-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A Coordinate Descent Primal-Dual Algorithm and
Application to Distributed Asynchronous Optimization
Pascal Bianchi, Walid Hachem, Franck Iutzeler

» To cite this version:

Pascal Bianchi, Walid Hachem, Franck Iutzeler. A Coordinate Descent Primal-Dual Algo-
rithm and Application to Distributed Asynchronous Optimization. IEEE Transactions on Au-
tomatic Control, Institute of Electrical and Electronics Engineers, 2016, 61 (10), pp.2947-2957.
10.1109/TAC.2015.2512043 . hal-01237226

HAL Id: hal-01237226
https://hal.archives-ouvertes.fr /hal-01237226

Submitted on 2 Dec 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/49451068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01237226
https://hal.archives-ouvertes.fr

arXiv:1407.0898v3 [math.OC] 30 Sep 2015

A Coordinate Descent Primal-Dual Algorithm
and Application to Distributed Asynchronous
Optimization

P. Bianchi, W. Hachem and F. lutzeler

Abstract— Based on the idea of randomized coordinate descent In order to construct distributed algorithms a standard ap-

of a-averaged operators, a randomized primal-dual optimizaton
algorithm is introduced, where a random subset of coordinags is
updated at each iteration. The algorithm builds upon a variant
of a recent (deterministic) algorithm proposed by Vi and Cadat
that includes the well known ADMM as a particular case. The
obtained algorithm is used to solve asynchronously a distbuted
optimization problem. A network of agents, each having a
separate cost function containing a differentiable term, sek to
find a consensus on the minimum of the aggregate objective. €h
method yields an algorithm where at each iteration, a random

proach consists in introducing

N N
flx) = Z fn(zn) and g(z) = Zgn(xn)
n=1 n=1

for all x = (x1,...,zy) in the product spacet = ?N.
Obviously, problem[{2) is equivalent to the minimization of
f(z) + g(x) under the constraint that all componentszoéire

subset of agents wake up, update their local estimates, exatge equalll.el., 1 =-"=TN: Therefore, Probleni?2) is in fact a
some data with their neighbors, and go idle. Numerical resus  SPecial instance of Problerdl (1) if one choo$g¢d/x) as an
demonstrate the attractive performance of the method. indicator function, equal to zero if; = - -- = a2y and to+oco

The general approach can be naturally adapted to other situa
tions where coordinate descent convex optimization algahms
are used with a random choice of the coordinates.

otherwise. As we shall see, this reformulation of ProblEpn (2
is often a mandatory step in the construction of distributed

algorithms.

Index Terms— Distributed Optimization, Coordinate Descent,
Consensus algorithms, Primal-Dual Algorithm.

|I. INTRODUCTION

Let X and) be two Euclidean spaces and fet: X — Y
be a linear operator. Given two real convex functighand
g on X and a real convex functioh on ), we consider the
minimization problem

inf f(z)+g(x) + h(Mz) 1)

rzeX
where f is differentiable and its gradieriv f is Lipschitz-
continuous. Although our theoretical contributions ardidva
for very general functions, ¢ and h, the application part

of this paper puts a special emphasis on the problem of

distributed optimization. In this particular frameworkne
considers a set aV agents such that each agent1,..., N

has a private cost of the forfi, + g, where f,, andg, are
two convex cost function on some (other) spacef, being
differentiable. The aim is to distributively solve

N
iniz fu(w) + gn(u) .

(2)
ueX ne1
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Our contributions are as follows.

1) Vi and Condat have separately proposed an algorithm
to solve [[1) in [1] and [2] respectively. Elaborating on
this algorithm, we provide an iterative algorithm for
solving [1) which we refer to as ADMM+ (Alternating
Direction Method of Multipliers plus) because it includes
the well known ADMM [3], [4] as the special case
corresponding tof = 0. Interestingly, in the framework
of the distributed optimization, ADMM+ is provably
convergent under weaker assumptions on the step sizes
as compared to the original Vii/Condat algorithm.

2) Based on the idea of th&tochastic coordinate descent

who has been mainly studied in the literature in the

special case of proximal gradient algorithms [5]—-{7], we
develop adistributed asynchronougersion of ADMM+.

As a first step, we borrow from [1]- [2] the idea that their

algorithm is an instance of a so-called Krasnosel'skii-

Mann iteration applied to an-averaged operator [8, Sec-

tion 5.2]. Such operators have contraction-like propsertie

that make the Krasnosel'skii-Mann iterations converge
to a fixed point of the operator. The principle of the
stochastic coordinate descent algorithms is to update only

a random subset of coordinates at each iteration. In this

paper, we show in most generality that a randomized

coordinate descent version of the Krasnosel'skii-Mann
iterations still converges to a fixed point of araveraged
operator. This provides as a side result a convergence
proof of the stochastic coordinate descent versions of the
proximal gradient algorithm, since this algorithm can be

seen as the application of lg/2-averaged operator [8].

