10,529 research outputs found

    Psychophysical identity and free energy

    Get PDF
    An approach to implementing variational Bayesian inference in biological systems is considered, under which the thermodynamic free energy of a system directly encodes its variational free energy. In the case of the brain, this assumption places constraints on the neuronal encoding of generative and recognition densities, in particular requiring a stochastic population code. The resulting relationship between thermodynamic and variational free energies is prefigured in mind-brain identity theses in philosophy and in the Gestalt hypothesis of psychophysical isomorphism.Comment: 22 pages; published as a research article on 8/5/2020 in Journal of the Royal Society Interfac

    The unlikely Carnot efficiency

    Full text link
    The efficiency of an heat engine is traditionally defined as the ratio of its average output work over its average input heat. Its highest possible value was discovered by Carnot in 1824 and is a cornerstone concept in thermodynamics. It led to the discovery of the second law and to the definition of the Kelvin temperature scale. Small-scale engines operate in the presence of highly fluctuating input and output energy fluxes. They are therefore much better characterized by fluctuating efficiencies. In this study, using the fluctuation theorem, we identify universal features of efficiency fluctuations. While the standard thermodynamic efficiency is, as expected, the most likely value, we find that the Carnot efficiency is, surprisingly, the least likely in the long time limit. Furthermore the probability distribution for the efficiency assumes a universal scaling form when operating close-to-equilibrium. We illustrate our results analytically and numerically on two model systems.Comment: 7 pages, 3 figures, v3: as accepted in Nature Communication

    CoCoA: A General Framework for Communication-Efficient Distributed Optimization

    Get PDF
    The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that has an efficient communication scheme and is applicable to a wide variety of problems in machine learning and signal processing. We extend the framework to cover general non-strongly-convex regularizers, including L1-regularized problems like lasso, sparse logistic regression, and elastic net regularization, and show how earlier work can be derived as a special case. We provide convergence guarantees for the class of convex regularized loss minimization objectives, leveraging a novel approach in handling non-strongly-convex regularizers and non-smooth loss functions. The resulting framework has markedly improved performance over state-of-the-art methods, as we illustrate with an extensive set of experiments on real distributed datasets

    A Hybrid Search Algorithm for the Whitehead Minimization Problem

    Get PDF
    The Whitehead Minimization problem is a problem of finding elements of the minimal length in the automorphic orbit of a given element of a free group. The classical algorithm of Whitehead that solves the problem depends exponentially on the group rank. Moreover, it can be easily shown that exponential blowout occurs when a word of minimal length has been reached and, therefore, is inevitable except for some trivial cases. In this paper we introduce a deterministic Hybrid search algorithm and its stochastic variation for solving the Whitehead minimization problem. Both algorithms use search heuristics that allow one to find a length-reducing automorphism in polynomial time on most inputs and significantly improve the reduction procedure. The stochastic version of the algorithm employs a probabilistic system that decides in polynomial time whether or not a word is minimal. The stochastic algorithm is very robust. It has never happened that a non-minimal element has been claimed to be minimal

    A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization

    Get PDF
    Based on the idea of randomized coordinate descent of α\alpha-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a random subset of coordinates is updated at each iteration. The algorithm builds upon a variant of a recent (deterministic) algorithm proposed by V\~u and Condat that includes the well known ADMM as a particular case. The obtained algorithm is used to solve asynchronously a distributed optimization problem. A network of agents, each having a separate cost function containing a differentiable term, seek to find a consensus on the minimum of the aggregate objective. The method yields an algorithm where at each iteration, a random subset of agents wake up, update their local estimates, exchange some data with their neighbors, and go idle. Numerical results demonstrate the attractive performance of the method. The general approach can be naturally adapted to other situations where coordinate descent convex optimization algorithms are used with a random choice of the coordinates.Comment: 10 page
    • …
    corecore