let aj,k denote the last common ancestor of j and k, then 1π(j,ρ)∩π(k,ρ) =

1π(aj,k,ρ). Further, we have that d(aj,k, ρ) = (1/2) · (d(j, ρ) + d(k, ρ) − d(j, k)) which we

utilize in continuing the above expansion

∑
i∈T

(wt
iP )2 =

∑
j,k∈T

P (j)P (k)
∑
i∈T

l(i)(1π(aj,k,ρ)(i)

=
∑
j,k∈T

P (j)P (k) · d(aj,k, ρ)

=
1

2

∑
j,k∈T

P (j)P (k) · (d(j, ρ) + d(k, ρ)− d(j, k)).

Returning to our previous work and applying the above expansion to each of the terms in

Equation 2.3.3 yields

d2
UFL2 =

1

2

∑
j,k∈T

P (j)P (k) · (d(j, ρ) + d(k, ρ)− d(j, k)) . . .

. . .+
1

2

∑
j,k∈T

Q(j)Q(k) · (d(j, ρ) + d(k, ρ)− d(j, k)) . . .

. . .−
∑
j,k∈T

P (j)Q(k) · (d(j, ρ) + d(k, ρ)− d(j, k))

Isolating the terms which depend upon ρ and thus only one of j or k, yields

∑
j,k∈T

1

2
P (j)P (k) · (d(j, ρ) + d(k, ρ)) . . .

. . .+
1

2
Q(j)Q(k) · (d(j, ρ) + d(k, ρ))− P (j)Q(k) · (d(j, ρ) + d(k, ρ))

=
∑
j,k∈T

1

2
P (j)(P (k)−Q(k)) · (d(j, ρ) + d(k, ρ))

. . .− 1

2
Q(k)(P (j)−Q(j)) · (d(j, ρ) + d(k, ρ))
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=
∑
j∈T

1

2
P (j)

∑
k∈T

(P (k)−Q(k)) · d(k, ρ) . . .

. . .−
∑
k∈T

1

2
Q(k)

∑
j∈T

(P (j)−Q(j)) · d(j, ρ)

= 0.

Thus we have that

d2
UFL2 =

∑
j,k∈T

P (j)Q(k) · d(j, k)− 1

2

∑
j,k∈T

P (j)P (k) · d(j, k) +
∑
j,k∈T

Q(j)Q(k) · d(j, k)

 .

The treatment in [28] ends with the above statement, which has a clear biological sig-

ni�gance. We weight the sum of all pairwise distances between community members by

their relative abundances and then compare the average of such measurements among a

pair of communities to the measurement between communities. Thus we are comparing

the overall biological 'spread' in an evolutionary sense between of a pair of communities,

as encoded by pairwise distances in a phylogenetic tree, against the average 'spread' of

the communities themselves. It was noted in [33] that this is precisely Double Principle

Coordinate Analysis (DPCoA), see Section 1.1.6. It is currently implemented as described

in [33] in the 'phyloseq' R package, a component of the Bioconductor initiative [35] for

bioinformatic tools development.In [33] they note the computational ine�ciency of imple-

menting DPCoA compared with UniFrac, while using the formulation for DPCoA given

by [28]. They note in 2012 a run time of approximately 40 minutes of a 32 core Linux

cluster for a tree containing approximately 2500 OTUs.

We note that casting DPCoA as the L2 distance between images under a linear transforma-

tion has computational bene�ts. As shown in Section 1.1.6, in the case of an L2 distance

matrix for PCoA, PCoA on a set of pairwise distances is precisely PCA on the data points

themselves. Thus we can determine the principle coordinates for a matrix of pair-wise

distances dUFL2 from the images W√
·(P ), without constructing the the quadratic in time
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and space distance matrix. But, as we noted in Section 1.1.6, we can further produce the

covariance matrix for the set of imagesW√
·(P ) from the covariance matrix for the relative

abundances themselves. In the case that relative abundances are supported only on the

leaves of T , this yields a matrix which is at least twice as sparse as the matrix of images

and does not require computation of the action of the W√
·.

Further, given the �rst few principle coordinates, say c1 and c2, the products Wt√
·c1

yield the projections of the action of Wt√
· into only the desired coordinates, thus we can

compute, via a pair of inner products, precisely the PCoA transformed dataset and and

no additional components. Note that any additional work in performing the eigenvalue

decomposition of the matrix of relative abundances would have been embedded in the

construction of a PCoA plot anyways, we have merely done the work upfront so as to

avoid the construction of the full set of images and their pairwise distances.

Finally, this allows DPCoA to be cast in a similar theoretical framework as other linear

transformation used for ordination, such those described in [60] by Legendre and Gallagher.

They noted the use by biologists of PCA to transform raw abundance dataset, and thus

the ordination of communities with respect to the L2 distance, and presented a variety

of linear transformations which allowed for the use of PCA to produce more meaningful

relationships. This included the χ2 and Hellinger distances discribed in Section 1.2.4.

Regardless of the computational bene�t, the above observation allows for Rao's diversity

index to be included in a list of diversity metrics which are given by `ecologically meaning

transformations' of relative abundance datasets, as described de�ned in [60].

2.3.2 DPCoA via PCA: Description

In the following we outline the description of the algorithm to compute DPCoA via PCA.

As we are not interested in capturing the minimizing �ow underlying the metric, we utilize

the action of the matrix W√
· described in our introduction implicitly in a pair of subrou-
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tines. For ease of notation we assume in the following that our underlying phylogenetic

tree T is a perfect binary tree with root ρ and depth b, and thus 2b leaves and 2b+1 − 1

vertices, and let S be a set of k probability distributions on T . Index the vertices of our

tree, and hence the probability distributions in S, in the following manner. Let the root

be 1, and for each vertex indexed by x, iteratively index each daughter vertex as 2 · x and

2 · x+ 1.

We begin by computing Σ, the covariance matrix for the elements of S. Recall that if a

random vector x has covariance matrix C, then for a matrix M of appropriate dimension

cov(Mx) = M tCM.

We use Σ in this way to compute of the covariance matrix for the vectors W√
·(pi). We

note that since the rows of W√
· are given as scaled indicator functions for subtrees, the

columns are then scaled indicator functions for paths from a given vertex to the root. Thus

in computing the action ofWt√
· on a vector, we may inductive express the value ofWt√

·(i)

in terms of the value of the vertex adjacent to i in a path to the root. By our indexing

system for a binary tree, this vertex is b(i/2)c for any i > 2.

Having performed the above computation, we then compute the singular value decompo-

sition of cov(W√
·(pi)) to determine the principal coordinates of interest, say c1, . . . , cn,

of the pairwise distance under Rao's diversity index. The projection of the set of images

onto those coordinates is then given by

ctkW
√
·pj = (ctkW

√
·)pj

= (Wt√
·ck)

tpj .