More importantly in the context of this paper, this idea
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leads to provably convergent asynchronous distribute®) The algorithm is aproximal method Similarly to the
versions of ADMM+. distributed ADMM, it allows for the use of a proximity
3) Putting together both ingredients above, we apply our operator at each node. This is especially important to
findings to asynchronous distributed optimization. First, cope with the presence of possibly non-differentiable reg-
the optimization problem[{1) is rewritten in a form ularization terms. This is unlike the classical adaptation
where the operatod/ encodes the connections between  diffusion methods mentioned above or the more recent
the agents within a graph in a manner similar to [9]. first order distributed algorithm EXTRA proposed by
Then, a distributed optimization algorithm for solving [28].
Problem[(2) is obtained by applying ADMM+. Using the 3) The algorithm is afirst-order method Similarly to
idea of coordinate descent on the top of the algorithm, we adaptation-diffusion methods, our algorithm allows to
then obtain a fully asynchronous distributed optimization compute gradients of the local cost functions. This is
algorithm that we refer to as Distributed Asynchronous unlike the distributed ADMM which only admits implicit
Primal Dual algorithm (DAPD). At each iteration, an stepd.e., agents are required to locally solve an optimiza-
independent an identically distributed random subset of tion problem at each iteration.
agents wake up, apply essentially the proximity operato#t) The algorithm admitsonstant step sizéAs remarked in
on their local functions, send some estimates to their [28], standard adaptation-diffusion methods require the
neighbors and go idle. use of a vanishing step size to ensure the convergence to

An algorithm that has some formal resemblance with the sought minimizer. In practice, this comes at the price

ADMM+ was proposed in [10], who considers the minimiza- of slow convergence. Our method allows for the use of a
tion of the sum of two functions, one of them being subjected _ cOnstant step size in the gradient descent step.

to noise. This reference includes a linearization of thesyioi "€ paper is organized as follows. Sectidn Il is devoted to
function in ADMM iterations. the the introduction of ADMM+ algorithm and its relation Wit

The use of stochastic coordinate descent on averaged OFt)tét]e_PrimaI-Dual algo_rithms of Vi [1] and Condat [2], we also
ators has been introduced in [11] (see also the recent ptepf’®W how ADMM+ includes both the standard ADMM and
[12] which uses the same line of thought). Note that the aft€ Forward-Backward algorithm (also refered to as prokima
proach of [11] was limited to unrelaxed firmly non expansivradient algorithm) as special cases [8, Section 25.3]. In

(or 1/2-averaged) operators, well-suited for studying ADMNvPEctionlll, we provide our result on the convergence of
which was the algorithm of interest in [11]. Krasnosel'skii-Mann iterations with randomized coordaa

rgéescent. Sectiop IV addresses the problem of asynchronous

Asynchronous distributed optimization is a promising. " o : . : .
framework in order to scale up machine learning proble stributed optimization. Finally, Sectiéd V provides nerical

involving massive data sets (we refer to [13] or the receht®
survey [14]). Early works on distributed optimization inde . A PRIMAL DUAL ALGORITHM
[15], [16] where a network of processors seeks to optimi

some obijective function known by all agents (possibly up to ) i
some additive noise). More recently, numerous works exténd e consider Probleni](1). Denoting () the set of

this kind of algorithm to more involved multi-agent scelari PrOPer lower semi-continuous convex functions éh —
see [17]-[28]. (—o0,00] and by|| - || the norm onX’, we make the following

assumptions:

ults.

. Problem statement

Note that standard first order distributed optimizationhmet
ods often rely on the so-called adaptation-diffusion apphe@s Assumption 1 The following facts hold true:
or variants. The agents update their local estimates byieval (i) f is a convex differentiable function ok,
ating their private gradient and then merge their estimatie w (i) g € T'o(X) andh € T'o()).
their neighbors using a local averaging step. Unfortugatel
such methods require the use of a vanishing step size, whic
results in slow convergence. This paper proposes a firmorfé
distributed optimization method with constant step sizeiclv

e consider the case wherfd is injective (in particular,
is implicit that dim(X) < dim(}))). In the latter case, we
enote byS = Im(M) the image ofM and by M~! the

_ : inverse of M on § — X. We emphasize the fact that the
t tt tperf tandard distributed gradient oesh . . : : i
urns ottt to oultperiorm standard cistributed gradien h inclusionS C Y might be strict. We denote by the gradient

as shown in the simulations.

To the best of our knowledge, our method is the first dis(?_perator.
tributed algorithm combining the following attractive faees: Assumption 2 The following facts hold true:
(i) M is injective,

1) The algorithm is asynchronous at thede-level Only (foM-1)is L-Lipschitz continuous o
o - .

a single node is likely to be active at a given iteration,(1) V
only broadcasting the result of its computation without We denote bylom ¢ the domain of a functiog and byri S
expecting any feedback from other nodes. This is ithe relative interior of a se§ in a Euclidean space.
contrast with the asynchronous ADMM studied by [11L
and [29] which is only asynchronous at tedge-levelln
these works, at least two connected nodes are supposaJ
to be active at a common time. 0 € ri(dom h — M dom g)

ssumption 3 The infimum of Probler(f) is attained. More-
&, the following qualification condition holds



where M dom g is the image byM of dom g. The proof of Theorerfi]1 is provided in Appendi¥ A. It is
based on Theoref 2 below. For any functipm T'o(X) we

The dual problem corresponding to th@imal problem [(1) denote byprox, its proximity operator defined by
g9

iS written
f —-M h _ : oy N2
){Iely(f"‘g) ( A) + h*(X) prox, (z) = arg min g(w) + 2Hw x| } 5)

whereg* denotes the Legendre-Fenchel transform of a func-The ADMM+ is an instance of the primal dual algorithm
tion ¢ and whereM* is the adjoint ofM. With the assump- recently proposed by Vii [1] and Condat [2], see also [31]:
tions[1 andB, the classical Fenchel-Rockafellar dualigoti

