74 research outputs found

    Impact estimation: IT priority decisions

    Get PDF
    Given resource constraints, prioritization is a fundamental process within systems engineering to decide what to implement. However, there is little guidance about this process and existing IT prioritization methods have several problems, including failing to adequately cater for stakeholder value. In response to these issues, this research proposes an extension to an existing prioritization method, Impact Estimation (IE) to create Value Impact Estimation (VIE). VIE extends IE to cater for multiple stakeholder viewpoints and to move towards better capture of explicit stakeholder value. The use of metrics offers VIE the means of expressing stakeholder value that relates directly to real world data and so is informative to stakeholders and decision makers. Having been derived from prioritization factors found in the literature, stakeholder value has been developed into a multi-dimensional, composite concept, associated with other fundamental system concepts: objectives, requirements, designs, increment plans, increment deliverables and system contexts. VIE supports the prioritization process by showing where the stakeholder value resides for the proposed system changes. The prioritization method was proven to work by exposing it to three live projects, which served as case studies to this research. The use of the extended prioritization method was seen as very beneficial. Based on the three case studies, it is possible to say that the method produces two major benefits: the calculation of the stakeholder value to cost ratios (a form of ROI) and the system understanding gained through creating the VIE table

    Practical Methods for Optimizing Equipment Maintenance Strategies Using an Analytic Hierarchy Process and Prognostic Algorithms

    Get PDF
    Many large organizations report limited success using Condition Based Maintenance (CbM). This work explains some of the causes for limited success, and recommends practical methods that enable the benefits of CbM. The backbone of CbM is a Prognostics and Health Management (PHM) system. Use of PHM alone does not ensure success; it needs to be integrated into enterprise level processes and culture, and aligned with customer expectations. To integrate PHM, this work recommends a novel life cycle framework, expanding the concept of maintenance into several levels beginning with an overarching maintenance strategy and subordinate policies, tactics, and PHM analytical methods. During the design and in-service phases of the equipment’s life, an organization must prove that a maintenance policy satisfies specific safety and technical requirements, business practices, and is supported by the logistic and resourcing plan to satisfy end-user needs and expectations. These factors often compete with each other because they are designed and considered separately, and serve disparate customers. This work recommends using the Analytic Hierarchy Process (AHP) as a practical method for consolidating input from stakeholders and quantifying the most preferred maintenance policy. AHP forces simultaneous consideration of all factors, resolving conflicts in the trade-space of the decision process. When used within the recommended life cycle framework, it is a vehicle for justifying the decision to transition from generalized high-level concepts down to specific lower-level actions. This work demonstrates AHP using degradation data, prognostic algorithms, cost data, and stakeholder input to select the most preferred maintenance policy for a paint coating system. It concludes the following for this particular system: A proactive maintenance policy is most preferred, and a predictive (CbM) policy is more preferred than predeterminative (time-directed) and corrective policies. A General Path prognostic Model with Bayesian updating (GPM) provides the most accurate prediction of the Remaining Useful Life (RUL). Long periods between inspections and use of categorical variables in inspection reports severely limit the accuracy in predicting the RUL. In summary, this work recommends using the proposed life cycle model, AHP, PHM, a GPM model, and embedded sensors to improve the success of a CbM policy

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications

    Continual improvement: A bibliography with indexes, 1992-1993

    Get PDF
    This bibliography lists 606 references to reports and journal articles entered into the NASA Scientific and Technical Information Database during 1992 to 1993. Topics cover the philosophy and history of Continual Improvement (CI), basic approaches and strategies for implementation, and lessons learned from public and private sector models. Entries are arranged according to the following categories: Leadership for Quality, Information and Analysis, Strategic Planning for CI, Human Resources Utilization, Management of Process Quality, Supplier Quality, Assessing Results, Customer Focus and Satisfaction, TQM Tools and Philosophies, and Applications. Indexes include subject, personal author, corporate source, contract number, report number, and accession number

    A total quality management (TQM) strategic measurement perspective with specific reference to the software industry

