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A Coordinate Descent Primal-Dual Algorithm
and Application to Distributed Asynchronous

Optimization
P. Bianchi, W. Hachem and F. Iutzeler

Abstract— Based on the idea of randomized coordinate descent
of α-averaged operators, a randomized primal-dual optimization
algorithm is introduced, where a random subset of coordinates is
updated at each iteration. The algorithm builds upon a variant
of a recent (deterministic) algorithm proposed by Vũ and Condat
that includes the well known ADMM as a particular case. The
obtained algorithm is used to solve asynchronously a distributed
optimization problem. A network of agents, each having a
separate cost function containing a differentiable term, seek to
find a consensus on the minimum of the aggregate objective. The
method yields an algorithm where at each iteration, a random
subset of agents wake up, update their local estimates, exchange
some data with their neighbors, and go idle. Numerical results
demonstrate the attractive performance of the method.
The general approach can be naturally adapted to other situa-
tions where coordinate descent convex optimization algorithms
are used with a random choice of the coordinates.

Index Terms— Distributed Optimization, Coordinate Descent,
Consensus algorithms, Primal-Dual Algorithm.

I. I NTRODUCTION

Let X andY be two Euclidean spaces and letM : X → Y
be a linear operator. Given two real convex functionsf and
g on X and a real convex functionh on Y, we consider the
minimization problem

inf
x∈X

f(x) + g(x) + h(Mx) (1)

where f is differentiable and its gradient∇f is Lipschitz-
continuous. Although our theoretical contributions are valid
for very general functionsf , g and h, the application part
of this paper puts a special emphasis on the problem of
distributed optimization. In this particular framework, one
considers a set ofN agents such that each agentn = 1, . . . , N
has a private cost of the formfn + gn wherefn andgn are
two convex cost function on some (other) spaceX , fn being
differentiable. The aim is to distributively solve

inf
u∈X

N
∑

n=1

fn(u) + gn(u) . (2)
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In order to construct distributed algorithms a standard ap-
proach consists in introducing

f(x) =

N
∑

n=1

fn(xn) and g(x) =

N
∑

n=1

gn(xn)

for all x = (x1, . . . , xN ) in the product spaceX = X
N

.
Obviously, problem (2) is equivalent to the minimization of
f(x)+ g(x) under the constraint that all components ofx are
equali.e., x1 = · · · = xN . Therefore, Problem (2) is in fact a
special instance of Problem (1) if one choosesh(Mx) as an
indicator function, equal to zero ifx1 = · · · = xN and to+∞
otherwise. As we shall see, this reformulation of Problem (2)
is often a mandatory step in the construction of distributed
algorithms.

Our contributions are as follows.

1) Vũ and Condat have separately proposed an algorithm
to solve (1) in [1] and [2] respectively. Elaborating on
this algorithm, we provide an iterative algorithm for
solving (1) which we refer to as ADMM+ (Alternating
Direction Method of Multipliers plus) because it includes
the well known ADMM [3], [4] as the special case
corresponding tof = 0. Interestingly, in the framework
of the distributed optimization, ADMM+ is provably
convergent under weaker assumptions on the step sizes
as compared to the original Vũ/Condat algorithm.

2) Based on the idea of thestochastic coordinate descent
who has been mainly studied in the literature in the
special case of proximal gradient algorithms [5]–[7], we
develop adistributed asynchronousversion of ADMM+.
As a first step, we borrow from [1]- [2] the idea that their
algorithm is an instance of a so-called Krasnosel’skii-
Mann iteration applied to anα-averaged operator [8, Sec-
tion 5.2]. Such operators have contraction-like properties
that make the Krasnosel’skii-Mann iterations converge
to a fixed point of the operator. The principle of the
stochastic coordinate descent algorithms is to update only
a random subset of coordinates at each iteration. In this
paper, we show in most generality that a randomized
coordinate descent version of the Krasnosel’skii-Mann
iterations still converges to a fixed point of anα-averaged
operator. This provides as a side result a convergence
proof of the stochastic coordinate descent versions of the
proximal gradient algorithm, since this algorithm can be
seen as the application of a1/2-averaged operator [8].
More importantly in the context of this paper, this idea
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leads to provably convergent asynchronous distributed
versions of ADMM+.

3) Putting together both ingredients above, we apply our
findings to asynchronous distributed optimization. First,
the optimization problem (1) is rewritten in a form
where the operatorM encodes the connections between
the agents within a graph in a manner similar to [9].
Then, a distributed optimization algorithm for solving
Problem (2) is obtained by applying ADMM+. Using the
idea of coordinate descent on the top of the algorithm, we
then obtain a fully asynchronous distributed optimization
algorithm that we refer to as Distributed Asynchronous
Primal Dual algorithm (DAPD). At each iteration, an
independent an identically distributed random subset of
agents wake up, apply essentially the proximity operator
on their local functions, send some estimates to their
neighbors and go idle.

An algorithm that has some formal resemblance with
ADMM+ was proposed in [10], who considers the minimiza-
tion of the sum of two functions, one of them being subjected
to noise. This reference includes a linearization of the noisy
function in ADMM iterations.

The use of stochastic coordinate descent on averaged oper-
ators has been introduced in [11] (see also the recent preprint
[12] which uses the same line of thought). Note that the ap-
proach of [11] was limited to unrelaxed firmly non expansive
(or 1/2-averaged) operators, well-suited for studying ADMM
which was the algorithm of interest in [11].

Asynchronous distributed optimization is a promising
framework in order to scale up machine learning problems
involving massive data sets (we refer to [13] or the recent
survey [14]). Early works on distributed optimization include
[15], [16] where a network of processors seeks to optimize
some objective function known by all agents (possibly up to
some additive noise). More recently, numerous works extended
this kind of algorithm to more involved multi-agent scenarios,
see [17]–[28].

Note that standard first order distributed optimization meth-
ods often rely on the so-called adaptation-diffusion approaches
or variants. The agents update their local estimates by evalu-
ating their private gradient and then merge their estimate with
their neighbors using a local averaging step. Unfortunately,
such methods require the use of a vanishing step size, which
results in slow convergence. This paper proposes a first-order
distributed optimization method with constant step size, which
turns out to outperform standard distributed gradient methods,
as shown in the simulations.

