179 research outputs found

    Response to Comments on “Passivity-Based Control of Saturated Induction Motors”

    Get PDF
    Contrary to the claims made in the comments to our paper, the passivity-based controller developed for induction motors has already been tested on the same demanding trajectories used for the input–output linearization controller. The experimental results show that the passivitybased controller provides closer tracking of the same mechanical trajectory, when compared with the input–output linearization controller

    Automatic exposure control in network video cameras

    Get PDF
    The overall objective of this study is to describe, analyse and suggest improvements on existing automatic exposure control systems in selected network video cameras. Since an image sensor has a limited dynamic range compared to a real scene, it is necessary to automatically control the exposure level and thus adapt to the amount of light in the scene. This can be done by adjusting parameters such as exposure time, gain and variable aperture in an automatic control loop. The two cameras in this study run different implementations of such a control loop and the topic of this study is to test their performance, to review their implementation of automatic exposure control, to comment on their implementation from a theoretical stand point, and to suggest improvements. The most focus has been correction of integrator function or adding of integrator functionality to the controllers to remove steady state errors. Integrator windup was solved for two cases. Some other minor bugs giving unwanted behavior such ass finite word length in the integrators. Also improving gain scheduling and correction of clamping of signals are suggested. A suggestion for smear control improvement is to use feed forward the changes when changes are needed to exposure, this enables to control faster and still limit the impact on the picture quality

    Characterization and Modeling of a Control Moment Gyroscope

    Get PDF
    The Air Force Research Laboratory (AFRL) is developing a spacecraft simulator that uses Control Moment Gyroscopes (CMGs). Prior to the research herein, the Air Force Institute of Technology (AFIT) designed and built six laboratory-rated CMGs for use on the AFRL spacecraft simulator. The main contributions of this research are in the testing and modeling of a single CMG. Designing, building, and operating spacecraft simulators is time consuming and expensive, but less so than tests with on-orbit spacecraft. Reductions in cost and schedule can be realized by investing in modeling the spacecraft simulator and payload before testing. A model of the spacecraft simulator was created in previous research efforts, but was an ideal model; it did not include dynamics based on real CMGs. The objective of this research is to characterize and model a single CMG to determine the effects the real CMG\u27s performance will have on the performance of the AFRL spacecraft simulator. The gimbal motor utilizes a planetary gearbox, which has gear lash of 5 deg . Gear lash makes the existence of gravitational disturbance torques noticeable in the gimbal angular position measurements. An analytical model of the CMG gimbal was created in MATLAB. The model predicts the nonlinear dynamic behavior of the real CMG. A model of the spacecraft simulator was run through a sequence of pointing commands to generate gimbal angle commands which were then used to command the CMG to evaluate the system\u27s performance under realistic conditions. Gear slack has a cumulative time delay effect on vehicle slew responses of approximately one second over five maneuvers. The results of the tests performed in this thesis can be used to predict performance of CMG and spacecraft simulator behavior

    Control of Systems with Limited Capacity

    Get PDF
    Virtually all real life systems are such that they present some kind of limitation on one or many of its variables, physical quantities. These systems are designated in this thesis as systems with limited capacity. This work is treating control related problems of a subclass of such systems, where the limitation is a critical factor. The thesis is composed of four parts. The first part is treating the control of tire slip in a braking car. The Anti-lock Braking System (ABS) is an important component of a complex steering system for the modern car. In the latest generation of brake-by-wire systems, the controllers have to maintain a specified tire slip for each wheel during braking. This thesis proposes a design model and based on that a hybrid controller that regulates the tire-slip. Simulation and results from drive tests are presented. In the second part, a design method for robust PID controllers is presented for a class of systems with limited capacity. Robustness is ensured with respect to a cone bounded static nonlinearity acting on the plant. Additional constraints on maximum sensitivity are also considered. The design procedure has been successfully applied in the synthesis of the proposed ABS controller. The third part studies the trajectory convergence for a general class of nonlinear systems. The servo problem for piecewise linear systems is presented. Convex optimization is used to describe the behavior of system trajectories of a piecewise linear system with respect to some input signals. The obtained results are then applied for the study of anti-windup compensators. The last part of the thesis is treating the problem of voltage stability in power systems. Voltage at the load end of a power system has to be controlled within prescribed tolerances. In case of emergencies such as sudden line failures, this task ca n be very challenging. The main contribution of this chapter is a method for improving the stability properties of the power system by dynamic compensation of the reference load voltage. Moreover, a complete compensation scheme is proposed where load shedding is the secondary control variable. This control scheme is shown to stabilize different power system models