Thus we may construct the our set of PCoA plots via inner products with the set of vectors

Wt√
·ck. In the following section we present pseudocode which expresses the above.
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2.3.3 DPCoA via PCA: Algorithm

Algorithm 2.3.1. DPCoA via PCA

Input:

S, l . S a set of relative abundances, l the length function for the phylogenetic tree

n . n the desired number of principle coordinates

Iterations:

1: ΣS = cov(S)

2: ΣWS = ΣS

3: for j = 2, . . . , d do

4: for i = 2, . . . , d do

5: ΣWS(j, i) =
√
l(i, a(i)) · ΣWS(j, i) + ΣWS(j, b(i/2)c) . The action of ΣW√

·

6: end for

7: end for

8: for i = 2, . . . , d do

9: for j = 2, . . . , d do

10: ΣWS(i, j) =
√
l(i, a(i)) · ΣWS(i, j) + ΣWS(i, b(j/2)c) . The action of

Wt√
·(ΣW

√
·)

11: end for

12: end for

13: (c1, . . . , cn) = First n principal components generated from SVD(ΣWS)

14: for j = 1, . . . , n do

15: for i = 2, . . . , d do

16: cw,j(i) =
√
l(i, a(i)) · cw,j(i) + cw,j(b(i/2)c) . The action of Wt√

·cj

17: end for

18: end for
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19: for j = 1, . . . , n do

20: for s ∈ S do

21: PCoA(i, s) = 〈s, cw,j〉 . Transformation of the dataset into the principal

coordinates

22: end for

23: end for

Output:

PCoA

2.4 Expectation of the UniFrac Metric

Having alternate characterizations and e�cient computation of the UniFrac metric, as

well as noted the application of our results to the related ordination technique DPCoA,

we we change our focus to understanding the expected value of the UniFrac metric. In

this section we generate expressions for the probability density function of the UniFrac

metric under the assumption of a frequently employed distribution for the modeling of

metagenomic datasets. We determine E(UniFrac(P,Q)) when P and Q are drawn from a

Dirichlet distribution (De�nition 1.1.20) using previous work on the relationship between

the di�erence of Beta distributed random variables (De�ntion 2.4.1).

2.4.1 Application of the Dirichlet Distribution in UniFrac for Dirichlet-

Multinomial Distributed Sequence Data

While our e�orts to speed computation of the UniFrac metric make analysis of signi�cance

in measured UniFrac distances via Monte Carlo methods more tractable, it is tempting to

see if we can derive exact expressions for the expected value of the UniFrac metric given

a model of the underlying distribution of OTUs on a phylogenetic tree.
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As we noted in Section 1.1.6, the Dirichlet-Multinomial (De�nition 1.1.21) is a common

probabilistic model for the distribution of sequence read data. Given a �xed phylogenetic

tree T , and a set S of sequence reads, we select a subset TS of the nodes of T , thus a

collection of taxa or OTUs for the phylogenetic tree, upon which the sample generating

the sequence data is to be supported. This is typically some �xed taxonomic depth in the

tree to which the use of 16S rRNA analysis will assign sequences. We then draw a Dirichlet

distributed probability that each sequence read s is assigned to some node v ∈ TS . The

assignment of the set of sequences to nodes is then a Multinomial distributed random

variable.

What we have at the end of this model is a distribution for sequence assignments, not for

the vector of relative abundances which forms the basis for UniFrac distances. Supposing

that TS = n and letting p = (p1, . . . , pn) be the probability distribution which forms

the parameter for the Multinomial and t = (t1, . . . , tn) be the random vector of sequence

counts, we note that the marginal distributions for each component ti is the Binomial

with parameter pi. Considering our Binomially distributed marginals as a sequence of

independent Bernoulli trials, a standard application of the central limit theorem yields

that ti/n is normally distributed with expectation E(ti/n) = (n · pi)/n = pi and variance

V ar(ti/n) = (pi · (1 − pi))/n. In the case of sequence read data, n stretches into the

100,000s for the metagenomic coverage generated by modern sequencing techniques. In

these circumstances the Dirichlet prior for the Dirichlet-Multinomial is an excellent model

for the UniFrac metric, one which is compatible with methods being utilized currently by

researchers.

In the following section we utilize properties of the Dirichlet distribution and its marginal

distribution, the Beta distribution, to generate formulas for the expectation of Dirichlet

distributed relative abundance datasets.
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2.4.2 Derivation of Expected Values for the UniFrac Metric

By utilizing our characterization of the UniFrac metric between relative abundance vectors

P and Q as ‖W (P−Q)‖L1 , we can generate formulations for the expectation of the UniFrac

metric between P and Q by �rst exploring the distribution of P − Q when P and Q are

Dirichlet distributed random variables.

For ease of use, we recall that we say a random variable X = (X1, . . . , Xn) is Dirichlet

distributed, X ∼ Dir(X,α), if it is supported on the interior of the unit simplex in Rn and

has probability density function given by

f (x1, . . . , xn−1;α1, . . . , αn) =
1

B(α)

n∏
i=1

xαi−1
i

for shape parameters α = (α1, . . . , αn) > 0. Note that the xi satisfy xn = 1 −
∑n−1

i=1 xi,

x1, ..., xn−1 > 0 and
∑n−1

i=1 xi < 1, where the normalizing constant B(α) is given by the

multivariate Beta function (De�nition 1.1.19).

We �rst de�ne the Beta distribution [32].

De�nition 2.4.1 (Beta distribution). The Beta distribution Beta(α, β) is a probability

distribution supported on the unit interval and has probability density function

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1

for shape parameters α, β > 0.

The Beta distribution bears more than a passing similarity to the Dirichlet distribution, a

connection we formalize now. We now describe the marginal distributions of the compo-

nents of a Dirichlet distributed random variable [32].

Proposition 2.4.1 (Marginals of Dirichlet distribution [32]). Suppose a (X1, . . . , Xn)

is Dirichlet distributed with shape parameters α1, . . . , αn. Let α0 =
∑n

i=1 αi. Then the

marginal distribution of Xj is Beta(αj , α0 − αj).
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As we are interested in the image of our random variable under a linear transformation,

we recount the following very useful aggregation property of the Dirichlet distribution [32].

Proposition 2.4.2 (Dirichlet aggregation property [32]). Say X = (X1, . . . , Xn) is Dirich-

let distributed with shape parameters (α1, . . . , αn). If the random variable X ′ is constructed

by omitting xi, xj from X and replacing with xi + xj, that is X ′ = (x1, ..., xi + xj , ..., xn)

then X ′ is Dirichlet distributed with shape parameters (α1, ..., αi + αj , ..., αn).

Now suppose that we are considering the UniFrac metric over tree T with n + 1 edges,

thus n nodes and the trivial edge-weight. Thus the matrix W de�ned in Section 2.2.5 has

n + 1 rows, each row being the indicator function for a given subtree in T . Let wk, for

1 ≤ k ≤ n+1 be the rows ofW . Further, say that the relative abundance vector P is drawn

from a Dirichlet distribution with shape parameters α = (α1, ..., αn). Let α0 =
∑n

i=1 αi.

The following proposition follows directly from the aggregation property for the Dirichlet

distribution

Proposition 2.4.3 (McClelland 2018). WP (k), the kth component of the vector WP , is

distributed as

WP (k) ∼ Beta(〈α,wk〉, α0 − 〈α,wk〉).

given the above de�nitions.

Thus determining the distribution of the elements of the di�erential abundance vector

W (P−Q) relies on the determination of the distribution of the di�erence of beta variables.

We follow the treatment in [93] to determine the distribution. As a step toward that goal

we �rst de�ne the Pochhammer symbol (a)m.

De�nition 2.4.2 (Pochhammer symbol). De�ne the Pochhammer symbol (a)m by

(a)m =
Γ(a+m)

Γ(a)

for m > 0 and (a,m) = 1 for m = 0.
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We now de�ne Appell's First Hypergeometric function F1.

De�nition 2.4.3. Appell's �rst hypergeometric function F1 is given by

F1(a, b1, b2; c;x, y) =
∞∑
n=0

∞∑
m=0

(a)m+n

(c)m+n
(b1)m(b2)n

xm1
m!

xn2
n!

It can be shown [29] that F1 converges for |x1|, |x2| < 1. Picard [94] derived the following

integral expression for F1, which is useful for our purposes.