To the best of our knowledge, our method is the first dis-
tributed algorithm combining the following attractive features:

1) The algorithm is asynchronous at thenode-level. Only
a single node is likely to be active at a given iteration,
only broadcasting the result of its computation without
expecting any feedback from other nodes. This is in
contrast with the asynchronous ADMM studied by [11]
and [29] which is only asynchronous at theedge-level. In
these works, at least two connected nodes are supposed
to be active at a common time.

2) The algorithm is aproximal method. Similarly to the
distributed ADMM, it allows for the use of a proximity
operator at each node. This is especially important to
cope with the presence of possibly non-differentiable reg-
ularization terms. This is unlike the classical adaptation-
diffusion methods mentioned above or the more recent
first order distributed algorithm EXTRA proposed by
[28].

3) The algorithm is afirst-order method. Similarly to
adaptation-diffusion methods, our algorithm allows to
compute gradients of the local cost functions. This is
unlike the distributed ADMM which only admits implicit
stepsi.e., agents are required to locally solve an optimiza-
tion problem at each iteration.

4) The algorithm admitsconstant step size. As remarked in
[28], standard adaptation-diffusion methods require the
use of a vanishing step size to ensure the convergence to
the sought minimizer. In practice, this comes at the price
of slow convergence. Our method allows for the use of a
constant step size in the gradient descent step.

The paper is organized as follows. Section II is devoted to
the the introduction of ADMM+ algorithm and its relation with
the Primal-Dual algorithms of Vũ [1] and Condat [2], we also
show how ADMM+ includes both the standard ADMM and
the Forward-Backward algorithm (also refered to as proximal
gradient algorithm) as special cases [8, Section 25.3]. In
Section III, we provide our result on the convergence of
Krasnosel’skii-Mann iterations with randomized coordinate
descent. Section IV addresses the problem of asynchronous
distributed optimization. Finally, Section V provides numerical
results.

II. A PRIMAL DUAL ALGORITHM

A. Problem statement

We consider Problem (1). Denoting byΓ0(X ) the set of
proper lower semi-continuous convex functions onX →
(−∞,∞] and by‖ · ‖ the norm onX , we make the following
assumptions:

Assumption 1 The following facts hold true:
(i) f is a convex differentiable function onX ,
(ii) g ∈ Γ0(X ) andh ∈ Γ0(Y).

We consider the case whereM is injective (in particular,
it is implicit that dim(X ) ≤ dim(Y)). In the latter case, we
denote byS = Im(M) the image ofM and byM−1 the
inverse ofM on S → X . We emphasize the fact that the
inclusionS ⊂ Y might be strict. We denote by∇ the gradient
operator.

Assumption 2 The following facts hold true:
(i) M is injective ,
(ii) ∇(f ◦M−1) is L-Lipschitz continuous onS.

We denote bydom q the domain of a functionq and byriS
the relative interior of a setS in a Euclidean space.

Assumption 3 The infimum of Problem(1) is attained. More-
over, the following qualification condition holds

0 ∈ ri(domh−M dom g)
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whereM dom g is the image byM of dom g.

The dual problem corresponding to theprimal problem (1)
is written

inf
λ∈Y

(f + g)∗(−M∗λ) + h∗(λ)

whereq∗ denotes the Legendre-Fenchel transform of a func-
tion q and whereM∗ is the adjoint ofM . With the assump-
tions 1 and 3, the classical Fenchel-Rockafellar duality theory
[8], [30] shows that

min
x∈X

f(x) + g(x) + h(Mx)

= − inf
λ∈Y

(f + g)∗(−M∗λ) + h∗(λ), (3)

and the infimum at the right hand member is attained. Fur-
thermore, denoting by∂q the subdifferential of a function
q ∈ Γ0(X ), any point (x̄, λ̄) ∈ X × Y at which the above
equality holds satisfies

{

0 ∈ ∇f(x̄) + ∂g(x̄) +M∗λ̄
0 ∈ −Mx̄+ ∂h∗(λ̄)

and conversely. Such a point is called aprimal-dual point.

B. A Primal-Dual Algorithm

We denote by〈 ·, · 〉 the inner product onX . We keep the
same notation‖ · ‖ to represent the norm on bothX andY.
For some parametersρ, τ > 0, we consider the following
algorithm which we shall refer to as ADMM+.

ADMM+

zk+1 = argmin
z∈Y

[

h(z) +
‖z − (Mxk + ρλk)‖2

2ρ

]

(4a)

λk+1 = λk + ρ−1(Mxk − zk+1) (4b)

uk+1 = (1− τρ−1)Mxk + τρ−1zk+1 (4c)

xk+1 = argmin
x∈X

[

g(x) + 〈∇f(xk), x〉

+
‖Mx− uk+1 + τλk+1‖2

2τ

]

(4d)

This algorithm is especially useful in the situations where
∇f and the left hand member of Equation (4d) are both easy
to compute, as it is the case when (say)f is quadratic andg is
an ℓ1 regularization term. In such situations, working directly
on f + g is often computationally demanding.

Theorem 1 Let Assumptions 1–3 hold true. Assume that
τ−1−ρ−1 > L/2. For any initial value(x0, λ0) ∈ X ×Y, the
sequence(xk, λk) defined by ADMM+ converges to a primal-
dual point(x⋆, λ⋆) of (3) as k → ∞.

Remark 1 In the special case whenf = 0 (that isL = 0), it
turns out that the conditionτ−1 − ρ−1 > L/2 can be further
weakened toτ−1 − ρ−1 ≥ 0 (see [2]). It is therefore possible
to setτ = ρ and thus have a single instrumental parameter to
tune in the algorithm. Note also that inf = 0 the algorithm
is provably convergent with no need to require the injectivity
of M .