    Get PDF
    The dissertation aims to obtain an integrated and comprehensive perspective on measurement issues that play a strategic role in organisations that aim at continuous quality improvement through TQM. The multidimensional definition of quality is proposed to view quality holistically. The definition is dynamic, thus dimensions are subject to evolution. Measurement of the quality dimensions is investigated. The relationship between quality and cost, productivity and profitability respectively is examined. The product quality dimensions are redefined for processes. Measurement is a strategic component ofTQM. Integration of financial measures with supplier-; customer-; performance- and internal process measurement is essential for synergism. Measurement of quality management is an additional strategic quality dimension. Applicable research was integrated. Quantitative structures used successfully in industry to achieve quality improvement is important, thus the quality management maturity grid, cleanroom software engineering, software factories, quality function deployment, benchmarking and the ISO 9000 standards are briefly described. Software Metrics Programs are considered to be an application of a holistic measurement approach to quality. Two practical approaches are identified. A framework for initiating implementation is proposed. Two strategic software measurement issues are reliability and cost estimation. Software reliability measurement and modelling are introduced. A strategic approach to software cost estimation is suggested. The critical role of data collection is emphasized. Different approaches to implement software cost estimation in organisations are proposed. A total installed cost template as the ultimate goal is envisaged. An overview of selected software cost estimation models is provided. Potential research areas are identified. The linearity/nonlinearity nature of the software production function is analysed. The synergy between software cost estimation models and project management techniques is investigated. The quantification aspects of uncertainty in activity durations, pertaining to project scheduling, are discussed. Statistical distributions for activity durations are reviewed and compared. A structural view of criteria determining activity duration distribution selection is provided. Estimation issues are reviewed. The integration of knowledge from dispersed fields leads to new dimensions of interaction. Research and practical experience regarding software metrics and software metrics programs can be successfully applied to address the measurement of strategic indicators in other industries.Business ManagementD. Phil. (Operations Research

    Fuzzy Sets in Business Management, Finance, and Economics

    Get PDF
    This book collects fifteen papers published in s Special Issue of Mathematics titled “Fuzzy Sets in Business Management, Finance, and Economics”, which was published in 2021. These paper cover a wide range of different tools from Fuzzy Set Theory and applications in many areas of Business Management and other connected fields. Specifically, this book contains applications of such instruments as, among others, Fuzzy Set Qualitative Comparative Analysis, Neuro-Fuzzy Methods, the Forgotten Effects Algorithm, Expertons Theory, Fuzzy Markov Chains, Fuzzy Arithmetic, Decision Making with OWA Operators and Pythagorean Aggregation Operators, Fuzzy Pattern Recognition, and Intuitionistic Fuzzy Sets. The papers in this book tackle a wide variety of problems in areas such as strategic management, sustainable decisions by firms and public organisms, tourism management, accounting and auditing, macroeconomic modelling, the evaluation of public organizations and universities, and actuarial modelling. We hope that this book will be useful not only for business managers, public decision-makers, and researchers in the specific fields of business management, finance, and economics but also in the broader areas of soft mathematics in social sciences. Practitioners will find methods and ideas that could be fruitful in current management issues. Scholars will find novel developments that may inspire further applications in the social sciences

    A web-based collaborative decision making system for construction project teams using fuzzy logic

    Get PDF
    In the construction industry, the adoption of concurrent engineering principles requires the development of effective enabling IT tools. Such tools need to address specific areas of need in the implementation of concurrent engineering in construction. Collaborative decision-making is an important area in this regard. A review of existing works has shown that none of the existing approaches to collaborative decision-making adequately addresses the needs of distributed construction project teams. The review also reveals that fuzzy logic offers great potential for application to collaborative decision-making. This thesis describes a Web-based collaborative decision-making system for construction project teams using fuzzy logic. Fuzzy logic is applied to tackle uncertainties and imprecision during the decision-making process. The prototype system is designed as Web-based to cope with the difficulty in the case where project team members are geographically distributed and physical meetings are inconvenient/or expensive. The prototype was developed into a Web-based software using Java and allows a virtual meeting to be held within a construction project team via a client-server system. The prototype system also supports objectivity in group decision-making and the approach encapsulated in the prototype system can be used for generic decision-making scenarios. The system implementation revealed that collaborative decision-making within a virtual construction project team can be significantly enhanced by the use of a fuzzybased approach. A generic scenario and a construction scenario were used to evaluate the system and the evaluation confirmed that the system does proffer many benefits in facilitating collaborative decision-making in construction. It is concluded that the prototype decision-making system represents a unique and innovative approach to collaborative decision-making in construction project teams. It not only contributes to the implementation of concurrent engineering in construction, but also it represents a substantial advance over existing approaches
    • …
    corecore