Theorem 2.4.1 (Picard 1881). Let a, b1, b2, c be complex numbers. If Re(a), Re(c−a) > 0

and F1(a, b1, b2; c;x1, x2) converges then [94]

F1(a, b1, b2; c;x1, x2) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ua−1(1− u)c−a−1(1− ux1)−b1(1− ux2)−b2du

The following identities [29] related to F1 will also be required. We have that

F1(a, b1, b2; c;x, y) = (1− x)c−(a+b1)(1− y)−b2

· F1(c− a, c− (b1 + b2), b2; c;x(y − x)/(y − 1)) (2.4.1)

= (1− x)−b1(1− y)c−(a+b2)

· F1(c− a, b1, c− (b1 + b2); c; (x− y)/(x− 1), y). (2.4.2)

We are now prepared for a description of the density of a di�erence of Beta distributed

random variables.

Theorem 2.3 (Pham-Gia 1993). Say X,Y are independent random variable with X ∼

Beta(αX , βX) and Y ∼ Beta(αY , βY ). Let A = B(αX , βX) · B(αY , βY ). Then [93] D =

X − Y has probability density function

f(d) =



1
AB(αX , βY )dβX+βY −1(1− d)αY +βX−1· for 0 < d ≤ 1

F1(βX , αX + βX + αY + βY − 2, 1− αX ;βX + αY ; (1− d), 1− d2)

1
AB(αX , βY )(−d)βX+βY −1(1− d)αY +βX−1(1− d)αX+βY −1· for − 1 ≤ d < 0

F1(βY , 1− αY , αX + βX + αY + βY − 2;αX + βY ; 1− d2, 1 + d)
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In the case that αX + αy > 1 and βX + βY > 1 then

f(0) =
1

A
B(αX + αY − 1, βX + βY − 1)

Proof. The density of D = X − Y is given by the convolution of the densities for each of

X and Y . Thus for 0 < d ≤ 1 we have that

f(d) =
1

A

∫ 1−d

0
(d+ x)αX−1(1− d− x)βX−1xαY −1(1− x)β2−1dx (2.4.3)

=
1

A
dαX−1(1− d)βX−1

∫ 1−d

0
xαY −1(1− x)βY −1(1 +

x

d
)αX−1(1− x

1− d
)βX−1dx

Changing variables so that w = x/(1− d) yields

f(d) =
1

A
dαX−1(1− d)βX−1(1− d)αY −2·∫ 1

0
wαY −1(1− (1− d)w)βY −1(1− w(d− 1)

d
)αX−1(1− w)βX−1dw.

After simply�ng and applying Picard's theorem, we can express the integral in terms of

F1 so that

f(d) =
1

A
· dαX−1(1− d)αY +βX−1B(αY , βX)·

F1(αY , 1− βY , 1− αX ;βX + αY ; 1− d, 1− 1

d
).

We now apply Equation 2.4.1 above to yield

f(d) =
1

A
B(αX , βY )dβX+βY −1(1− d)αY +βX−1

F1(βX , αX + βX + αY + βY − 2, 1− αX ;βX + αY ; (1− d), 1− d2),

our desired result. Note that |1 − d|, |1 − d2| < 0 so that F1 converges. The proof for

−1 ≤ d < 0 is analogous.

In the case that αX + αY > 1 and βX + βY > 1, setting d = 0 in Equation 2.4.3 we have

that

f(0) =
1

A

∫ 1

0
xαX−1(1− x)βX−1xαY −1(1− x)β2−1dx
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=
1

A

∫ 1

0
x(αX+αY −1)−1(1− x)(βX+βY −1)−1

=
1

A
B(αX + αY − 1, βX + βY − 1)

As an example of utilizing the above, consider a perfect binary tree of depth 2, and thus

4 leaves. Let P,Q be Dirichlet distributed relative abundance vectors, supported only on

the leaves and with shape parameter uniformly 1. This choice of parameters represents a

uniform random distribution for OTUs at the leaves. Letting Xi = Pi −Qi, for 1 ≤ i ≤ 4,

Xi has density

f(xi) =


3
10(1 + xi)

3(6− 3xi + x2
i ) for − 1 ≤ x < 0

3
10(1− xi)3(6 + 3xi + x2

i ) for 0 ≤ x < 1

and thus E [|Xi|] = 3
14 .

Letting Yi,i+1 = (Pi + Pi+1)− (Qi +Qi+1), Yi,i+1 has density

f(yi,i+1) =


6
5(1 + yi,i+1)3(y2

i,i+1 − 3yi,i+1 + 1) for − 1 ≤ x < 0

6
5(1− yi,i+1)3(y2

i,i+1 + 3yi,i+1 + 1) for 0 ≤ x < 1

and thus E [|Yi,i+1|] = 9
35 .

Thus we have that

E [UniFrac(P,Q)] = E [|X1|+ ...+ |X4|+ |Y1,2|+ |Y3,4|] =
48

35

Utilizing the implementation of Appell's First Hypergeometric function F1 in Wolfram

Mathematica, we applied the above to perfect binary trees of depths 2 through 6. The

results are shown in Table 2.1. As consequence of Theorem 1.2.7, an upper bound for the

1-Wasserstein metric, and thus UniFrac, is the diameter of the tree. The case of our binary
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trees, that equates to twice the depth. So as to compare values lying in the range of 0 to

1 for a variety of trees, we have also included the expectation normalized by the diameter

of the tree in Table 2.1.

TABLE 2.1: Expected values for the UniFrac metric and the UniFrac metric normalized

by the tree diameter between a pair of Dirichlet distributed relative abundance vectors,

with shape parameters chosen so as to represent a uniform random distribution on the

leaves of perfect binary trees of depths 2-6.

Depth Expectation Normalized Expectation

2 1.37143 0.342857

3 1.96022 0.326703

4 2.41646 0.302057

5 2.75824 0.275824

6 3.00946 0.250788

In the above we has presented a solution to the expectation for a collection of particu-

larly simple examples. The application to other, more complicated examples is no more

complicated. Note that di�erences in branch length merely scale the summands in the

formula for the expectation above and so are easily incorporated. Having in this section

determined an expression for the expectation of the UniFrac metric in the case of Dirichlet

distributed relative abundances, we now turn to applying our e�cient algorithm for the

the computation of the UniFrac metric itself to actual datasets.

2.5 Applications

In the following we demonstrate the utility of applying our results related to the Wasser-

stein metric and UniFrac to datasets, both real-world and synthetic.
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2.5.1 Application of EMDUniFrac to Data

To demonstrate the utility of EMDUniFrac, we utilized it to analyze a real world 16S rRNA

dataset from a previous study [127]. The original dataset consists of 454 pyrosequenced

fecal samples from a cohort of 40 twin pairs. We utilized phylogenetic tree classi�cations

from QIIME/QIITA [15]. For simplicity, we focused on the phylum level, and so summed

classi�cations to this level. From the dataset of 454 samples we selected a subset consisting

of 49 healthy samples and 16 ulcerative colitis samples and used the silva taxonomic tree

[133] for the EMDUniFrac computation.

We evaluated the EMDUniFrac algorithm on all
(

65
2

)
= 2, 080 pairs of samples and per-

formed principle coordinate analysis (PCoA) on the resulting distance matrix. The result

of this is contained in part (A) of Figure 2.1. Next, we combined all the healthy samples

and combined all the ulcerative colitis samples and evaluated EMDUniFrac on these two

combined samples. The returned minimizing �ow is depicted in part (B) of Figure 2.1.

The corresponding weighted di�erential abundance vector is shown in part (C).