    Design of Attitude Control Actuators for a Simulated Spacecraft

    Get PDF
    The Air Force Institute of Technology\u27s attitude dynamics simulator, SimSat, is used for hardware-in-the-loop validation of new satellite control algorithms. To provide the capability to test algorithms for control moment gyroscopes, SimSat needed a control moment gyroscope array. The goal of this research was to design, construct, test, and validate a control moment gyroscope array for SimSat. The array was required to interface with SimSat\u27s existing structure, power supply, and electronics. The array was also required to meet maneuver specifications and disturbance rejection specifications. First, the array was designed with initial sizing estimates based on requirements and vehicle size. Next, the vehicle and control dynamics were modeled to determine control moment gyroscope requirements and provide a baseline for validation. Control moment gyroscopes were then built, calibrated, and installed on the vehicle. The actuators were then validated against the dynamics model. Testing shows minor deviation from the expected behavior as a result of small misalignments from the theoretical design. Once validation was complete, the array was tested against the performance specifications. The performance tests indicated that the control moment gyroscope array is capable of meeting specification

    A Sequential Control Language for Industrial Automation

    Get PDF
    Current market trends for industrial automation are the need for customizable production, shorter time to market, and powerful global competitive pressure. Based on these trends two challenges have been identified: 1) flexible production systems and 2) integration and utilization of devices and software. Applications from both process automation, manufacturing, and robotics have been considered. More flexible languages and tools are needed to get a flexible production system. The graphical programming language Grafchart, based on the IEC 61131-3 standard language Sequential Function Charts (SFC), is considered with the aim to make both the language and its implementation more flexible. In particular, new constructs have been added to the Grafchart language and modern compiler techniques are evaluated for JGrafchart, a Grafchart implementation, with focus on an extensible language implementation. A first step toward real-time execution of Grafchart applications is also taken to make it possible to use Grafchart for hard real-time control. High execution rates often reveal concurrency issues and thus execution concurrency has also been investigated. Access to more data from industrial devices and software can be used to optimize production. Architectures for factory integration have been considered as this is the foundation to connect all devices and thus address the challenge of integrating and utilizing devices and software. Service Oriented Architecture (SOA) is a flexible software design methodology widely used in IT systems and for business processes. SOA service orchestration is brought to industrial automation by integrating support for both Devices Profile for Web Services (DPWS) and OPC Unified Architecture (OPC UA) in JGrafchart. Looking further, SOA 2.0 is event driven and features extremely loose coupling between components. An architecture based on SOA 2.0 where it is easy to integrate any device or software, in particular legacy devices with limited knowledge and capabilities, has been developed with focus on service choreography in industrial manufacturing. Another step toward real-time execution of Grafchart applications is integrated support for the high performance communication protocol LabComm. Additionally, it is investigated how Grafchart can be connected to Functional Mock-up Interface (FMI) for co-simulation to further address the shorter time to market trend by introducing simulation support. The PID controller is the most common controller for industrial automation. A PID implementation has been added to a Grafchart library and a flaw with the PID algorithm has been discovered. The problem occurs for PID controllers with a derivative part when the process value saturates. The derivative part then backs off which leads to undesired changes in the control signal. This issue has been analyzed and a solution to the problem is proposed

