9 research outputs found

    A Handoff using Guard Channels Scheme (HGCS) for Cognitive Radio Networks

    Get PDF
    Spectrum handoff is a very important phenomenon in Cognitive Radio (CR) networks. It provides flawless transmission upon the arrival of primary user (PU) while the channel is in use by the secondary user (SU). Spectrum handoff process provides the SUs with the opportunity to continue their communication on other unoccupied channels as soon as the PU repossesses its channel. FCC (Federal Communications Commission) has released new White Space rules in September 2010 which eliminate the requirement of spectrum sensing, making CRs more flexible. In addition, the CR is to be equipped with TV channel database. Taking these new rules into account, this paper suggests a new handoff scheme, HGCS (Handoff using Guard Channels Scheme), which makes effective use of the guard channels for communication. A preemptive resume priority (PRP) M/G/1 queuing network model is proposed to assess total service time for the suggested HGCS and comparing it to the existing random proactive-decision handoff scheme. Simulation and numerical results verify that HGCS can minimize the handoff delay, hence reduces the total service time compared to the random proactive approach

    Load-Balancing Spectrum Decision for Cognitive Radio Networks

    Full text link

    Common Hopping Based Proactive Spectrum Handoff in Cognitive Radio Ad Hoc Networks

    No full text

    Protocolo Cross-Layer Proactivo Basado en T茅cnicas de Inteligencia Artificial para Handover sin Fisuras en Ambientes M贸viles WLAN

    Get PDF
    En este documento se presenta una nueva propuesta de protocolo predictivo basado en t茅cnicas de inteligencia artificial para pronosticar la siguiente red a conectarse, este marco de referencia est谩 basado en un protocolo de handover Cross-Layer y un pronosticador de siguiente red basado en cinco clasificadores: regresi贸n log铆stica, Bayes ingenuo, m谩quina de soporte vectorial, arboles de decisi贸n y k vecinos m谩s cercanos, obteniendo hasta un 92 % de exactitud en el pron贸stico de red. Basado en este marco de referencia se obtiene un traspaso sin fisuras en ambientes m贸viles WLAN

    Reliable and secure low energy sensed spectrum communication for time critical cloud computing applications

    Get PDF
    Reliability and security of data transmission and access are of paramount importance to enhance the dependability of time critical remote monitoring systems (e.g. tele-monitoring patients, surveillance of smart grid components). Potential failures for data transmissions include wireless channel unavailability and delays due to the interruptions. Reliable data transmission demands seamless channel availability with minimum delays in spite of interruptions (e.g. fading, denial-of-service attacks). Secure data transmissions require sensed data to be transmitted over unreliable wireless channels with sucient security using suitable encryption techniques. The transmitted data are stored in secure cloud repositories. Potential failures for data access include unsuccessful user authentications due to mis-management of digital identities and insucient permissions to authorize situation specic data access requests. Reliable and secure data access requires robust user authentication and context-dependent authorization to fulll situation specic data utility needs in cloud repositories. The work herein seeks to enhance the dependability of time critical remote monitoring applications, by reducing these failure conditions which may degrade the reliability and security of data transmission or access. As a result of an extensive literature survey, in order to achieve the above said security and reliability, the following areas have been selected for further investigations. The enhancement of opportunistic transmissions in cognitive radio networks to provide greater channel availability as opposed to xed spectrum allocations in conventional wireless networks. Delay sensitive channel access methods to ensure seamless connectivity in spite of multiple interruptions in cognitive radio networks. Energy ecient encryption and route selection mechanisms to enhance both secure and reliable data transmissions. Trustworthy digital identity management in cloud platforms which can facilitate ecient user authentication to ensure reliable access to the sensed remote monitoring data. Context-aware authorizations to reliably handle the exible situation specic data access requests. Main contributions of this thesis include a novel trust metric to select non-malicious cooperative spectrum sensing users to reliably detect vacant channels, a reliable delaysensitive cognitive radio spectrum hand-o management method for seamless connectivity and an energy-aware physical unclonable function based encryption key size selection method for secure data transmission. Furthermore, a trust based identity provider selection method for user authentications and a reliable context-aware situation specic authorization method are developed for more reliable and secure date access in cloud repositories. In conclusion, these contributions can holistically contribute to mitigate the above mentioned failure conditions to achieve the intended dependability of the timecritical remote monitoring applications
    corecore