2.5.2 Comparison of EMDUniFrac to Alternate Solution Methods for UniFrac

As modern comparative metagenomics studies often perform all pairwise UniFrac distance

computations for datasets consisting of tens to thousands of samples, it is important to

compute such distances in an e�cient manner. As we showed in Section 2.2.4, Algorithm

2.2.1 used to compute EMDUniFrac runs in space and time complexity linear in the total

support of the input vectors, and thus less than or equal to the number of vertices in the

tree.

To assess practical performance of Algorithm 2.2.1, we compared it to the fastest previous

implementation of UniFrac, called FastUniFrac [43]. We randomly generated trees (using

the ete2 toolkit [49]) with the number of leaf vertices ranging from 10 to 90,000. We then

randomly produced pairs of distributions on the leaves using an exponential distribution
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(a) (b)

(c)

FIGURE 2.1: Results of the application of EMDUniFrac on real-world data. Part (A) is

the PCoA plot of the EMDUniFrac distance matrix between all pairs of samples analyzed.

Compare to the similar plot in Figure 2 of [127]. Part (B) contains a heat map of the

minimizing �ow for the combined healthy and ulcerative colitis samples. This heat map

is scaled logarithmically for visualization purposes. Part (C) depicts the di�erential abun-

dance vector between the combined healthy and Ulcerative Colitis samples and indicate

which organisms are di�erentially abundant in the samples, demonstrating usefulness over

the PCoA plot in part (A).
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with scale parameter 1. Importantly, EMDUniFrac can handle distributions with weights

on leaf vertices as well as internal vertices while FastUniFrac only allows distributions with

weights on the leaf vertices. We performed 10 replicates for each number of tree leaves

and 10 replicates for each tree topology.

Using the same �xed computational resources, we then ran FastUniFrac, EMDUniFrac

in a mode that computes and returns the optimal �ow as given in Algorithm 2.2.1, and

EMDUniFrac in a mode that compute only the distance as given in Algorithm 2.2.2, and

thus not an optimal �ow, so as to return output identical to that of FastUniFrac. The

average timings (over each number of tree leaves) are depicted in Figure 2.2.

FIGURE 2.2: Speed comparison of FastUniFrac to EMDUniFrac (while also returning

the minimizing �ow) and EMDUniFrac (while returning just the distance). Trees are

generated with random topology and abundances are random realizations of an exponential

distribution and are supported on the leaves.
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2.6 Discussion

2.6.1 Results

Having applied EMDUniFrac to real-worlds datasets and compared the e�ciency of the

algorithm against the fastest previous implementation of the UniFrac metric, we now

interpret the results of our applications to real and synthetic datasets.

Even though upon visual inspection, the PCoA plot in part (A) of Figure 2.1 does not show

much distinction between healthy and ulcerative colitis samples (compare to the similar

plot contained in Figure 2 of [127]), the di�erential abundance vector leads to the immedi-

ate conclusion that the ulcerative colitis samples are primarily enriched for Actinobacteria

and Proteobacteria, while being de�cient in Bacteroidetes. This observation is consistent

with other studies where the same trend was observed in irritable bowel disease subjects,

but using alternate analysis techniques [30, 109, 74], and demonstrates how utilizing the

minimizing �ow results in more information than simply using an ordination technique

(here PCoA) on the pairwise UniFrac distances.

These results from our comparison of indicate that in either mode, EMDUniFrac is more

computationally e�cient than FastUniFrac, and when just the resulting distance is desired

and thus Algorithm 2.2.2 is utilized, EMDUniFrac takes less than half a second to run,

even on trees with 90,000 leaves. Note that our implementations of EMDUniFrac are

non-optimized, Python implementations.

2.6.2 Future Work

There are multiple avenues for continued research in understanding the UniFrac metric

from a mathematical perspective. While faster direct computation seems unlikely, ways

to rapidly estimate the metric seem feasible. Our observation regarding computation of

DPCoA was borne out of attempts to perform the same mathematical sleight of hand,
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via PCA on a dataset of transformed relative abundances, to avoid generating billions of

pairwise distances when seeking PCoA plots for tens of thousands of samples. There do

exists techniques for generating L1 versions of PCA, such as described in [12, 79], which

seek coordinate transformations which embed a dataset in lower dimensions in such a

way as to preserve the L1 distances between datapoints. Understanding the relationship

between such coordinate transformations and the UniFrac metric is a source for future

work, in addition to implementation and exploration of our observations regarding DPCoA

itself.

Additionally, and perhaps as more of a mathematical curiosity than anything, while con-

sidering the di�erence of Dirichlet distributed random variable under the UniFrac metric,

de�nite patterns were observed in the structure of the rational functions which give the

densities. Attempts to determine a more succinct expression for the densities cost the

author more than a few moments of thought and is likely to be something which will be

consider when less pressing matters are at hand. In the same vein, but perhaps more

biologically signi�gant, would be the application of our results related to the structure of

the UniFrac metric and its computation to other models for sequence count datasets.

Finally, there exists alternate mathematical frameworks in which to consider relative abun-

dances, particularly that of compositional data analysis (CDA) [2]. We have not touched

on these tools for understanding relative abundances in our treatment of metagenomics or

the UniFrac metric, as our results and considerations have not utilized them. They present

an alternate approach to the consideration of relative abundances as probability distribu-

tions. Extremely brie�y, one can consider CDA as `projective geometry for geologists', in

which we view our relative abundances as equivalence classes of proportions. From this

framework the probability distributions we have utilized are just one possible normaliza-

tion. The techniques were born out of the statistical analysis of geologic datasets and give

a means by which to consider the interior of the unit simplex as a Hilbert space. While



112

these techniques have de�nite drawbacks, the requirement of nonnegativity on the part of

the components being a particularly biologically egregious one, they o�er theoretical ben-

e�ts and an alternate mathematical structure for the problem of comparing proportions

arising in metagenomics. There has been recent work on this subject [103]. Finding ways

to incorporate the framework of CDA into the mathematics behind the UniFrac metric,

or the highlight the ways in which the techniques are complementary, is a goal for future

research.

With that, we conclude our discussion of the UniFrac metric and turn to the formulation

of a novel β-diversity metric, based in another application of the Wasserstein metric.
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3 REFERENCE-FREE METAGENOMIC COMPARISON USING

THE WASSERSTEIN METRIC

3.1 Introduction

In the work previous to this section we have considered UniFrac, a β-diversity metric

between microbial communities de�ned by relative abundances assigned to some com-

mon phylogenetic tree. In Section 1.1.2 we noted that species or OTU identi�cation in

a metagenomic sample is hampered by challenges related to the culturing of microbial

species, the lack of reference databases and the overlap between related species. These

challenges motivate reference-free methods of comparison between metagenomic sample,

like those described in Sections 1.1.4 and 1.2.4.

These reference-free methods act on probability distributions de�ned on k-mers generated

from sets of sequence reads, as described in Section 1.1.2, including examples such as

Jensen-Shannon (dJS , De�nition 1.2.4) divergence. As we noted in Section 1.3.2, there is

another utility for k-mers, that of genome assembly. Distributions of k-mers are assigned to

a de Bruijn graph in such a way that a solution to the Eulerian path problem corresponds

to an assembly of a component of a genome or, in the case of much smaller assemblies,

reads are �tted together via overlap-layout-consensus (OLC) methods by �nding agreement

between read ends. Such assemblies are the source of OTU identi�cation and relative

abundance estimation, and thus the input to an analysis via UniFrac.

Recalling the notation of Section 1.3.4, we can therefore consider the methods described

thus far as making comparisons at either the top or the bottom of the diagram in Figure

3.1.