The proof of Theorem 1 is provided in Appendix A. It is
based on Theorem 2 below. For any functiong ∈ Γ0(X ) we
denote byproxg its proximity operator defined by

proxg(x) = arg min
w∈X

[

g(w) +
1

2
‖w − x‖2

]

. (5)

The ADMM+ is an instance of the primal dual algorithm
recently proposed by Vũ [1] and Condat [2], see also [31]:

Theorem 2 ([1], [2]) Given a Euclidean spaceE , consider
the minimization probleminfy∈E f̄(y) + ḡ(y) + h(y) where
ḡ, h ∈ Γ0(E) and wheref̄ is convex and differentiable on
E with an L−Lipschitz continuous gradient. Assume that the
infimum is attained and that0 ∈ ri(domh−dom ḡ). Letτ, ρ >
0 be such thatτ−1 − ρ−1 > L/2, and consider the iterates

λk+1 = proxρ−1h∗(λk + ρ−1yk) (6a)

yk+1 = proxτ ḡ(y
k − τ∇f̄(yk)− τ(2λk+1 − λk)). (6b)

Then for any initial value(y0, λ0) ∈ E × E , the sequence
(yk, λk) converges to a primal-dual point(y⋆, λ⋆), i.e., a
solution of the equation

inf
y∈E

f̄(y) + ḡ(y) + h(y) = − inf
λ∈E

(f̄ + ḡ)∗(−λ) + h∗(λ). (7)

C. The casef ≡ 0 and the link with ADMM

In the special casef ≡ 0 and τ = ρ, sequence(uk)k∈N

coincides with(zk)k∈N. Then, ADMM+ boils down to the
standard ADMM whose iterations are given by:

zk+1 = argmin
z∈Y

[

h(z) +
1

2ρ
‖z −Mxk − ρλk‖2

]

λk+1 = λk + ρ−1(Mxk − zk+1)

xk+1 = argmin
x∈X

[

g(x) +
1

2ρ
‖Mx− zk+1 + ρλk+1‖2

]

.

D. The caseh ≡ 0 and the link with the Forward-Backward
algorithm

In the special caseh ≡ 0 and M = I, it can be easily
verified that λk is null for all k ≥ 1 and uk = xk.
Then, ADMM+ boils down to the standard Forward-Backward
algorithm whose iterations are given by:

xk+1 = argmin
x∈X

g(x) +
1

2τ
‖x− (xk − τ∇f(xk))‖2

= proxτg(x
k − τ∇f(xk)).

One can remark thatρ has disappeared thus it can be set as
large as wanted so the condition on stepsizeτ from Theorem 1
boils down toτ < 2/L. Applications of this algorithm with
particular functions appear in well known learning methods
such as ISTA [32].

E. Comparison to the original Ṽu-Condat algorithm

We emphasize the fact that ADMM+ is a variation on the
Vũ-Condat algorithm. The original Vũ-Condat algorithm is
in general sufficient and, in many contexts, has even better
properties than ADMM+ from an implementation point of
view. Indeed, whereas the Vũ-Condat algorithm handles the
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operatorM explicitly, the step (4d) in ADMM+ can be delicate
to implement in certain applications,i.e., when M has no
convenient structure allowing to easily compute theargmin
(the same remark holds of course for ADMM which is a
special case of ADMM+).

This potential drawback is however not an issue in many
other scenarios where the structure ofM is such that step (4d)
is affordable. In Section IV, we shall provide such scenarios
where ADMM+ is especially relevant. In particular, ADMM+
is not only easy to implement but it is also provably convergent
under weaker assumptions on the step sizes, as compared to
the original Vũ-Condat algorithm.

Also, the injectivity assumption onM could be seen as
restrictive at first glance. First, the latter assumption isin fact
not needed whenf = 0 as noted above. Second, it is trivially
satisfied in the application scenarios which motivate this paper
(see the next sections).

As alluded to in the introduction, the primal-dual algorithm
of [1], [2] can be geometrically described as a sequence
of Krasnosel’skii-Mann iterations applied to anα-averaged
operator. In the next section, we briefly present these notions,
proceed by introducing the randomized coordinate descent
version of these iterations, then state our convergence result.

III. C OORDINATE DESCENT

A. Averaged operators and the primal-dual algorithm

Let H be a Euclidean space1. For 0 < α ≤ 1, a mapping
T : H → H is α-averagedif the following inequality holds
for any x, y in H:

‖Tx− Ty‖2 ≤ ‖x− y‖2 −
1− α

α
‖(I− T)x− (I− T)y‖2 .

A 1-averaged operator is saidnon-expansive. A 1
2 -averaged

operator is saidfirmly non-expansive. The following Lemma
can be found in [8, Proposition 5.15, pp.80].

Lemma 1 (Krasnosel’skii-Mann iterations) Assume that
T : H → H is α-averaged and that the setfix(T) of fixed
points ofT is non-empty. Consider a sequence(ηk)k∈N such
that 0 ≤ ηk ≤ 1/α and

∑

k ηk(1/α − ηk) = ∞. For any
x0 ∈ H, the sequence(xk)k∈N recursively defined onH
by xk+1 = xk + ηk(Tx

k − xk) converges to some point in
fix(T).

On the product spaceY × Y, consider the operator

V =

(

τ−1
IY IY

IY ρIY

)

whereIY stands for the identity onY → Y. Whenτ−1−ρ−1 >
0, one can easily check thatV is positive definite. In this
case, we endowY ×Y with an inner product〈 · , · 〉V defined
as 〈ζ, ϕ〉V = 〈ζ,Vϕ〉 where 〈 · , · 〉 stands for the natural
inner product onY ×Y. We denote byHV the corresponding
Euclidean space.
In association with Lemma 1, the following lemma is at the
heart of the proof of Theorem 2:

1We refer to [8] for an extension to Hilbert spaces.

Lemma 2 ([1], [2]) Let Assumptions 1–2 hold true. Assume
thatτ−1−ρ−1 > L/2. Let(λk+1, yk+1) = T(λk, yk) whereT
is the transformation described by Equations(6a)–(6b). Then
T is anα-averaged operator onHV with α = (2−α1)

−1 and
α1 = (L/2)(τ−1 − ρ−1)−1.

Note thatτ−1 − ρ−1 > L/2 implies that1 > α1 ≥ 0 and
thus thatα verifies 1

2 ≤ α < 1 which matches the definition
of α-averaged operators.