(8], [30] shows that Theorem 2 ([1], [2]) Given a Euclidean spacé, consider

the minimization probleminf,cs f(y) + g(y) + h(y) where
. g,h € Ty(&) and wheref is convex and differentiable on
Eélﬁéf(x) +9(z) +h(Mz) & with an L—Lipschitz continuous gradient. Assume that the
= —inf (f 4+ ¢)" (=M*X) +h*()), (3) infimum is attained and th& € ri(dom h—dom g). Letr, p >
A€y 0 be such that—! — p=! > L /2, and consider the iterates
and the infimum at the right hand member is attained. Fur- yk+1 _ prox, 1. (\F 4 p~1yb) (62)
thermore, denoting byq the subdifferential of a function b1 i . bl k
q € To(X), any point(z,\) € X x ) at which the above ¥  — prox.g(y" =7V F(y") = T(2A"" =A%) (6b)
equality holds satisfies Then for any initial value(y®,\°) € £ x &, the sequence
_ _ 3 (y*, \F) converges to a primal-dual pointy*, \*), i.e, a
{ 0 € V(z)+ 0g(z) + M*A solution of the equation

0€ —Mz+ 0h*(\) ] )
and conversely. Such a point is calleghdmal-dual point. ;Ielgf(y) +9(y) +hly) = - ,{Ielfe(f +9) (=N R ()

C. The casef = 0 and the link with ADMM

In the special cas¢ = 0 and T = p, sequenceu®)sen
We denote by(-,-) the inner product ort’. We keep the coincides with(z*),cy. Then, ADMM+ boils down to the

same notatiorj| - || to represent the norm on bothi and). standard ADMM whose iterations are given by:
For some parameters, 7 > 0, we consider the following

B. A Primal-Dual Algorithm

algorithm which we shall refer to as ADMM+. ZF1 = argmin |h(2) + in — Ma® — pAF|?
ADMM+ <Y 2
)\k+1 _ )\k +p71(]\/[xk _ Zk+l)
2 = ar min{h(z) + |2~ (Ma* + p/\k)HQ} (4a) 1
N iy 2p 2* ! = argmin {g(:c) + 2—pHMx —2F px\k+1||2} .
reX
AL NF L (kR (4b) ©
uFt = (1 —rp Y Mak 4+ rp~ 12+ (4c) D. The caseh = 0 and the link with the Forward-Backward
o4 = argmin[g(a) + (V/ (2" 2) sloorithm | |
TEX In the special casé = 0 and M = I, it can be easily
Mz — ub Tt 4 p AR+ 2 verified that \* is null for all & > 1 and uf = z*.
en, + boils down to the standard Forward-Backwar
o } (4d)  Then, ADMM-+ boils d he standard Forward-Backward

. . . . . o algorithm whose iterations are given by:
This algorithm is especially useful in the situations whereg g y

V f and the left hand member of Equation](4d) are both easy ,k+1
to compute, as it is the case when (s@yi$ quadratic and is

an (¢, regularization term. In such situations, working directly = prox,,(¢" — 7V f(z")).
on f + g is often computationally demanding. '

. 1
— argmin g(x) + ol — (a* — 79/ ) |
zeEX T

One can remark that has disappeared thus it can be set as
Theorem 1 Let Assumption$1[}3 hold true. Assume th#irge as wanted so the condition on stepsiZeom Theorenf L
71 —p~! > L/2. For any initial value(z°,\°) € X x Y, the boils down tor < 2/L. Applications of this algorithm with
sequencéz”, \¥) defined by ADMM+ converges to a primal-particular functions appear in well known learning methods
dual point(z*, \*) of @) ask — oc. such as ISTA [32].

Remark 1 In the special case whefi= 0 (that is L = 0), it ) o )

turns out that the condition—! — p~! > L/2 can be further E. Comparison to the original % Condat algorithm

weakened to—! — p~! > 0 (see [2]). It is therefore possible We emphasize the fact that ADMM+ is a variation on the
to setr = p and thus have a single instrumental parameter toi-Condat algorithm. The original Vii-Condat algorithis i
tune in the algorithm. Note also that ifi = 0 the algorithm in general sufficient and, in many contexts, has even better
is provably convergent with no need to require the injettivi properties than ADMM+ from an implementation point of
of M. view. Indeed, whereas the Vii-Condat algorithm handles the



operatorM explicitly, the step[(4d) in ADMM+ can be delicateLemma 2 ([1], [2]) Let Assumptiong] [3-2 hold true. Assume
to implement in certain applicationge., when M has no thatr—'—p~! > L/2. Let(AF*1 yF+1) = T(A\k y*) whereT
convenient structure allowing to easily compute the min is the transformation described by Equatiofég)-(6H). Then
(the same remark holds of course for ADMM which is & is ana-averaged operator ofty with o = (2—«;)~! and
special case of ADMM+). ar = (L/2)(r7t = p~H)~ L,

This poten_tial drawback is howeve.r not an issue in many Note thatr—1 — p=1 > L/2 implies thatl > a; > 0 and
other scenarios where the structureldfis such that step (4d) T : L
) . . . thus thata verifies s < o < 1 which matches the definition
is affordable. In Sectiop IV, we shall provide such scergrig . a-averaged ope?ators
where ADMM+ is especially relevant. In particular, ADMM+ '
is not only easy to implement but it is also provably convatge . . )
under weaker assumptions on the step sizes, as comparef-tgk@ndomized Krasnosel'skii Mann Iterations
the original Vii-Condat algorithm. Consider the spacél = H, x --- x H; for some in-

Also, the injectivity assumption o/ could be seen astegerJ > 1 where for anyj, #; is a Euclidean space.
restrictive at first glance. First, the latter assumptioimifact Assume that is equipped with the scalar produgt, y) =
not needed wherf = 0 as noted above. Second, it is triviaIIyZ'J.]ﬂ(xj,yj)Hj where (-, - )y, is the scalar product ift{;.
satisfied in the application scenarios which motivate thisgg For j € {1,...,J}, we denote byT; : # — %, the compo-
(see the next sections). nents of the output of operatdr: H — H corresponding to