114

FIGURE 3.1: Depiction of relationships between β-diversity metrics and genomic assembly.

A∗ Comparisons made using UniFrac

Bk(A) Assembly

Ak Comparisons made using dKL, dJS

At the bottom, we compare distributions on k−mers, elements of Ak for the genetic alpha-

bet A = {A,C,G, T}, directly, by methods which are ignorant of their origins as factors of

a genome. Alternately, we lift collections of k−mers to assemblies, elements of A∗, by way

of the de Bruijn graph Bk(A) or the OLC methods described in Section 1.1.2, at the top of

the diagram, which we then compare via β-diversity metrics on relative abundances such as

UniFrac. Clearly each method has bene�ts, UniFrac in informed by the biological context

of proximity in a phylogenetic tree and the reference-free methods allow for comparisons

between datasets for which less background information is known.

In this section we prove that for k su�cient to allow unambiguous assembly of a metage-

nomic dataset via de Bruijn graphs, convergence of a set of measures de�ned on assemblies

derived from that dataset is equivalent to the convergence of the set of derived measure

with respect to the k−mer occurrence de�ned on the set of metagenomic sequence reads.

We then use this to motivate EMDeBruijn, a reference-free metric between metagenomic

datasets which makes β-diversity comparisons by utilizing the structures used in assembly,

but without preforming the assembly itself. EMDeBruijn utilizes the Wasserstein metric

between k−mer occurrence distributions de�ned on metagenomic samples, in which the

underlying ground metric between k-mers is derived from the de Bruijn graph. Due to the

infeasibility of exact computation of the Wasserstein metric in this setting, we introduce

a pair of approximations, one heuristic and another borrowed from the burgeoning �eld
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of image processing via the Wasserstein metric. We then apply these approximations to

EMDeBruijn to real-world datasets. The results of these applications are then com-

pared against alternate methods for reference-free comparison. Finally, we explore alter-

nate ground metrics for use in Wasserstein-based reference-free comparison of metagenomic

sample.

3.1.1 Motivation for a Reference-free Wasserstein Metric on Metagenomic

Datasets

As we have shown, the UniFrac metric is the 1-Wasserstein metric when we take a ground

distance between OTUs given by path length in a common phylogenetic tree. As we

commented in Section 1.1.3, the edge-lengths of a phylogenetic tree are given in terms

of an expected number of substitutions per location in the genomes between organisms.

Formalizing this, given an OTU with genome u ∈ A∗, let ua be the most recent ancestor

of u. Then the length of an edge between u and ua is given by

l(u, ua) =
s(u, ua)

|u|

where s(u, ua) is the expected or estimated number of substitutions between the genomes

of u and ua. This over simpli�es the situation somewhat, but, in microbial ecology in

particular, agreement between genomes or genomic regions such as the 16s rRNA gene as

described in Section 1.1.2 is taken as the very de�nition of an OTU and is the source for

the information used in the construction of phylogenetic trees.

Thus the edge-length in a phylogenetic tree can be interpreted as a normalized version of

an edit distance (De�nition 1.3.15) between genomes. In this light we can interpret the

evolutionary distance given by path length in a phylogenetic tree as a constrained edit

distance between genomes, constrained in that we are obligated to compute the evolution-

ary distance with respect to a sequence of substitutions that pass through the most recent

common ancestor of a pair of OTUs. It follows that we can view the UniFrac metric as
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measuring a quantity related to the 1-Wasserstein distance between genomes for a ground

edit distance.

This motivates considering the following abstraction which relates convergence of measures

de�ned on a �nite subset of S ⊂ A∗ with respect to the Wasserstein metric and the

convergence of the projection of those measures into Ak, when k is chosen so that assembly

via de Bruijn graphs is unambiguous. The spirit of the statement below is summarized as

follows. If we are interested in comparing probability distributions on sets of genomes via

the Wasserstein distance and we are able to unambiguously assemble the sets of genomes

given a collection of k-mers, then we can recover a notion of closeness from comparing the

distributions given by the k-mers themselves, without actually performing the assembly.

Recall that for words v and w the juxtaposition vw denotes concatenation of the symbols

involved. Further recall that we say a word w is a right-extension of v if w = vα for some

α ∈ A and w is a left-extension of v if w = αv for some α ∈ A.

Theorem 3.1.1 (McClelland 2018). Let S ⊂ A∗ be �nite. Letm = mins∈S |s|, and suppose

that there exists k ≤ m such that each factor of length k in S has a unique, possibly empty,

left and right extension to factors of length k + 1 in S.

Let Sk be the set of k-mers occurring as factors in the elements of S. Let M(S) and M(Sk)

be the set of measures de�ned on S and Sk, respectively. Let πk : M(S) → M(Sk) be the

projection of measures such that πk(µ) = ν for

ν(v) =
∑
w∈S

µ(w) · occw(v)

|w| − k + 1

where occw(v) is the occurrence function (De�ntion 1.3.10) which counts the number of

instances of v in w. Let W1,∗ and W1,k denote the 1-Wasserstein metric on M(S) and

M(Sk), respectively, with respect to an arbitrary pair of ground distances.

Then a sequence of measures {µi}∞i=1 converges in M(S) to a measure µ with respect to

W1,∗ if and only if the sequence of projections {πk(µi)}∞i=1 converges in M(Sk) to πk(µ)
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with respect to Wk,∗.

We �rst require an observation regarding uniqueness of factors which mirrors the use of de

Bruijns graphs in assembly.

Lemma 3.1.1 (McClelland 2018). Given the above hypotheses and notation, for each

a ∈ Sk there exists a unique b ∈ S such that a is a factor of b.

Proof. This follows from our property regarding uniqueness of extensions as follows. Let

a = a1 . . . ak ∈ Sk be arbitrary. Then either a has a unique right-extension to a factor aα1

for some α1 ∈ A or a is a su�x to some word in S. If a is not a su�x, then a2 . . . akα1 ∈ Sk

and so has either has a unique right-extension or is a su�x. Inductively, we may keep

appending the unique elements extending our word, to say a1a2 . . . akα1 . . . αl, until we

necessarily terminate in a su�x of some word in S. Let α = α1 . . . αl.

On the other hand, a is either the pre�x of some word in S or there exists a unique

left-extension of a by some β1 ∈ A, so that β1a is a factor to some word in S. Thus

we inductively append βmβm−1 . . . β1 to a before terminating in a pre�x. Letting β =

βmβm−1 . . . β1, we thus have that βaα is both a su�x and pre�x to some word in S, that

is βaα ∈ S. Thus βaα is the unique element of S containing a as a factor.

We now prove our result.

Proof. Let d∗ be the ground metric for W1,∗ and let

dmin,∗ = min
s,t∈S,s6=t

d∗(s, t).

Note that as our metric spaces are �nite, convergence with respect to W1,∗ implies the

pointwise convergence of measures in R|S| as the distance between elements of S is bounded

below by dmin,∗.
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Further, the function πk is clearly continuous from R|S| to R|Sk|, as in each component it

is a �xed linear combination of the measures of the elements of S. Thus convergence of

{µi}∞i=1 in M(S) to a measure µ implies convergence of {πk(µi)}∞i=1 to πk(µ) in M(Sk).

We prove the alternate implication by considering the contrapositive. Suppose that we

have that W1,∗(µn, µ) > δ for some δ > 0. By the same considerations as above regarding

the �nite nature of out metric space, this implies that there exists v ∈ S such that

|µ(v)− µn(v)| ≥ δ

dmin,∗ · |S|
.