B. Randomized Krasnosel’skii Mann Iterations

Consider the spaceH = H1 × · · · × HJ for some in-
teger J ≥ 1 where for anyj, Hj is a Euclidean space.
Assume thatH is equipped with the scalar product〈x, y〉 =
∑J

j=1〈xj , yj〉Hj
where〈 · , · 〉Hj

is the scalar product inHj .
For j ∈ {1, . . . , J}, we denote byTj : H → Hj the compo-
nents of the output of operatorT : H → H corresponding to
Hj , we thus haveTx = (T1x, . . . ,TJx). We denote by2J

the power set ofJ = {1, . . . , J}. For anyκ ∈ 2J , we define
the operator̂T(κ) : H → H by T̂

(κ)
j x = Tjx if j ∈ κ and

T̂
(κ)
j x = xj otherwise. On some probability space(Ω,F ,P),

we introduce a random i.i.d. sequence(ξk)k∈N∗ such that
ξk : Ω → 2J i.e. ξk(ω) is a subset ofJ . We assume that
the following holds:

∀j ∈ J , ∃κ ∈ 2J s.t.j ∈ κ andP(ξ1 = κ) > 0 . (8)

Let T be anα-averaged operator, instead of considering the
iteratesxk+1 = xk + ηk(Tx

k − xk), we are now interested in
a stochasticcoordinate descentversion of this algorithm that
consists in iterates of the typexk+1 = xk+ηk(T̂

(ξk+1)xk−xk).
The proof of Theorem 3 is provided in Appendix B.

Theorem 3 Let T : H → H be α-averaged andfix(T) 6= ∅.
Assume that for allk, the sequence(ηk)k∈N satisfies

0 < lim inf
k

ηk ≤ lim sup
k

ηk <
1

α
.

Let (ξk)k∈N∗ be a random i.i.d. sequence on2J such that
Condition (8) holds. Then, for any deterministic initial value
x0, the iterated sequence

xk+1 = xk + ηk(T̂
(ξk+1)xk − xk) (9)

converges almost surely to a random variable supported by
fix(T ).

Remark 2 At the time of the writing the paper, the work
[12] was brought to our knowledge. A result similar to
Theorem 3 is presented in the framework of Hilbert spaces,
random summable errors (dealt with by relying on the notion
of quasi-F́ejer monotonicity) and multiple blocks. The proof
of [12] devoted to this result relies on the same idea as
the one developed in [11] and presented above. Distributed
asynchronous implementations are not considered in [12].

By Lemma 2, ADMM+ iterates are generated by the ac-
tion of an α-averaged operator. Theorem 3 shows then that
a stochastic coordinate descent version of anyα-averaged
operator converges towards a primal-dual point. In Theorem5
below, we apply this result to the operator related to ADMM+,
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and develop an asynchronous version of ADMM+ in the
context where it is distributed on a graph.

IV. D ISTRIBUTED OPTIMIZATION

Consider a set ofN > 1 computing agents that cooperate
to solve the minimization problem

inf
x∈X

N
∑

n=1

(fn(x) + gn(x)) (10)

wherefn andgn are two private functions available at Agent
n. We make here the following assumption:

Assumption 4 For eachn = 1, ..., N ,

(i) fn is a convex differentiable function onX , and its
gradient∇fn is L̄-Lipschitz continuous onX for some
L̄ ≥ 0.

(ii) gn ∈ Γ0(X ).
(iii) The infimum of Problem (10) is attained.
(iv) ∩N

n=1 ri dom gn 6= ∅.

Our purpose is to design a random distributed (or decen-
tralized) iterative algorithm where, at a each iteration, each
active agent updates a local estimate in the parameter space
X based on the sole knowledge of its private functions and
on information it received from its neighbors through some
communication network. Eventually, the local estimates will
converge to a common consensus value which is a minimizer
of the aggregate function of Problem (10).

Instances of this problem appear in learning applications
where massive training data sets are distributed over a network
and processed by distinct machines [33], [34], in resource
allocation problems for communication networks [21], or in
statistical estimation problems by sensor networks [20], [35].

A. Network Model and Problem Formulation

To help the reader, the notations that will be introduced
progressively are summarized in the following table.

dn : Degree of node (agent)n,
ǫ = {n,m} : Graph edge betweenn andm,
E : Set of graph edges,
f(x) =

∑

fn(xn) : Differentiable term in obj. fct.,
g(x) =

∑

gn(xn) : OtherΓ0 term in obj. fct.,
h : Consensus ensuring function,
λk : = ((λk

ǫ (n), λ
k
ǫ (m)))ǫ={n,m}∈E

X 2|E| vector of dual variables,
λk
ǫ (n) is updated by Agentn,

n ∼ m : Stands for{n,m} ∈ E,
Subscriptn : Agent number,
Superscriptk : Time index,
V = {1, . . . , N} : Set of graph nodes (agents),
xk = (xk

n)n∈V : XN vector of primal variables,
updated by Eq. (4d),

zk = ((z̄kǫ , z̄
k
ǫ ))ǫ∈E : X 2|E| vector given by Eq. (4a).

We represent the network as an undirected graphG =
(V,E) whereV = {1, . . . , N} is the set of agents/nodes andE
is the set of edges. Representing an edge by a set{n,m} with

n,m ∈ V , we writem ∼ n whenever{n,m} ∈ E. Practically,
n ∼ m means that Agentsn andm can communicate with
each other.

Assumption 5 G is connected and has no self-loops (n 6= m
for all {n,m} ∈ E).

Let us introduce some notation. For anyx ∈ XN , we
denote byxn the nth component ofx, i.e., x = (xn)n∈V .
We introduce the functionsf and g on XN → (−∞,+∞]
asf(x) =

∑

n∈V fn(xn) andg(x) =
∑

n∈V gn(xn). Clearly,
Problem (10) is equivalent to the minimization off(x)+g(x)
under the constraint that all components ofx are equal. Here,
one can rephrase the optimization problem (10) as

min
x∈XN

N
∑

n=1

(fn(xn) + gn(xn)) + ιC(x)

where ιA is the indicator function of a setA (null on A
and equal to+∞ outside this set), andC is the space of
vectorsx ∈ XN such thatx1 = · · · = xN . This problem
is an instance of Problem (1) whereh = ιC and M as the
identity operator. However, simply settingh = ιC andM as
the identity would not lead to a distributed algorithm. Loosely
speaking, we must defineh and M in such a way that it
encodes the communication graph. Our goal will be to ensure
global consensus through local consensus over every edge of
the graph.