As alluded to in the introduction, the primal-dual algonith 7;, we thus havelz = (Tiz,..., T z). We denote by27
of [1], [2] can be geometrically described as a sequentiee power set off = {1,...,J}. For anyx € 27, we define
of Krasnosel'skii-Mann iterations applied to anaveraged the operatofT*) : % — H by 'i'g.“)x =T,z if j € x and
operator. In the next section, we briefly present these nsfio(x),. _ x; otherwise. On some probability spat@, 7, P),

proceed by introducing the randomized coordinate dechNr@ introduce a random i.i.d. sequen¢€)cy- such that
version of these iterations, then state our convergencitres ¢ . Q — 27 ie. €*(w) is a subset of7. We assume that

the following holds:

IIl. COORDINATE DESCENT
VieJ,Ike2’ stjerandP(& =k)>0. (8)

A. Averaged operators and the primal-dual algorithm

Let # be a Euclidean spa{}eForO < a < 1, a mapping
T : H — H is aw-averagedif the following inequality holds
for any xz,y in H:

Let T be ana-averaged operator, instead of considering the
iteratesz* 1 = 2% 4 n (T2F — 2F), we are now interested in
a stochasticoordinate descentersion of this algorithm that
consists in iterates of the typd 1 = ak 4, (TE ok —zk).
-« (1= Tz — (1 = T)y| 2. The proof of Theorerhil3 is provided in AppendiX B.

“ Theorem 3 Let T : H — H be a-averaged andix(T) # (.
Assume that for alk, the sequencény)ren Satisfies

[Ta = Tyl* < [la — yl* -

A 1-averaged operator is saitbn-expansiveA %-averaged

operator is saidirmly non-expansiveThe following Lemma

can be found in [8, Proposition 5.15, pp.80]. 0 < liminf 7y, < limsupm, < l
k - k «

Lemma 1 (Krasnosel'skii-Mann iterations) Assume  that . .
T :H — H is a-averaged and that the séix(T) of fixed Let (¢¥)ren+ be a random i.i.d. sequence @Y such that
points of T is non-empty. Consider a sequer(eg)rcy such Condition (8) holds. Then, for any deterministic initial value

that 0 < m; < 1/a and 3, 7x(1/a — ) = oo. For any %0 the iterated sequence

2% € M, the sequencéz®).cy recursively defined o_riH,_ PR — ok +nk(.i_(§k+l)xk _xk) 9)
by 21 = 2% + . (T2* — 2*) converges to some point in
fix(T). converges almost surely to a random variable supported by
On the product spac® x ), consider the operator fix(T).
. Remark 2 At the time of the writing the paper, the work
V = (T ly ly) [12] was brought to our knowledge. A result similar to
y ply Theorenl B is presented in the framework of Hilbert spaces,

wherel, stands for the identity oy — Y. Whenr—1—p~1 > random summable errors (dealt with by relying on the notion
0, one can easily check that is positive definite. In this Of quasi-Fejer monotonicity) and multiple blocks. The proof

case, we endoy x Y with an inner product - , - )y defined of [12] devoted to this result relies on the same idea as
as ((,¢)v = (¢,Vy) where (-, -) stands for the natural the one developed in [11] and presented above. Distributed

inner product ory x V. We denote byHy the corresponding asynchronous implementations are not considered in [12].

Euclidean space. By Lemmal2, ADMM+ iterates are generated by the ac-
In association with Lemm@l 1, the following lemma is at thgon of an a-averaged operator. Theordm 3 shows then that
heart of the proof of Theorefd 2: a stochastic coordinate descent version of angveraged
operator converges towards a primal-dual point. In Thed®em
Lwe refer to [8] for an extension to Hilbert spaces. below, we apply this result to the operator related to ADMM+,



and develop an asynchronous version of ADMM+ in the,m € V, we writem ~ n wheneved{n, m} € E. Practically,

context where it is distributed on a graph. n ~ m means that Agenta andm can communicate with
each other.
IV. DISTRIBUTED OPTIMIZATION Assumption 5 G is connected and has no self-loops#£ m

Consider a set ofV > 1 computing agents that cooperatdor all {n,m} € E).

to solve the minimization problem Let us introduce some notation. For any ¢ A, we

- denote byz,, the n'" component ofz, i.e, z = (z,)nev-

nf > (fu(2) + gn()) (10) We introduce the functiong and g on XN — (—o0, 4]

n=1 as f(z) = anv fn(xn) andg(z) = anv g.n(xn). Clearly,

where f,, andg,, are two private functions available at Agenfroblem [(ID) is equivalent to the minimization pfz) + g(x)
n. We make here the following assumption: under the constraint that all componentscoére equal. Here,

. one can rephrase the optimization probl 10) as
Assumption 4 For eachn =1,..., N, P P problém (10)

() fn is a convex differentiable function oA’, and its N

gradientVf,, is L-Lipschitz continuous o’ for some wexN i

L>0. "=
(i) gn € To(X). where 14 is the indicator function of a sed (null on A
(iii) The infimum of Probleni(10) is attained. and equal to+oco outside this set), and is the space of
(iv) NY_, ridom g, # 0. vectorsz € XV such thatz; = --- = zy. This problem

. . o is an instance of Problenil(1) whefe= «c and M as the
Our purpose is to design a random distributed (or decegentity operator. However, simply settifg= .. and M as
tralized) iterative algorithm where, at a each iteratioagre tne identity would not lead to a distributed algorithm. Lelys
active agent updates a local estimate in the parameter SP&S€aking, we must define and M in such a way that it
X based on the sole knowledge of its private functions arghcodes the communication graph. Our goal will be to ensure

on information it received from its neighbors through somgiohal consensus through local consensus over every edge of
communication network. Eventually, the local estimate8 wine graph.