This follows from considering the Wasserstein metric as a sum |S| di�erences in measure

scaled by the distanced required for transport in some minimizing �ow. Now let πk(µn) =

νn and πk(µ) = ν.

We claim that the above implies that there exists w ∈ Sk such that

|νn(w)− ν(w)| > δ

(m− k + 1) · dmin,∗ · |S|
,

recalling that m = mins∈S |s|. As this quantity depends only on δ, our result follows.

From our lemma we see that for each factor w of v we have that

νn(w) =
occv(w)µn(v)

|v| − k + 1

as w occurs as a factor in no other v. Thus we have that

|νn(w)− ν(w)| =
∣∣∣∣occv(w)µn(v)

|v| − k + 1
− occv(w)µ(v)

|v| − k + 1

∣∣∣∣
=

occv(w)

|v| − k + 1
|µn(v)− µ(v)|

>
occv(w)

|v| − k + 1

δ

dmin,∗ · |S|

≥ δ

(m− k + 1) · dmin,∗ · |S|

where we have used that occv(w) ≥ 1 and that |v| ≤ m in the last inequality. Thus the

claim, and so the statement, is proved.
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While the above gives weight to the notion of Wasserstein-based comparisons of k-mers

distributions arising from metagenomic datasets by relating the notion to the very suc-

cessful UniFrac metric, it does not address why such a Wasserstein metric is useful for

these sorts of datasets to begin with. A strong analog exists between these applications in

metagenomics and the application of the Wasserstein metric, generally under the name of

the Earth mover's distance, to image analysis, as described in Section 1.2.5. As noted in

that section, the Earth mover's distance has been useful in those contexts in part because

it is capable of taking large, noisy datasets, images, and determining the relative similar-

ity of large scale structures given comparisons of purely local features, such as the color

composition of individual pixels or small groups of pixels.

These are precisely the features which unify the various phylogenetically-aware β-diversity

metrics described in Section 1.1.4, they lift comparisons of the constituent parts of commu-

nities to comparisions of the communities themselves. With this in mind, we now consider

the relative bene�t of various ground metrics on words with respect to the problem of

reference-free comparison of metagenomic datasets.

3.1.2 Comparison of Ground Metrics for Wasserstein Distance between

Metagenomic Datasets

We made no mention of any particular metric on words in the our discussion relating

Wasserstein convergence on �nite words and the k-mer distributions arising from them,

and relied solely on the necessity of the pointwise convergence of the measures. In actual

applications we are more interested in a de�nition of distance that is useful when the

distributions are not so similar. In particular, as we have noted in Section 1.1.2, sequencing

produces potentially nonuniform coverage of genetic material and includes errors, and so

even inside a single genome the distribution of k-mers derived from a set of sequence reads

will not perfectly re�ect the actual distribution of k-mers in the genome.

For these reasons we are interested, at a minimum, in versions of distance in which k-mers
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are closest when they arise from the same OTU. This is the bene�t of utilizing a distance

derived from de Bruijn graphs as opposed to the edit distance. While the edit distance

is useful in comparing alignments, that is in identifying when portions of an assembled

genomes are most similar, it does not re�ect the actual process of assembly well. The

sequences AAACCCCC and ACCCTCCG are only three edits apart but a minimal

assembly of these sequences is their concatenation, so in this sense they are maximally

di�erent. On the other hand, the sequences GTTTGA and TTTGAC are two edits away

but clearly adjacent in the assembly GTTTGAC, and so have a distance in the de Bruijn

graph of 1. Note that as we desire a true metric on words, we are obligated to take the

metric ddB∗ given by distances in the symmetric de Bruijn graph.

There are some simple inequalities between the edit distance dE and the path distance

ddB∗ in the symmetric de Bruijn graph which can be observed. In particular, 2 ·dE ≤ ddB∗

as we may view each transition in the de Bruijn graph as a pair of edits, one in which we

delete a terminal symbol in a word and another when we insert a symbol to the alternate

end. As our example above showed, when a pair of k-mers are adjacent in the de Bruijn

graph, we have that ddB∗ ≤ dE . The example AAAAA and ATAAA, in which the edit

distance is one but the distance in the symmetric deBruijn graph is two shows that this

inequality cannot be extended to nonadjacent elements of the symmetric deBruijn graph.

Another bene�t of ddB∗ over the edit distance is the smaller size of a neighborhood about

each point, which diminishes the probability that a randomly selected pair of words are

adjacent. Note that the degree of any vertex in the symmetric de Bruijn graph for an

alphabet of size n is at most 2n, one for each potential left and right-extension, and thus

the volume of a ball of radius 1 with respect to the distance de�ned by the symmetric de

Bruijn graphs is independent of k. On the other hand, the number words within a ball

of radius 1 with respect to the edit distance is at least k · (n− 1), as there are this many

nontrivial substitutions, and so grows at least linearly with k.
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A more constrained version of the edit distance, that of the Longest Common Substring

(LCS, De�nition 1.3.16) distance o�ers some of the bene�ts of both of the above metrics

on words. It achieves its minimum value of two for distinct k-mers when they are adjacent

in an assembly, though this condition is not necessary to achieve that minimum. On the

other hand, it does allow for a degree of error correction not allowed by the distance in

the symmetric de Bruijn graph, as k-mers which di�er by one substitution also achieve the

minimum nonzero value.

In this section we have noted some of the relationships between various metrics on words,

in particular highlighting the manner in which proximity of k-mers with respect to the

path distance in the symmetric de Bruijn graph implies adjacency of factors in assembled

genomes. We have noted some relationships between natural metrics on words and the

potential bene�ts of each when considering the comparison of k-mers arising as factors in

metagenomic sequence reads.

We now de�ne a reference-free metric on metagenomic datasets which utilizes the 1-

Wasserstein metric for a ground distance de�ned by path length in the symmetric de

Bruijn graph.

3.2 Application of the Wasserstein Metric to Metagenomic Datasets

3.2.1 EMDeBruijn: Description

Let U and V be datasets consisting of sequence reads from a pair of metagenomic samples.

That is, abstractly, for the alphabet A = {A,C, T,G}, we have that U, V ⊂ A∗ such that

|U |, |V | are �nite. Choose k ∈ N such that k ≤ minx∈U,V |x| and let uk = freqk(U) and

vk = freqk(V ) be the vectors, indexed by the elements of Ak, of the normalized frequency

of occurrence of k−mers in the elements of U and V , respectively, as described in 1.3.4.
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EMDeBruijn computes a approximation to the 1-Wasserstein metric between normalized

frequency vectors for a ground distance between k-mers given by path distance in the

symmetric de Bruijn graph. Such an approximation is necessary as the number of k-mers

grows exponentially with k, making an exact solution computationally impractical. To

demonstrate the proof of concept, a simple heuristic based in the minimum cost method was

�rst implemented, as described in Section 1.2.6 as a means by which to generate an initial

basic feasible solution for the transportation Simplex algorithm. This heuristic algorithm

approximates the optimal transport metric by iteratively building a �ow between relative

abundances by �rst maximizing the transport between adjacent vertices in the symmetric

de Bruijn graph before proceeding to maximize the remaining transport between vertices

which are distance 2, 3, . . ., up to the diameter of the graph, thereby constructing a �ow

which satis�es both marginals. The pseudocode for the implementation of this algorithm

is shown in Section 3.2.2.

As a way of producing a more mathematically rigorous approximation to the Wasserstein

metric, the method of entropically-regularizing the optimal transport problem was then

implemented. The theory behind this recently developed method is described in Section

1.2.6, while De�nition 1.2.14 gives the speci�c form of the regularized optimization prob-

lem. The pseudocode for the implementation of this algorithm is shown in Section 3.2.3.