For any ǫ ∈ E, say ǫ = {n,m}, we define the linear
operatorMǫ : XN → X 2 as Mǫ(x) = (xn, xm) assuming
n < m to avoid any ambiguity on the definition ofM .
We construct the linear operatorM : XN → Y , X 2|E|

as Mx = (Mǫ(x))ǫ∈E where we assume some (irrelevant)
ordering on the edges. Any vectory ∈ Y will be written as
y = (yǫ)ǫ∈E where, writingǫ = {n,m} ∈ E, the component
yǫ will be represented by the coupleyǫ = (yǫ(n), yǫ(m)) with
n < m. Note that this notation is abusive since it tends to
indicate thatyǫ has more than two components. However, it
will turn out to be convenient in the sequel. We also introduce
the subspace ofX 2 defined asC2 = {(x, x) : x ∈ X}. Finally,
we defineh : Y → (−∞,+∞] as

h(y) =
∑

ǫ∈E

ιC2
(yǫ) . (11)

We consider the following problem:

min
x∈XN

f(x) + g(x) + h(Mx) . (12)

Lemma 3 Let Assumption 5 hold true. The minimizers of(12)
are the tuples(x⋆, · · · , x⋆) wherex⋆ is any minimizer of(10).

Proof: Assume that Problem (12) has a minimizerx =
(x1, . . . , xN ). Then

h(Mx) =
∑

ǫ={n,m}∈E

ιC2
((xn, xm)) = 0.

Since the graphG is connected, this equation is satisfied if
and only if x = (x⋆, . . . , x⋆) for somex⋆ ∈ X . The result
follows.
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B. Instantiating ADMM+

We now apply ADMM+ to solve the problem (12). Since
the newly defined functionh is separable with respect to the
(yǫ)ǫ∈E , we get

proxρh(y) = (proxριC2
(yǫ))ǫ∈E =

(

(ȳǫ, ȳǫ)
)

ǫ∈E

where ȳǫ = (yǫ(n) + yǫ(m))/2 if ǫ = {n,m}. With this
at hand, the update equation (4a) of ADMM+ is written as
zk+1 = ((z̄k+1

ǫ , z̄k+1
ǫ ))ǫ∈E where z̄k+1

ǫ = (xk
n + xk

m)/2 +
ρ(λk

ǫ (n) + λk
ǫ (m))/2 for any ǫ = {n,m} ∈ E. Plugging this

equality into Eq. (4b), it can be seen thatλk
ǫ (n) = −λk

ǫ (m).
Therefore,z̄k+1

ǫ = (xk
n + xk

m)/2 for any k ≥ 1. Moreover,
λk+1
ǫ (n) = λk

ǫ (n) + (xk
n − xk

m)/(2ρ).
Let us now instantiate Equations (4c) and (4d). Observe that
thenth component of the vectorM∗Mx coincides withdnxn

where dn is the degree (i.e., the number of neighbors) of
noden. From Eq. (4d), thenth component ofxk+1 is written

xk+1
n = proxτgn/dn

[ (M∗(uk+1 − τλk+1))n − τ∇fn(x
k
n)

dn

]

where for anyy ∈ Y,

(M∗y)n =
∑

m:{n,m}∈E

y{n,m}(n)

is the nth component ofM∗y ∈ XN . Plugging Eq. (4c)
together with the expressions ofz̄k+1

{n,m} andλk+1
{n,m}(n) in the

argument ofproxτgn/dn
, we get after a small calculation

xk+1
n = proxτgn/dn

[

(1− τρ−1)xk
n −

τ

dn
∇fn(x

k
n)

+
τ

dn

∑

m:{n,m}∈E

(ρ−1xk
m − λk

{n,m}(n))
]

.

The Distributed ADMM+ (DADMM+) algorithm is described
by the following procedure:

DADMM+
Initialization: (x0, λ0) s.t.λ0

{n,m}(n) = −λ0
{n,m}(m) for all

m ∼ n.
Do

• For all n ∈ V , Agentn has in its memory the variables
xk
n, {λk

{n,m}(n)}m∼n, and{xk
m}m∼n. It performs the

following operations:

– For all m ∼ n, do

λk+1
{n,m}(n) = λk

{n,m}(n) +
xk
n − xk

m

2ρ
,

– xk+1
n = proxτgn/dn

[

(1 − τρ−1)xk
n −

τ

dn
∇fn(x

k
n)

+
τ

dn

∑

m:{n,m}∈E

(ρ−1xk
m − λk

{n,m}(n))
]

.

• For all n ∈ V , Agent n sends the parameterxk+1
n to

its neighbors,
• Incrementk.

The proof of the following result is provided in Appendix C.

Theorem 4 Let Assumptions 4 and 5 hold true. Assume that

τ−1 − ρ−1 >
L̄

2dmin
(13)

wheredmin is the minimum of the nodes’ degrees in the graph
G. For any initial value(x0, λ0), let (xk)k∈N be the sequence
produced by the Distributed ADMM+. Then there exists a
minimizerx⋆ of Problem(10)such that for alln ∈ V , (xk

n)k∈N

converges tox⋆.

C. A Distributed Asynchronous Primal Dual Algorithm

In the distributedsynchronouscase, at each clock tick, a
central scheduler activates all the nodes of the network simul-
taneously and monitors the communications that take place
between these nodes once they have finished their prox(·)
and gradient operations. The meaning we give to “distributed
asynchronous algorithm” is that there is no central scheduler
and that any node can wake up randomly at any moment
independently of the other nodes. This mode of operation
brings clear advantages in terms of complexity and flexibility.

The proposedDistributed Asynchronous Primal Dualal-
gorithm (DAPD) is obtained by applying the randomized
coordinate descent on the above algorithm. As opposed to
the latter, the resulting algorithm has the following attractive
property: at each iteration, a single agent, or possibly asubset
of agents chosen at random, are activated. More formally, let
(ξk)k∈N be a sequence of i.i.d. random variables valued in
2V . The value taken byξk represents the agents that will be
activated and perform aprox on theirx variable at moment
k. The asynchronous algorithm goes as follows:

DAPD Algorithm :
Initialization: (x0, λ0).
Do

• Select a random set of agentsξk+1 = A,
• For all n ∈ A, Agent n performs the following

operations:

– For all m ∼ n, do

λk+1
{n,m}(n) =

λk
{n,m}(n)− λk

{n,m}(m)

2

+
xk
n − xk

m

2ρ
,

– xk+1
n = proxτgn/dn

[

(1− τρ−1)xk
n −

τ

dn
∇fn(x

k
n)

+
τ

dn

∑

m∼n

(ρ−1xk
m + λk

{n,m}(m))
]

,

– For all m ∼ n, send{xk+1
n , λk+1

{n,m}(n)} to Neigh-
bor m.