    Spacecraft nonlinear attitude control with bounded control input

    Get PDF
    The research in this thesis deals with nonlinear control of spacecraft attitude stabilization and tracking manoeuvres and addresses the issue of control toque saturation on a priori basis. The cascaded structure of spacecraft attitude kinematics and dynamics makes the method of integrator backstepping preferred scheme for the spacecraft nonlinear attitude control. However, the conventional backstepping control design method may result in excessive control torque beyond the saturation bound of the actuators. While remaining within the framework of conventional backstepping control design, the present work proposes the formulation of analytical bounds for the control torque components as functions of the initial attitude and angular velocity errors and the gains involved in the control design procedure. The said analytical bounds have been shown to be useful for tuning the gains in a way that the guaranteed maximum torque upper bound lies within the capability of the actuator and, hence, addressing the issue of control input saturation. Conditions have also been developed as well as the generalization of the said analytical bounds which allow for the tuning of the control gains to guarantee prescribed stability with the additional aim that the control action avoids reaching saturation while anticipating the presence of bounded external disturbance torque and uncertainties in the spacecraft moments of inertia. Moreover, the work has also been extended blending it with the artificial potential function method for achieving autonomous capability of avoiding pointing constraints for the case of spacecraft large angle slew manoeuvres. The idea of undergoing such manoeuvres using control moment gyros to track commanded angular momentum rather than a torque command has also been studied. In this context, a gimbal position command generation algorithm has been proposed for a pyramid-type cluster of four single gimbal control moment gyros. The proposed algorithm not only avoids the saturation of the angular momentum input from the control moment gyro cluster but also exploits its maximum value deliverable by the cluster along the direction of the commanded angular momentum for the major part of the manoeuvre. In this way, it results in rapid spacecraft slew manoeuvres. The ideas proposed in the thesis have also been validated using numerical simulations and compared with results already existing in the literature

    Evolutionary learning and global search for multi-optimal PID tuning rules

    Get PDF
    With the advances in microprocessor technology, control systems are widely seen not only in industry but now also in household appliances and consumer electronics. Among all control schemes developed so far, Proportional plus Integral plus Derivative (PID) control is the most widely adopted in practice. Today, more than 90% of industrial controllers have a built-in PID function. Their wide applications have stimulated and sustained the research and development of PID tuning techniques, patents, software packages and hardware modules. Due to parameter interaction and format variation, tuning a PID controller is not as straightforward as one would have anticipated. Therefore, designing speedy tuning rules should greatly reduce the burden on new installation and ‘time-to-market’ and should also enhance the competitive advantages of the PID system under offer. A multi-objective evolutionary algorithm (MOEA) would be an ideal candidate to conduct the learning and search for multi-objective PID tuning rules. A simple to implement MOEA, termed s-MOEA, is devised and compared with MOEAs developed elsewhere. Extensive study and analysis are performed on metrics for evaluating MOEA performance, so as to help with this comparison and development. As a result, a novel visualisation technique, termed “Distance and Distribution” (DD)” chart, is developed to overcome some of the limitations of existing metrics and visualisation techniques. The DD chart allows a user to view the comparison of multiple sets of high order non-dominated solutions in a two-dimensional space. The capability of DD chart is shown in the comparison process and it is shown to be a useful tool for gathering more in-depth information of an MOEA which is not possible in existing empirical studies. Truly multi-objective global PID tuning rules are then evolved as a result of interfacing the s-MOEA with closed-loop simulations under practical constraints. It takes into account multiple, and often conflicting, objectives such as steady-state accuracy and transient responsiveness against stability and overshoots, as well as tracking performance against load disturbance rejection. These evolved rules are compared against other tuning rules both offline on a set of well-recognised PID benchmark test systems and online on three laboratory systems of different dynamics and transport delays. The results show that the rules significantly outperform all existing tuning rules, with multi-criterion optimality. This is made possible as the evolved rules can cover a delay to time constant ratio from zero to infinity based on first-order plus delay plant models. For second-order plus delay plant models, they can also cover all possible dynamics found in practice

    Disturbance Feedback Control for Industrial Systems:Practical Design with Robustness

    Get PDF

    Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control

    Get PDF
    The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated
    • 

    corecore