3.2.2 EMDeBruijn: Minimum Cost Heuristic Algorithm

Algorithm 3.2.1. EMDeBruijn: Minimum Cost Heuristic

Input:

k, freqk(V ), freqk(W ) . freqk(V ), freqk(W ) distributions on k-mers, D a distance

matrix between k-mers

Initialization:

γ = 0 ∈ RAk×Ak
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d = 0

Iterations:

1: while γ /∈ Γ(V,W ) do

2: Sort Ak so that freqk(V )(vi)−
∑
γ(vi, ·) ≥ freqk(V )(vj)−

∑
γ(vj , ·) for i ≤ j

3: for vi do

4: while
∑
γ(vi, ·) < freqk(V )(vi) do

5: Choose w′ with D(vi, w
′) = d, freqk(W )(w′) ≥ freqk(W )(w′)∀w

6: Maximize γ(vi, w
′) subject to

∑
γ(vi, ·) < freqk(V )(vi) and

7:
∑
γ(·, w′) < freqk(W )(w′)

8: end while

9: end for

10: d = d+ 1

11: end while

Output:

γ,EMDeBruijn(freqk(V ), freqk(W ))

3.2.3 EMDeBruijn: Entropic-Regularization Algorithm

In the following we describe our implementation of an entropically-regularized approxima-

tion to the 1-Wasserstein metric via Sinkhorn iteration as described in Section 1.2.6. In

what follows, the let exp and log denote the elementwise computation of this functions,

let ⊗ denote the elementwise, or Hadamard, product of matrices, and � the elementwise

division of matrices.

Algorithm 3.2.2. EMDDeBruijn: Entropically-Regularized Approximation

Input:

freqk(V ), freqk(W ), D . freqk(V ), freqk(W ) distributions on k-mers, D a distance
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matrix between k-mers

α, rep . α the regularization parameter, rep the number of iterations for Sinkhorn

projection

Initialization:

Kα = exp[(−1/α)⊗D]

v = w = 1

Iterations:

1: for i = 1, . . . , rep do

2: v = A� (Kα · w)

3: w = B � (Kα · v

4: end for

5: γ = diag(v) ·Kα · diag(w)

6: EMDeBruijn(freqk(V ), freqk(W )) =
∑

i,j γ(i, j) · log(γ(i, j)/Kα)

Output:

γ,EMDeBruijn(freqk(V ), freqk(W ))

3.3 Results

3.3.1 Empirical Estimation of Error in the Minimum Cost Heuristic Approx-

imation to the Wasserstein Metric

To gauge the accuracy of the minimum cost heuristic approximation to the Wasserstein

metric for ground distances given by path length in the symmetric de Bruijn graph, the

minimum cost heuristic was compared against a solution to the linear programming formu-

lation of the optimal transport problem. 10,000 pairs of random synthetic measures were

generated for Ak for k = 4 and |A| = 4. For each pair, the minimum cost heuristic approx-
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imation to the Wasserstein metric was computed. Additionally, the linear programming

formulation of the optimal transport problem, as described in Section 1.2.6, was solved

iteratively via non-negative least squares implementation in MATLAB to determine a min-

imizing �ow. Iterative methods were chosen to generate solutions due to the exponential

growth of the problem with respect to k. The computed values for the �rst 100 such pairs

are displayed in Figure 3.2. The distribution of the relative error of the minimum cost

heuristic approximation is included in Figure 3.3. The mean relative error between the

minimum cost heuristic and the linear programming formulation was determined to be

0.010, the median such error was determined to be 0.098.

FIGURE 3.2: Comparison of the computation of the Wasserstein metric for ground dis-

tances given by path length in the symmetric de Bruijn graph for k = 4 and |A| = 4 via the

minimum cost heuristic and non-negative least squares solution to the linear programming

formulation for 100 randomly generated synthetic sample pairs.
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FIGURE 3.3: Distribution of the relative error in the computation of the Wasserstein

metric for ground distances given by path length in the symmetric de Bruijn graph for

k = 4 and |A| = 4 via the minimum cost heuristic and non-negative least squares solution

to the linear programming formulation for 10,000 randomly generated synthetic sample

pairs.

3.3.2 Application of EMDeBruijn to Real-world Datasets

To evaluate the utility of Wasserstein-based reference-free metagenomic comparisons, we

�rst applied the minimum cost heuristic algorithm to a real-world dataset consisting of 223

samples from the Human Microbiome Project [117]. These samples, originating from body

locations designated as oral, airways, urogenital tract or skin, were processed by the Broad

Institute via whole genome shotgun sequencing. The downloaded datasets were processed

using the FASTX-Toolkit package [42] into FASTA format sequence-read �les. These were

processed into k-mer counts via the dna-utils package [76].
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Pairwise comparisons for k = 6 were made for each of the following metrics: EMDeBruijn

using the minimum cost heursitic, L1, Jensen-Shannon divergence and a 1-Wasserstein met-

ric with a ground distance given by the longest common subsequence metric approximated

utilizing the minimum cost heuristic. The resulting matrices of pairwise distances were

then used to perform PCoA for each of the given metrics. The results are presented in

Figure 3.4.
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(a) EMDeBruijn: Minimum Cost (b) LCS: Minimum Cost

(c) Jensen-Shannon (d) L1

FIGURE 3.4: Principle Coordinate Analysis via minimum cost heuristic approximation of the

EMDeBruijn metric for k = 6, 1-Wasserstein for the LCS metric and k = 6, Jensen-Shannon

divergence, and L1 metric of 223 metagenomic microbiome samples from the Human Microbiome

Project. Samples are labeled as originating from body locations designated as oral, airways,

urogenital tract or skin.

After further research, the entropically-regularized formulation of the optimal transport

problem was selected as a means by which to better approximate the Wasserstein metric.
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Implementation of these ideas is ongoing, but as a further proof of concept a subset of

the Human Microbiome dataset used above was analyzed. Ten samples designated as

originating from skin and ten samples designated as originating from airways were selected

at random. The same selection of metrics were again applied, but utilizing the entropically-

regularized approximation to the Wasserstein metric for both the LCS and symmetric de

Bruijn distances. Parameter choices for the regularization were set uniformly at α = 0.01

with a �xed 500 Sinkhorn iterations. The resulting pairwise distance matrices were then

used to perform PCoA. The results are presented in Figure 3.5.
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(a) EMDeBruijn: Entropic Regularization (b) LCS: Entropic Regularization

(c) Jensen-Shannon (d) L1

FIGURE 3.5: Principle Coordinate Analysis via entropically-regularized approximation of the

EMDeBruijn metric for k = 6, 1-Wasserstein distance using the longest common subsequence

(LCS) ground metric for k = 6, Jensen-Shannon divergence, and L1 metric of 20 metagenomic

microbiome samples from the Human Microbiome Project. Samples are labeled as originating

from body locations designated as airways or skin.
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3.4 Discussion

3.4.1 Results

As observed in Figure 3.4, the EMDeBruijn metric implemented with the minimum cost

heuristic appeared to show a greater degree of discrimination in separating the samples

designated as originating from the the oral and urogenital tract locations from those des-

ignated as airways and skin than the Jensen-Shannon divergence, a commonly applied

reference-free metric in microbiology. A similar apparent pattern was observed in com-

paring the minimum cost approximated Wasserstein metric for the LCS ground metric.

Strikingly, ordination via the L1 metric, the least theoretically justi�able of the metrics

used, appeared to perform as well or better than any of metrics tested.