• For all agentsn 6∈ A, xk+1
n = xk

n, andλk+1
{n,m}(n) =

λk
{n,m}(n) for all m ∼ n.

• Incrementk.

Assumption 6 The collections of sets{A1,A2, . . .} such that
P[ξ1 = Ai] is positive satisfies

⋃

Ai = V .

In other words, any agent is selected with a positive probabil-
ity. The following theorem is proven in Appendix D.
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Theorem 5 Let Assumptions 4, 5, and 6 hold true. Assume
that condition (13) holds true. Let(xk+1

n )n∈V be the output
of the DAPD algorithm. For any initial value(x0, λ0), the
sequencesxk

1 , . . . , x
k
N converge almost surely ask → ∞ to

a random variablex⋆ supported by the set of minimizers of
Problem(10).

Before turning to the numerical illustrations, we note that
the very recent paper [36] also deals with asynchronous
primal-dual distributed algorithms by relying on the idea of
random coordinate descent.

V. NUMERICAL ILLUSTRATIONS

We address the problem of the so calledℓ2-regularized
logistic regression. Denoting bym the number of observations
and byp the number of features, our optimization problem is
written

min
x∈Rp

1

m

m
∑

t=1

log
(

1 + e−yta
T
t x

)

+ µ‖x‖2

where the(yt)mt=1 are in{−1,+1}, the(at)mt=1 are inRp, and
µ > 0 is a scalar.
We consider the case where the dataset is scattered over
a network. Indeed, massive data sets are often distributed
on different physical machines communicating together by
means of an interconnection network [37, Chap. 2.5] and many
algorithms have been implemented for independent threads or
processes running on distant cores, closer to the data (seee.g.
[24], [13] for MapReduce implementation of ADMM, [26]
for Spark implementation). Formally, denoting by{Bn}

N
n=1

a partition of {1, . . . ,m}, we assume that Agentn holds
in its memory the data inBn. Denoting byG = (V,E)
the graph that represents the connections between the agents,
the regularized logistic regression problem is written in its
distributed form as

min
x∈RNp

N
∑

n=1

(

∑

t∈Bn

1

m
log
(

1 + e−yta
T
t xn

)

+
µ

2N
‖xn‖

2
2

)

+
∑

ǫ∈E

ιC2
(yǫ).

Clearly, this is an instance of Problem (12).
Our simulations will be performed on the following classical

datasets:

name m p density
covtype 581012 54 dense
alpha 500000 500 dense
realsim 72309 20958 sparse
rcv1 20242 47236 sparse

The datasetscovtype , realsim , and rcv1 are taken
from the LIBSVM website2 andalpha was from the Pascal
2008 Large Scale Learning challenge3. We preprocessed the
dense datasets so that each feature has zero mean and unit
variance. The global Lipschitz constant for the gradient ofthe
logistic function was estimated by its classical upper bound

2http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm/
3http://largescale.ml.tu-berlin.de

L̂ = 0.25maxn=1,...,N ‖an‖22. Finally, the regularization pa-
rameterµ was set to10−4.

In our simulations, we also compared the DAPD algorithm
presented in this paper with some known algorithms that lend
themselves to a distributed implementation. These are:

- DGD: the synchronous distributed algorithm [38]. Here,
each agent performs a gradient descent then exchanges
with its neighbors according to the Metropolis rule.

- ABG: the asynchronous broadcast gradient [39]. In this
setup, one agent wakes up and sends its information to
its neighbors. Any of these neighbors replaces its current
value with the mean of this value and the received value
then performs a gradient descent.

- PWG: the pairwise gossip gradient [16], [40]. In this
setup, one agent wakes up, and selects one neighbor.
Then each of the two agents performs a gradient descent,
then exchanges and replaces its value by taking the mean
between the former and the received value.

For the DGD, the ABG, and the PWG, the stepsizes
have been taken decreasing asγ0/k

0.75. The other param-
eters (includingγ0) were chosen automatically in sets of
the form parametertheory × 10i, i = {1, .., 10} (where
parametertheory is computed from the best theoretic bound
with Lipschitz constant estimatêL) by running in parallel
multiple instances of the algorithm with the different constants
over50 iterations and choosing the constant giving the lowest
functional cost.

Whereas DAPD can allow for multiple agents to wake up at
each iteration, we considered only the single active agent case
as it does not change much the practical implementation. It is
thus underperforming compared to a multiple awaking agents
scenario. Similarly to the previous algorithms, the stepsizes
of DAPD have been chosen automatically in sets of the form
parametertheory×10i for τ andρ = 2τ for fairness in terms
of number of step sizes explored.

The (total) functional cost was evaluated with the value at
agent1 (the agents are indistinguishable from a network point
of view) and plotted versus the number of local gradients used.

In Figure 1, we plot theℓ2-regularized logistic cost at some
agent versus the number of local gradients used. We solved
this problem for each dataset on a10 × 10 2D toroidal grid
(100 agents) by assigning the same number of observations per
agent. We observe that the DAPD is significantly faster than
the other stochastic gradient methods. Finally, we also remark
that the quantity of information exchanged per iteration for
DAPD is roughly a vector of length shorter than2Np (8p with
our graph) which means that the number of transmissions is in
general quite small compared to the size of the whole dataset
(roughlyTp).

In Figure 2, we plot the same quantities for thercv1 dataset
but now the same number of observations are dispatched over
i) a 5×5 toroidal grid (25 agents) and ii) a50-nodes complete
network.

VI. CONCLUSIONS ANDPERSPECTIVES

This paper introduced a general framework for stochastic
coordinate descent. The framework was used on a new al-
gorithm called ADMM+ which has roots in a recent work by

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://largescale.ml.tu-berlin.de
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Vũ and Condat. As a byproduct, we obtained an asynchronous
distributed algorithm which enables the processing of distinct
blocks on different machines. Future works include an analysis
of the convergence rate of our algorithms along with efficient
stepsizes strategies.

APPENDIX

A. Proof of Theorem 1

By settingE = S and by assuming thatE is equipped with
the same inner product asY, one can notice that the functions
f̄ = f ◦M−1, ḡ = g ◦M−1 andh satisfy the conditions of
Theorem 2. Moreover, since(f̄ + ḡ)∗ = (f + g)∗ ◦M∗, one
can also notice that(x⋆, λ⋆) is a primal-dual point associated
with Eq. (3) if and only if (Mx⋆, λ⋆) is a primal-dual point
associated with Eq. (7).
To recover ADMM+ from the iterations (6a)–(6b), the starting
point is Moreau’s identity [8, Th. 14.3] which reads

proxρ−1h∗(x) + ρ−1 proxρh(ρx) = x .