converge to a common consensus value which is a minimizei=or any ¢ € E, saye = {n,m}, we define the linear
of the aggregate function of Problefn[10). operatorM, : XN — X2 as M.(z) = (zn,x,,) assuming
Instances of this problem appear in learning applications — 1, to avoid any ambiguity on the definition aff.
where massive training data sets are distributed over aometW\ve construct the linear operatdf : XN — Y 2 x2IEl
and processed by distinct machines [33], [34], in resourgg yr; — (M,(x)).., where we assume some (irrelevant)
allocation problems for communication networks [21], or iRyrdering on the edges. Any vectgre ' will be written as
statistical estimation problems by sensor networks [ZB].[ , — (y.). where, writinge = {n,m} € E, the component
ye Will be represented by the couple = (y.(n), y(m)) with
A. Network Model and Problem Formulation n < m. Note that this notation is abusive since it tends to
eiadicate thaty. has more than two components. However, it
will turn out to be convenient in the sequel. We also intraguc
the subspace ot? defined a€; = {(z, ) : # € X'}. Finally,

To help the reader, the notations that will be introduc
progressively are summarized in the following table.

dn . Degree of node (agent), we defineh : Y — ( — oo, +0o0] as
e={n,m} . Graph edge betweem andm,
E . Set of graph edges, h(y) = e, (ye) - (11)
f(x) =5 fu(z,) : Differentiable term in obj. fct., ecE
g(x) => gn(xn) : OtherTy term in obj. fct., We consider the following problem:
h : Consensus ensuring function, . (M 12
M = (), AE (M) e=pnmem Jnin f(2) +g() + h( z) . (12)

X?IEl vector of dual variables,

M (n) is updated by Agent,
ne~m . Stands for{n,m} € E, Lemma 3 Let Assumptiofil5 hold true. The minimizers(dg)
Subscriptn : Agent number, are the tuplegz*, - - - , z*) wherez* is any minimizer of{10).
Superscript : Time index, Proof: Assume that Probleni (I12) has a minimizer
V={1,...,N} . Set of graph nodes (agents),

: - (z1,...,zn). Then

2P = (2F)ev . &N vector of primal variables,

updated by Eq[{4d), h(Mz) = Z te, ((Tn, Tm)) = 0.
2P = ((zF,2")er  :  &P?IPI vector given by Eq.[(4a) e={n,m}eE

We represent the network as an undirected graph= Since the graplG is connected, this equation is satisfied if
(V, E)whereV = {1,..., N} isthe set of agents/nodes afid and only ifz = (z*,...,2*) for somez* € X. The result
is the set of edges. Representing an edge by &set} with  follows. [ ]



B. Instantiating ADMM+ Theorem 4 Let Assumptionis|4 arid 5 hold true. Assume that

We now apply ADMM+ to solve the probleni (IL2). Since 1 L
the newly defined functioh is separable with respect to the > 2dmin

(ye)eer, We get whered,,;, is the minimum of the noges’ degrees in the graph
o G. For any initial value(z®, %), let (= be the sequence
ProXon(y) = (ProXpe, (ye))eer = ((ye’ye))eeE producedyby the Distr(ibuted) ADI\EIMJ)rI?E'NFhen thereqexists a
where . = (y.(n) + y.(m))/2 if € = {n,m}. With this minimizerz* of Problem(I0) such that for alln € V, (2%)xen
at hand, the update equatidn(4a) of ADMM+ is written aSCNVErges tac™.
2R = ((ZFH1) 25Y) cp where 251 = (zF 4+ 2k )2 +
p(AF(n) 4+ \F(m))/2 for anye = {n,m} € E. Plugging this

Tt —p~ (13)

C. A Distributed Asynchronous Primal Dual Algorithm

equality into Eq.[[@b), it can be seen thet(n) = —\* (). In the distributedsynchronouscase, at each clock tick, a
Therefore,z5+1 = (2% + 2% )/2 for any k > 1. Moréover, central scheduler activates all the nodes of the networklsim
AR+ () = )fk(n) + (xrfc _ x’z?)/@p)' - taneously and monitors the communications that take place

Let us now instantiate Equatioris [4c) afd](4d). Observe ttRgtween these nodes once they have finished their(prox
the n'" component of the vectab/* Mz coincides withd,,z,, and gradient operations. The meaning we give to “distritute
where d,, is the degreeif., the number of neighbors) of asynchronous algorithm” is that there is no central schexdul

noden. From Eq. [4H), thex" component of:*+! is written @nd that any node can wake up randomly at any moment
independently of the other nodes. This mode of operation

P = prox, [(M*(UkJrl =AM, — Tan(xﬁ)} brings clear advantages in terms of complexity and flexibili
n Tdn n dn
where for anyy € ), T_he proposed:)?stribute_d Asynchrono_us Primal Duail-_
gorithm (DAPD) is obtained by applying the randomized
(M*y)n = Z Y{n,m}(n) coordinate descent on the above algorithm. As opposed to
m:{n,m}eE the latter, the resulting algorithm has the following attiee

property: at each iteration, a single agent, or possitdylaset

of agents chosen at random, are activated. More formatly, le
(€*)ren be a sequence of i.i.d. random variables valued in
2V, The value taken by"* represents the agents that will be

is the n" component of M*y € XN. Plugging Eq. [(4c)
together with the expressions of " , and /\’{ch:in} (n) in the

argument ofprox_, ,, , We get after a small calculation

ft 1 ik A activated and perform arox on theirz variable at moment
R [(1 =P )Ty — ann(:cn) k. The asynchronous algorithm goes as follows:
T ~1.k _ \k DAPD Algorithm :
+ (b~ 2k, = Ay (). 9
dy m:%;}eE from} Ilgitialization: (20, \0).
0

