8,885 research outputs found

    Configuration Sharing Optimized Placement and Routing

    Get PDF
    Reconfigurable systems have been shown to achieve very high computational performance. However, the overhead associated with reconfiguration of hardware remains a critical factor in overall system performance. This paper discusses the development and evaluation of a technique to minimize the delay associated with reconfiguration based upon optimized sharing of configuration bit streams between design contexts. This is achieved through modified placement and routing algorithms

    Timing verification of dynamically reconfigurable logic for Xilinx Virtex FPGA series

    Get PDF
    This paper reports on a method for extending existing VHDL design and verification software available for the Xilinx Virtex series of FPGAs. It allows the designer to apply standard hardware design and verification tools to the design of dynamically reconfigurable logic (DRL). The technique involves the conversion of a dynamic design into multiple static designs, suitable for input to standard synthesis and APR tools. For timing and functional verification after APR, the sections of the design can then be recombined into a single dynamic system. The technique has been automated by extending an existing DRL design tool named DCSTech, which is part of the Dynamic Circuit Switching (DCS) CAD framework. The principles behind the tools are generic and should be readily extensible to other architectures and CAD toolsets. Implementation of the dynamic system involves the production of partial configuration bitstreams to load sections of circuitry. The process of creating such bitstreams, the final stage of our design flow, is summarized

    Programmable Logic Devices in Experimental Quantum Optics

    Get PDF
    We discuss the unique capabilities of programmable logic devices (PLD's) for experimental quantum optics and describe basic procedures of design and implementation. Examples of advanced applications include optical metrology and feedback control of quantum dynamical systems. As a tutorial illustration of the PLD implementation process, a field programmable gate array (FPGA) controller is used to stabilize the output of a Fabry-Perot cavity

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Transient electrothermal simulation of power semiconductor devices

    Get PDF
    In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature

    Modelling and simulation of paradigms for printed circuit board assembly to support the UK's competency in high reliability electronics

    Get PDF
    The fundamental requirement of the research reported within this thesis is the provision of physical models to enable model based simulation of mainstream printed circuit assembly (PCA) process discrete events for use within to-be-developed (or under development) software tools which codify cause & effects knowledge for use in product and process design optimisation. To support a national competitive advantage in high reliability electronics UK based producers of aircraft electronic subsystems require advanced simulation tools which offer model based guidance. In turn, maximization of manufacturability and minimization of uncontrolled rework must therefore enhance inservice sustainability for ‘power-by-the-hour’ commercial aircraft operation business models. [Continues.

    The future of computing beyond Moore's Law.

    Get PDF
    Moore's Law is a techno-economic model that has enabled the information technology industry to double the performance and functionality of digital electronics roughly every 2 years within a fixed cost, power and area. Advances in silicon lithography have enabled this exponential miniaturization of electronics, but, as transistors reach atomic scale and fabrication costs continue to rise, the classical technological driver that has underpinned Moore's Law for 50 years is failing and is anticipated to flatten by 2025. This article provides an updated view of what a post-exascale system will look like and the challenges ahead, based on our most recent understanding of technology roadmaps. It also discusses the tapering of historical improvements, and how it affects options available to continue scaling of successors to the first exascale machine. Lastly, this article covers the many different opportunities and strategies available to continue computing performance improvements in the absence of historical technology drivers. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'

    A new design methodology for mixed level and mixed signal simulation using PSpice A/D and VHDL

    Get PDF
    PSpice A/D is a simulation package that is used to analyze and predict the performance of analog and mixed signal circuits. It is very popular especially among Printed Circuit Board (PCB) engineers to verify board level designs. However, PSpice A/D currently lacks the ability to simulate analog components connected to digital circuits that are modeled using Hardware Descriptive Languages (HDLs), such as VHDL and Verilog HDL. Simulation of HDL models in PSpice A/D is necessary to verify mixed signal PCBs where programmable logic devices like Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs) are connected to discrete analog components. More than 60% of the PCBs that are designed today contain at least one FPGA or CPLD. This thesis investigates the possibility of simulating VHDL models in PSpice A/D. A new design methodology and the necessary tools to achieve this goal are presented. The new design methodology achieves total system verification at PCB level. Total system verification reduces design failures and hence increases reliability. It also allows reducing the overall time to market. A mixed signal design from NASA Goddard Space Flight Center for a brushless three phase motor that runs a space application is implemented by following the proposed design methodology
    corecore