Settingxk = M−1yk and

zk+1 = proxρh(y
k + ρλk)

= argmin
w∈Y

[

h(w) +
‖w − (Mxk + ρλk)‖2

2ρ

]

,

Equation (6a) can be rewritten thanks to Moreau’s identity

λk+1 = λk + ρ−1(Mxk − zk+1) .

Now, Equation (6b) can be rewritten as

yk+1=argmin
w∈S

ḡ(w)+〈∇f̄ (yk),w〉+
‖w−yk+τ(2λk+1−λk)‖2

2τ

Upon noting that ḡ(Mx) = g(x) and 〈∇f̄(yk),Mx〉 =
〈(M−1)∗∇f(M−1Mxk),Mx〉 = 〈∇f(xk), x〉, the above
equation becomes

xk+1=argmin
w∈X

g(w) + 〈∇f(xk),w〉+
‖Mw−uk+1+τλk+1‖2

2τ

where

uk+1 = Mxk + τ(λk − λk+1)

= (1− ρ−1τ)Mxk + τρ−1zk+1.

The iterates (zk+1, λk+1, uk+1, xk+1) are those of the
ADMM+.

B. Proof of Theorem 3

The main idea behind the proof can be found in [11]. Define
the operatorU = (1− ηk)I+ ηkT (we omit the indexk in U

to simplify the notation); similarly, defineU(κ) = (1− ηk)I+
ηkT̂

(κ). Remark that the operatorU is (αηk)-averaged.
The iteration (9) readsxk+1 = U

(ξk+1)xk. Setpκ = P(ξ1 =
κ) for anyκ ∈ 2J . Denote by‖x‖2 = 〈x, x〉 the squared norm
in H. Define a new inner productx • y =

∑J
j=1 qj〈xj , yj〉j

on H whereq−1
j =

∑

κ∈2J pκ1{j∈κ} and let |||x|||2 = x • x
be its associated squared norm. Consider anyx⋆ ∈ fix(T).
Conditionally to the sigma-fieldFk = σ(ξ1, . . . , ξ

k) we have

E[
∣

∣

∣

∣

∣

∣xk+1 − x⋆
∣

∣

∣

∣

∣

∣

2
| Fk] =

∑

κ∈2J

pκ

∣

∣

∣

∣

∣

∣

∣

∣

∣
Û
(κ)xk − x⋆

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
∑

κ∈2J

pκ
∑

j∈κ

qj‖Ujx
k − x⋆

j‖
2 +

∑

κ∈2J

pκ
∑

j /∈κ

qj‖x
k
j − x⋆

j‖
2

=
∣

∣

∣

∣

∣

∣xk − x⋆
∣

∣

∣

∣

∣

∣

2
+
∑

κ∈2J

pκ
∑

j∈κ

qj
(

‖Ujx
k − x⋆

j‖
2−‖xk

j − x⋆
j‖

2
)

=
∣

∣

∣

∣

∣

∣xk − x⋆
∣

∣

∣

∣

∣

∣

2
+

J
∑

j=1

(

‖Ujx
k − x⋆

j‖
2 − ‖xk

j − x⋆
j‖

2
)

=
∣

∣

∣

∣

∣

∣xk − x⋆
∣

∣

∣

∣

∣

∣

2
+
(

‖Uxk − x⋆‖2 − ‖xk − x⋆‖2
)

.

Using thatU is (αηk)-averaged and thatx⋆ is a fixed point
of U, the term enclosed in the parentheses is no larger than
− 1−αηk

αηk
‖(I− U)xk‖2 . As I− U = ηk(I− T), we obtain:

E[
∣

∣

∣

∣

∣

∣xk+1 − x⋆
∣

∣

∣

∣

∣

∣

2
| Fk] ≤

∣

∣

∣

∣

∣

∣xk − x⋆
∣

∣

∣

∣

∣

∣

2

− ηk(1 − αηk)‖(I− T)xk‖2 (14)

which shows that
∣

∣

∣

∣

∣

∣xk − x⋆
∣

∣

∣

∣

∣

∣

2
is a nonnegative supermartin-

gale with respect to the filtration(Fk). As such, it converges
with probability one towards a random variable that is finite
almost everywhere.

Given a countable dense subsetH of fix(T), there is a
probability one set on which

∣

∣

∣

∣

∣

∣xk − x

∣

∣

∣

∣

∣

∣ → Xx ∈ [0,∞) for
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all x ∈ H . Let x⋆ ∈ fix(T), let ε > 0, and choosex ∈ H
such that|||x⋆ − x||| ≤ ε. With probability one, we have

∣

∣

∣

∣

∣

∣xk − x⋆
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣xk − x

∣

∣

∣

∣

∣

∣+
∣

∣

∣

∣

∣

∣

x− x⋆
∣

∣

∣

∣

∣

∣ ≤ Xx + 2ε

for k large enough. Similarly,
∣

∣

∣

∣

∣

∣xk − x⋆
∣

∣

∣

∣

∣

∣ ≥ Xx − 2ε for k
large enough. We therefore obtain:

C1 : There is a probability one set on which
∣

∣

∣

∣

∣

∣xk − x⋆
∣

∣

∣

∣

∣

∣

converges for everyx⋆ ∈ fix(T).
Getting back to (14), taking the expectations on both sides of
this inequality and iterating overk, we obtain

∞
∑

k=0

ηk(1 − αηk)E‖(I− T)xk‖2 ≤
∣

∣

∣

∣

∣

∣x0 − x⋆
∣

∣

∣

∣

∣

∣

2
.