The Distributed ADMM+ (DADMM?+) algorithm is described

+1 _
by the following procedure: « Select a random set of agerftst! = A,

o« For all n € A, Agent n performs the following

DADMM+ operations:
Initialization: (%, \°) s.t. AY, | 1 (n) = =AY, 1 (m) for all — For all m ~ n, do
m ~ n. k k
Do )\k+1 (TL) _ )\{n,m} (TL) - )\{n,m} (m)
« Foralln € V, Agentn has in its memory the variables {r,m} L2
2y ANy (1) bnns @NA {255} It performs the L
following operations: 2p
— ~ _ T
Forallm ~n, do o - 2bt = prox,, 4. [(1 —7p an = = Via(ah)
k Ty — Ty T B n
)‘{:ﬁn} (n) = /\]{Cn,m} (n) + 72;) ; +a Z (p~tak + /\l{“mm} (m))},
_ - Lokl \k+1 e
- PTOX, ;. /a. {(1 —rp Dk - dLan(a?ﬁ) Eg: 7?1" m ~ n, send{zy ,)\{n_’m}(n)} to Neigh
T n .
T St = M (n))}- . For all agentsy ¢ A, 25! = 2k, andAff! L (n) =
" mi{n,m}eB M my () for all m ~n.
« Foralln € V, Agentn sends the parametef*! to « Incrementk.
its neighbors,
« Incrementk. Assumption 6 The collections of set§A;, As, ...} such that

Pl¢t = A;] is positive satisfie§) A; = V.

In other words, any agent is selected with a positive prdbabi
ity. The following theorem is proven in Appendix D.

The proof of the following result is provided in Appendik C



Theorem 5 Let Assumptiongl4]5, arid 6 hold true. Assume = 0.25 max,—1._.n ||an||3. Finally, the regularization pa-

that condition [IB) holds true. Letr®*t1),,cy be the output rametery was set tol0~%.

of the DAPD algorithm. For any initial valuéz®, \°), the In our simulations, we also compared the DAPD algorithm

sequences?, ..., xk converge almost surely @ — oo to presented in this paper with some known algorithms that lend

a random variabler* supported by the set of minimizers ofhemselves to a distributed implementation. These are:

Problem(@Q). - DGD: the synchronous distributed algorithm [38]. Here,
each agent performs a gradient descent then exchanges
with its neighbors according to the Metropolis rule.

- ABG: the asynchronous broadcast gradient [39]. In this
setup, one agent wakes up and sends its information to
its neighbors. Any of these neighbors replaces its current
value with the mean of this value and the received value
then performs a gradient descent.

We address the problem of the so callégregularized - PWG: the pairwise gossip gradient [16], [40]. In this
logistic regression. Denoting by the number of observations setup, one agent wakes up, and selects one neighbor.
and byp the number of features, our optimization problem is  Then each of the two agents performs a gradient descent,

Before turning to the numerical illustrations, we note that
the very recent paper [36] also deals with asynchronous
primal-dual distributed algorithms by relying on the idefa o
random coordinate descent.

V. NUMERICAL ILLUSTRATIONS

written then exchanges and replaces its value by taking the mean
1M . between the former and the received value.
: 1 1 —yta, X 2 )
o > log(1+e + x|l For the DGD, the ABG, and the PWG, the stepsizes
t=1

have been taken decreasing a5k’ 7. The other param-
where the(y;), are in{—1,+1}, the(a;)}~, are inR?, and eters (includingy,) were chosen automatically in sets of
1> 0is a scalar. the form parameteripeory, x 1040 = {1,..,10} (where
We consider the case where the dataset is scattered Qu@fameter;yeor, is computed from the best theoretic bound
a network. Indeed, massive data sets are often distributgith Lipschitz constant estimaté) by running in parallel
on different physical machines communicating together byultiple instances of the algorithm with the different ctamgs
means of an interconnection network [37, Chap. 2.5] and magyer 50 iterations and choosing the constant giving the lowest
algorithms have been implemented for independent threadsunctional cost.
processes running on distant cores, closer to the datee(gee Whereas DAPD can allow for multiple agents to wake up at
[24], [13] for MapReduce implementation of ADMM, [26] each iteration, we considered only the single active agast ¢
for Spark implementation). Formally, denoting B3}, as it does not change much the practical implementatios. It i
a partition of {1,...,m}, we assume that Agent holds thus underperforming compared to a multiple awaking agents
in its memory the data in3,. Denoting byG = (V,E) scenario. Similarly to the previous algorithms, the stepsi
the graph that represents the connections between thesagasftDAPD have been chosen automatically in sets of the form
the regularized logistic regression problem is written t® i parameteripcory x 10° for 7 andp = 27 for fairness in terms
distributed form as of number of step sizes explored.
N 1 N u The (total) functional cost was evaluated with the value at
min (Z — log (1 4+ e Yt xn) + —|an|§> agentl (the agents are indistinguishable from a network point
xekMr i \ves, ™ 2N of view) and plotted versus the number of local gradientsiuse
4 Z e, (). In Figure[d, we plot the/>-regularized ngistic cost at some
s agent versus the number of local gradients used. We solved
. , this problem for each dataset onlé x 10 2D toroidal grid
Clearly, this is an instance of Problem[12). _ (100 agents) by assigning the same number of observations per
Our simulations will be performed on the following clas$|caagem. We observe that the DAPD is significantly faster than

datasets: the other stochastic gradient methods. Finally, we alsarkm
name m p density that the quantity of information exchanged per iteration fo
covtype 581012 54 dense DAPD is roughly a vector of length shorter tharvp (8p with
alpha 500000 | 500 dense our graph) which means that the number of transmissions is in
realsim 72309 | 20958 | sparse general quite small compared to the size of the whole dataset
rcvl 20242 | 47236 | sparse (roughly T'p).