These results suggested that the use of Wasserstein metrics in reference-free comparisons

had merit. This is in spite of the somewhat lackluster performance of the minimum cost

heuristic in approximating the Wasserstein metric, as observed in the 10% average relative

error shown in Figure 3.3. The heuristic does generate a basic feasible solution for the

Wasserstein metric, and so provides a lower bound for the true value, as demonstrated

visibly in Figure 3.2. Regardless, the broad distribution of relative errors demonstrate

that the heuristic did not provide a consistent or precise approximation to the true value.

Adaption of the entropically-regularized approximation is a work in progress, and so our

current results utilizing the method are preliminary. As such, benchmarking the accu-

racy of the approximation against known solution techniques has not yet been performed.

The result themselves are promising though, and again Figure 3.5 demonstrates that

EMDeBruijn appears to outperform the Jensen-Shannon divergences in demonstrating

the similarity of microbial communities sample from skin.

As noted in Section 1.1.5, the heuristic arguments for the lower bound of optimal k values

for a single genome comparison using reference-free techniques is on the order of log4 of the
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length of the genome. With some microbial genomes being on the order of millions of base

pairs long, our choice of k = 6 is far from optimal. Further optimization and re�nement

of the algorithms employed to allow for computation of these metrics with larger word

lengths should only increase the resolving power of the technique.

3.4.2 Future Work

At the moment, when utilizing an Intel i7 2.2 gHz processor, computation of the

entropically-regularized Wasserstein metric for k = 6 and a ground metric derived from

the symmetric de Bruijn graph requires approximately 40 seconds. If this method of uti-

lizing the Wasserstein metric to make β-diversity comparisons is to be truly useful, faster

computation for larger values of k will be necessary. While the current implementation of

the algorithm has much room for optimization, it seems unlikely to scale to the necessary

values in its current form. This suggests that if these ideas are to be followed through on,

another approximation technique will need to be developed.

By its very nature, a graph is de�ned by purely local connectivity information. From

this information we have extracted a metric, but there exists a potentially more e�cient

algorithm which uses the local connectivity information given by the graph adjacency

matrix (De�ntion 1.3.2) to approximate the Wasserstein metric. This technique is known

as the convolutional Wasserstein metric [108]. It is related to the entropically-regularized

Wasserstein metric we have adapted for these computations, and further approximates the

Wasserstein metric by utilizing convolution against solutions to the heat equation over

a geometric domain to approximate the action of the matrix Kα utilized in the solution

to the entropically-regularized transport algorithm described in Section 1.2.6. A goal for

future work is to explore whether the high degree of regularity found in the de Bruijn graph

can be leveraged to use these convolutional techniques to generate su�ciently e�cient and

accurate algorithms for optimal transport approximation to make the ideas developed in
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this chapter practical.

This concludes our discussion of the application of the Wasserstein metric to reference-free

β-diversity comparisons between metagenomic datasets. We now turn to a brief summary

of the work and result we have developed.
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4 CONCLUSION

In this dissertation we have developed the mathematical foundations for two instances of

the Wasserstein metric in microbial ecology. This work has been inspired by the explosion

of data arising from the sequencing of metagenomes, the aggregate genetic information of

entire communities of organisms. Our research has been focused in building analytic tools

to infer structure between these communities, and so better understand the vast diversity

of microbial life around us.

We began our work by conveying the biological foundations of microbial ecology in Section

1.1, with an emphasis on phylogenetics, the metrics used to quantify the diversity found

between microbial communities and the tools used in the analysis of ecological data. We

sought to show how the methods of comparison adopted by biologists, such as the UniFrac

metric, bene�ted from further mathematical analysis. We highlighted the ways in which

the graph theoretic or combinatorial form of some of the objects of biological study, such

as phylogenetic trees and genomes, allowed for mathematical means of understanding.

In Section 1.2 we explored a particular metric between measures de�ned on a metric space,

that of the Wasserstein distance. We noted its basic theory and alternate formulations, as

well applications to a variety of other �elds. Our treatment gave context to the metric in

Section 1.2.4, which the choice of comparisons made motivated by mathematical as well as

biological signi�cance. Of particular interest were the recently developed methods related

to the Wasserstein metric, arising under the name of the Earth mover's distance, in image

analysis. These applications were a source of inspiration in our own uses of the Wasserstein

metric to understand di�erence in microbial communities. We concluded our survey of the

Wasserstein metric in Section 1.2.6 with solution and approximation techniques.

Our next goal was to better understand the graph theoretic structures underlying two



135

important ideas in metagenomics, that of the trees used to encode evolutionary relation-

ships and the de Bruijn used in genomes assembly. Our interest in Section 1.3 was in

determining the properties of the metric spaces upon which we would be considering the

Wasserstein metric, as well as to establish a common language for the various objects of

study under consideration. This included giving in Section 1.3.4 a mathematical formal-

ism, �nite sequences from a �xed alphabet, with which to consider genomes and sequence

reads.

Our primary results are related to the UniFrac metric and are conveyed in Section 2. We

proved an alternate characterizations for the Wasserstein metric when applied to a tree

and provided a novel proof that this metric, when comparing relative abundances assigned

to a common phylogenetic tree, was equivalent to the successful UniFrac metric. We devel-

oped this proof into an e�cient solution technique for the UniFrac in Section 2.2.4 which

simultaneously computes the UniFrac metric faster than previous implementations while

providing additional information, that of a minimizing �ow between relative abundances

and the weighted di�erential abundance vector. In Section 2.3, our research noted how the

relationship between the ordination techniques of PCA and PCoA might allow for a more

e�cient application of DPCoA, and how adapting the linear transformation used in the

computation of UniFrac casts DPCoA in the same light as other biologically signi�gant

metrics, such as the χ2 and Hellinger distances. We proceeded in SectionUniFracErr to use

the framework we developed for considering the UniFrac metric as a means to produce the

expectation of UniFrac for Dirichlet distributed relative abundances, a model appropriate

for the datasets in question. We then applied this method to a sequence of examples.

In Section 2.5 we demonstrated the application of our work on datasets. We concluded

with a description of potential for future work inspired by our research, particularly the

development of ideas related to the relationship between alternate L1 PCA formulations

and the UniFrac metric and the potential for the use of these ideas in other conceptual
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frameworks for relative abundances, particularly that of compositional data analysis.

Given the success of the Wasserstein metric in making phylogenetically aware β-diversity

comparisons, in Section 3 we developed a framework for making reference-free metagenomic

comparisons via the Wasserstein metric. We noted in Section 3.1 how the means by which

phylogenetic trees are constructed can be used to interpret distances between OTUs in

these trees as distances between the words representing their genomes. We showed in

Section 3.1.1 how utilizing the structure given by de Bruijn graphs allowed for convergence

with respect to the Wasserstein metric between �nite words to be cast in terms of the

k-mers comprising those word. This work was inspired not only by the success of the

UniFrac, but also by the recent development of the Wasserstein metric in image analysis.

We next described two approximation algorithms for the Wasserstein metric when applied

to k-mers, one a heuristic used classically as a seed for the Simplex algorithm and another

developed recently for the purposes of image analysis which itertively solves an entropically-

regularized form of the Wasserstein metric. In Section 3.3 we demonstrated the proof-of-

concept of our ideas, and showed how utilizing Wasserstein metrics performed against

metrics commonly used in the reference-free comparison of sequence dataset. We ended

our discussion in Section 3.4.2 by considering the computational limits of our methods and

the need to increase resolving power by considering factors of greater length. We noted

how using more of the local graph structure to apply convolutional solution techniques

might help address these issues and make this line of analysis computationally tractable.

With that, we conclude our work.
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