Using the assumption on(ηk)k∈N, it is straightforward to
see that

∑∞
k=0 ηk(1−αηk) = +∞ and thus that

∑∞
k=0 E‖(I−

T)xk‖2 is finite. By Markov’s inequality and Borel Cantelli’s
lemma, we therefore obtain:

C2 : (I− T)xk → 0 almost surely.
We now consider an elementary event in the probability one
set whereC1 and C2 hold. On this event, since

∣

∣

∣

∣

∣

∣xk − x⋆
∣

∣

∣

∣

∣

∣

converges forx⋆ ∈ fix(T), the sequence(xk)k∈N is bounded.
SinceT is α-averaged, it is continuous, andC2 shows that all
the accumulation points of(xk)k∈N are infix(T). It remains
to show that these accumulation points reduce to one point.
Assume thatx⋆

1 is an accumulation point. ByC1,
∣

∣

∣

∣

∣

∣xk − x⋆
1

∣

∣

∣

∣

∣

∣

converges. Therefore,lim
∣

∣

∣

∣

∣

∣xk − x⋆
1

∣

∣

∣

∣

∣

∣ = lim inf
∣

∣

∣

∣

∣

∣xk − x⋆
1

∣

∣

∣

∣

∣

∣ =
0, which shows thatx⋆

1 is unique.

C. Proof of Theorem 4

The proof simply consists in checking that the assumptions
of Theorem 1 are satisfied. To that end, we compute the
Lipschitz constantL of ∇(f ◦M−1) as a function of̄L. Recall
thatS is the image ofM . For anyy ∈ S, note that

∇(f ◦M−1)(y) = M(M∗M)−1∇f(M−1y) . (15)

Using the definition ofM , the operatorM∗M is diagonal.
More precisely, for anyx ∈ R

N , sayx = (xn)n∈V , the nth
component of(M∗M)x coincides withdnxn where dn =
card{m ∈ V : n ∼ m} is the degree of noden in the
graphG. Thus,‖M(M∗M)−1x‖2 =

∑

n∈V d−1
n ‖xn‖2. As a

consequence of the latter equality and (15), for any(y, y′) ∈
S2, sayy = Mx andy′ = Mx′, one has

‖∇(f ◦M−1)(y)−∇(f ◦M−1)(y′)‖2

=
∑

n

d−1
n ‖∇fn(xn)−∇fn(x

′
n)‖

2 .

Under the stated hypotheses, we can write for alln,
‖∇fn(xn)−∇fn(x

′
n)‖

2 ≤ L̄2‖xn − x′
n‖

2. Thus,

‖∇(f ◦M−1)(y)−∇(f ◦M−1)(y′)‖2 ≤ (L̄2/dmin)‖x−x′‖2

(16)
where dmin = min(dn : n ∈ V ). On the otherhand,‖y −
y′‖2 = ‖M(x − x′)‖2 =

∑

n dn‖xn − x′
n‖

2 ≥ dmin‖x −
x′‖2. Plugging the latter inequality into (16), we finally obtain
‖∇(f ◦ M−1)(y) − ∇(f ◦ M−1)(y′)‖2 ≤ (L̄/dmin)

2‖x −
x′‖2. This proves that∇(f ◦M) is Lipschitz continuous with
constantL = L̄/dmin. The final result follows by immediate
application of Theorem 1.

D. Proof of Theorem 5

Let (f̄ , ḡ, h) = (f ◦ M−1, g ◦ M−1, h) wheref, g, h and
M are those of Problem (12). For these functions, write
Equations (6) as(λk+1, yk+1) = T(λk, yk). By Lemma 2, the
operatorT is anα-averaged operator acting on the spaceH =
Y×S, whereS is the image ofXN by M . For anyn ∈ V , let
Sn be the selection operator onH defined asSn(λ,Mx) =
((λǫ(n))ǫ∈E :n∈ǫ, xn). Then it is easy to see that up to an
element reordering,H = S1(H) × · · · × SN(H). Identifying
the setJ introduced before the statement of Theorem 3 with
V , the operatorT(ξk) is defined as follows: ifn ∈ ξk, then
Sn(T

(ξk)(λ,Mx)) = Sn(T(λ,Mx)) while if n 6∈ ξk, then
Sn(T

(ξk)(λ,Mx)) = Sn(λ,Mx). We know by Theorem 3
that the sequence(λk+1,Mxk+1) = T

(ξk+1)(λk,Mxk) con-
verges almost surely to a primal-dual point of Problem (7).
This implies by Lemma 3 that the sequencexk converges
almost surely to(x⋆, . . . , x⋆) where x⋆ is a minimizer of
Problem (10).
We therefore need to prove that the operatorT

(ξk+1) is
translated into the DAPD algorithm. The definition (11) of
h shows that

h∗(φ) =
∑

ǫ∈E

ιC⊥
2
(φǫ)

whereC⊥
2 = {(x,−x) : x ∈ X}. Therefore, writing

(ηk+1, qk+1 = Mvk+1) = T(λk, yk = Mxk),

Equation (6a) shows that

ηk+1
ǫ = projC⊥

2
(λk

ǫ + ρ−1ykǫ ).

Notice that contrary to the case of the synchronous algorithm
DADMM+, there is no reason here for whichprojC⊥

2
(λk

ǫ ) = 0.

Getting back to(λk+1,Mxk+1) = T
(ξk+1)(λk, yk = Mxk),

we therefore obtain that for alln ∈ ξk+1 and allm ∼ n,

λk+1
{n,m}(n) =

λk
{n,m}(n)− λk

{n,m}(m)

2

+
yk{n,m}(n)− yk{n,m}(m)

2ρ

=
λk
{n,m}(n)− λk

{n,m}(m)

2
+

xk
n − xk

m

2ρ
.

Recall now that Eq. (6b) can be rewritten as

qk+1=argmin
w∈S

ḡ(w)+〈∇f̄ (yk),w〉+
‖w−yk+τ(2λk+1−λk)‖2

2τ

Upon noting that ḡ(Mx) = g(x) and 〈∇f̄(yk),Mx〉 =
〈(M−1)∗∇f(M−1Mxk),Mx〉 = 〈∇f(xk), x〉, the above
equation becomes

vk+1 = argmin
w∈X

g(w) + 〈∇f(xk), w〉

+
‖M(w − xk) + τ(2λk+1 − λk)‖2

2τ
.
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Recall that(M∗Mx)n = dnxn. Hence, for alln ∈ ξk+1, we
get after some computations

xk+1
n = proxτgn/dn

[

xk
n −

τ

dn
∇fn(x

k
n)

−
τ

dn
(M∗(2λk+1 − λk))n

]

.

Using the identity(M∗y)n =
∑

m:{n,m}∈E y{n,m}(n), one
can check that this equation coincides with thex−update
equation in the DAPD algorithm.
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