In Figure2, we plot the same quantities for tegl dataset
but now the same number of observations are dispatched over
i) a5 x5 toroidal grid 5 agents) and ii) &0-nodes complete

The datasetxovtype , realsim , andrcvl are taken
from the LIBSVM websitd and alpha was from the Pascal
2008 Large Scale Learning chaIIeEgWe preprocessed the K
dense datasets so that each feature has zero mean andrl?ﬁwor '
variance. The global Lipschitz constant for the gradienhef VI. CONCLUSIONS AND PERSPECTIVES

logistic function was estimated by its classical upper tsbun This paper introduced a general framework for stochastic

2t /WwWw. CSie. U, edu.tw/ ~¢jlinflibsvm/ coordinate descent. The framework was used on a new al-
3http://largescale.ml.tu-berlin.de gorithm called ADMM+ which has roots in a recent work by


http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://largescale.ml.tu-berlin.de

EEC1DGD == ABG Equation [[6h) can be rewritten thanks to Moreau’s identity
== PWG == DAPD
/\k+1 _ /\k —I—p_l(Mxk _Zk-i-l) )

covtype alpha
Now, Equation[(6b) can be rewritten as
0.68 Lk k+1_ y\FkY)(|2
k+1_ oo VP [w—y"+7(2A )l
_ 066 y arfggmg(w)ﬂ fy")w)+ o
(2] _
8 +aa | 064 Upon noting thatg(Mz) = g(z) and (Vf(y*), Mz) =
S 0 1,000 2,000 3,000 0 1,000 2,000 3,000 (M=Y)*Vf(M~'Mz*), Mz) = (Vf(z¥),r), the above
e} realsim equation becomes
(&)
c Muw— k+1 )\k+1 2
2 a2 =argmin g(w) + (V f(2*),w) + | Mw - |
weX 27
where
AT ] uF Tt = Mok 4+ 7(\F — \EFL)
0 1,000 2,000 3,000 0 1,000 2,000 3,000 . X —1_ k41
number of local gradients computed =1 —p T)Mz" +71p 2"
The iterates (zF+1 \kF1 yF+1 2F+1) are those of the
Fig. 1. Comparison of distributed algorithms orb & 5 grid. ADMM+
=== DGD == ABG
== PWG [===] DAPD B. Proof of Theorerhl3
- revl, 10x 10 grid  rovl, 50-nodes Complete graph The main idea behind the proof can be found in [11]. Define
4 T T the operatotd = (1 — n)l + T (we omit the indext in U
° 0.6 2 to simplify the notation); similarly, defin®®) = (1 — n;,)I +
g 0.4 i n, T, Remark that the operataf Lil(ank)-averaged.
5 0o The iteration[(D) reads**+! = U™ gk, Setp, = P(¢;, =
5 o ‘ ‘ k) for anyx € 27. Denote byj|z||? = (z, ) the squared norm
0 1,000 2,000 3,000 0 1,000 2,000 3,000 in . Define a new inner product e y = Z;-]:1 4 {(xi,Y;);
number of local gradients computed on H whereq; ' =3, o5 pilyjex and letfa® = z ez
be its associated squared norm. Consider ahyc fix(T).
Fig. 2. Comparison between different networksroml dataset. Conditionally to the sigma—fieldf’“ _ 0(51 . {k) we have

= Y ot -

KE2T

Vi and Condat. As a byproduct, we obtained an asynchron(;%[‘iﬂ:C
distributed algorithm which enables the processing ofirist

blocks on different machines. Future works include an @igly = Y px ¥ ¢;[Ujz" — 23117+ > pe Y gjllal — 23]

of the convergence rate of our algorithms along with efficien xe27  jex k€2 jEr
stepsizes strategies. _ H‘Ik _ I*”’2+ Z pﬁz qj(Hijk _ I;||2_Hx? _ 17§H2)
APPENDIX “eij jer
A. Proof of Theorerfl1 = [* = || + > (U — a5 )? = |2k = 2311?)
By setting€ = S and by assuming that is equipped with j=1

tbe_same irlr;e[pioduct a§lone can ngtice that the .fgnctions: mxk _ x*”f n (Huxk |2 - |k - fC*||2) '
f=foM™, g=goM~ " andh satisfy the conditions of

Theoren 2. Moreover, sincgf + §)* = (f +g)* o M*, one Using thatU is (omk)-ave_raged and that* is a fixed point

can also notice thatz*, \*) is a primal-dual point associatedof U, the term enclosed in the parentheses is no larger than
with Eq. [3) if and only if (Mz*, \*) is a primal-dual point —%H(I —U)z¥||?. As | —U = n(I — T), we obtain:
associated with Eq[{7). ) )

To recover ADMM+ from the iteration§ (aj=(6b), the stagtin ~ E[||«"* — 2*||” | F*] < ||=* — 2*||

point is Moreau’s identity [8, Th. 14.3] which reads (1 —am)|| (1 = Tk (14)

. which shows thaf|z* — x*mz is a nonnegative supermartin-
Settingz* = M~'y* and gale with respect to the filtratiof7;). As such, it converges
2= prox, (yF 4 pAF) with probability one towards a random variable that is finite
ph o — (M + b2 almost everywhere.
= argmin |h(w) + P } , Given a countable dense subg#t of fix(T), there is a
wey 2p probability one set on whicl|z* — z|| — X, € [0,00) for

Prox,—1p. () + pt prox,, (pr) = x.




all z € H. Let 2> € fix(T), lete > 0, and chooser € H
such that|jz* — x| < e. With probability one, we have

lle* =[] < flo* - 2| + [l= - 2*|] < Xa +2¢

for k large enough. Similarly||«* — z*|| > X5 — 2¢ for &
large enough. We therefore obtain:
Cl: There is a probability one set on whidfw* — 2*||
converges for everg* € fix(T).
Getting back to[(14), taking the expectations on both sides
this inequality and iterating ovef, we obtain

> k(1 — B (1 - T)ak |2 < |2 — 2|
k=0

Using the assumption ofy)ken, it is straightforward to
see thad .~ , 7k (1 —ami) = +oo and thus thad_ 7>, E[|(1—
T)x"||? is finite. By Markov’s inequality and Borel Cantelli’'s
lemma, we therefore obtain:

C2: (I—T)z* — 0 almost surely.

We now consider an elementary event in the probability o
set whereC1 and C2 hold. On this event, sincl{z* — z*||
converges for* € fix(T), the sequencér”),cy is bounded.
SinceT is a-averaged, it is continuous, ai@P shows that all
the accumulation points afr*)cy are infix(T). It remains

to show that these accumulation points reduce to one point.

Assume that:} is an accumulation point. BZ1, ]ﬂ
converges. Thereforém ||2* — 2| = liminf ||«
0, which shows that7 is unique.

h — ot
—af|| =

C. Proof of Theorerfhl4

D. Proof of Theorem]5

Let (f,g,h) = (foM~',go M~' h) where f, g, h and
M are those of Problen[(]L2). For these functions, write
Equations[(b) ag\* 1 y**1) = T(\*, 4*). By Lemmd2, the
operatorT is ana-averaged operator acting on the spate-
Y x S, whereS is the image oftN by M. For anyn € V, let
Sy be the selection operator o defined asS,,(\, Mz) =
Ae(N))eeE nee, Tn). Then it is easy to see that up to an
element reorderingt{ = S1(H) x --- x Sy(H). ldentifying
the set” introduced before the statement of Theofgm 3 with
V, the operatoT¢") is defined as follows: ifx € ¢*, then
Su(TEI(N, M2)) = S,(T(\, Mz)) while if n & ¢, then
So(TED (N, Mz)) = Sn(\, Mz). We know by Theorenf]3
that the sequence\"+1, Mak+1) = TE"")(\k Ma*) con-
verges almost surely to a primal-dual point of Problém (7).
This implies by Lemmd]3 that the sequenck converges
almost surely to(x*,...,z*) where z* is a minimizer of
Problem [(ID).

e therefore need to prove that the operaﬁiﬁk“) is

translated into the DAPD algorithm. The definitidnJ(11) of
h shows that

B(8) = tes (60)

eck
whereCy = {(x, —z) : x € X}. Therefore, writing
(" g™ = MORT) = T,y = Mab),

Equation [[6h) shows that

The proof simply consists in checking that the assumptions

of Theorem[]L are satisfied. To that end, we compute the

Lipschitz constant. of V(foM~1) as a function of.. Recall
that S is the image ofM. For anyy € S, note that

V(foM™)(y) = MM M)T'Vf(M~y). (15

Using the definition ofM, the operatorM*M is diagonal.
More precisely, for anyr € RY, sayz = (2, )nev, the nth
component of(M*M)x coincides withd,,z,, whered,, =
card{m € V : n ~ m} is the degree of node in the
graphG. Thus,|[|[M(M*M) 'z||> =3 .\ d  |lzn | As a
consequence of the latter equality ahd](15), for &ny’) €
S?, sayy = Mz andy’ = M2z, one has

IV(f o M~ (y) = V(fo M~H)(y)]?
= Z dr_lean(In) - an(x;l)||2 .
Under the stated hypotheses, we can write for all
IV fa(@n) = V (@)l < L2[lzy — 2, |2 Thus,

IV(foM™1)(y) =V (fo M~ (y")|* < (L?/dmin)llz — 2’|
(16)

n € V). On the otherhand||y —
> dnllzn — 21?2 diinllz —

where dpi, = min(d, :
yI* = Mz — 2|

et = projey (AL +p7yr).

Notice that contrary to the case of the synchronous algurith
DADMM+, there is no reason here forwhi@hrojcj()\f) =0.
Getting back to(A\F+1, Mak+1) = TEI(\F yb = Mak),
we therefore obtain that for all € ¢¥*! and allm ~ n,

k k
k+1 (n) _ )\{n,m} (n) - )\{n,m} (m)
{n,m} 2
yl{gmm} (n) — ylfn,m}(m)
+
2p
2 20

Recall now that Eq[(8b) can be rewritten as

¢"'=argmin g(w)+(V f (y*),w)

o=yt 2

weS 27
Upon noting thatg(Mx) = g(z) and (Vf(y*), Mz) =
(M=Y)*Vf(M~'Ma*), Mz) = (Vf(a*),z), the above

equation becomes

2’||%. Plugging the latter inequality intg (1L6), we finally obtain

IV(f o M™Y)(y) = V(f o M=) ()|I* < (L/dmin)*[lz —
2'||2. This proves tha¥/(f o M) is Lipschitz continuous with

constantL, = L/dp;,. The final result follows by immediate

application of Theorerl1.

" = argmin g(w) + (V f(2¥), w)
weX

N | M(w — xF) + 7(2AF L — \FY||2
2T '
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Recall that(M*M=x),, = d,x,. Hence, for alln € £¥+1, we [18]
get after some computations

T [19]
:vflJrl = ProX,g /a4, |:£Cfl — d—an(xfl)

_ l(M*(2/\k+1 _ )\k))n:| [20]

mn

Using the identity(M*y)n = 3., (n.myer Yinm}(n), ONe  [21]
can check that this equation coincides with theupdate
equation in the DAPD algorithm.
[22]
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