19 research outputs found

    Critical Perspectives on Provable Security: Fifteen Years of Another Look Papers

    Get PDF
    We give an overview of our critiques of “proofs” of security and a guide to our papers on the subject that have appeared over the past decade and a half. We also provide numerous additional examples and a few updates and errata

    Generic Construction of Public-key Authenticated Encryption with Keyword Search Revisited: Stronger Security and Efficient Construction

    Get PDF
    Public-key encryption with keyword search (PEKS) does not provide trapdoor privacy, i.e., keyword information is leaked through trapdoors. To prevent this information leakage, public key authenticated encryption with keyword search (PAEKS) has been proposed, where a sender\u27s secret key is required for encryption, and a trapdoor is associated with not only a keyword but also the sender. Liu et al. (ASIACCS 2022) proposed a generic construction of PAEKS based on word-independent smooth projective hash functions (SPHFs) and PEKS. In this paper, we propose a new generic construction of PAEKS. The basic construction methodology is the same as that of the Liu et al. construction, where each keyword is converted into an extended keyword using SPHFs, and PEKS is used for extended keywords. Nevertheless, our construction is more efficient than Liu et al.\u27s in the sense that we only use one SPHF, but Liu et al. used two SPHFs. In addition, for consistency we considered a security model that is stronger than Liu et al.\u27s. Briefly, Liu et al. considered only keywords even though a trapdoor is associated with not only a keyword but also a sender. Thus, a trapdoor associated with a sender should not work against ciphertexts generated by the secret key of another sender, even if the same keyword is associated. Our consistency definition considers a multi-sender setting and captures this case. In addition, for indistinguishability against chosen keyword attack (IND-CKA) and indistinguishability against inside keyword guessing attack (IND-IKGA), we use a stronger security model defined by Qin et al. (ProvSec 2021), where an adversary is allowed to query challenge keywords to the encryption and trapdoor oracles. We also highlight several issues associated with the Liu et al. construction in terms of hash functions, e.g., their construction does not satisfy the consistency that they claimed to hold

    On Protocols for Information Security Services

    Get PDF
    Now-a-days, organizations are becoming more and more dependent on their information systems due to the availability of high technology environment.Information is also treated as vital like other important assets of an organization. Thus, we require Information Security Services (ISS) protocols to protect this commodity. In this thesis, investigations have been made to protect information by developing some ISS protocols. We proposed a key management protocol, which stores one-way hash of the password at the server, instead of storing plaintext version of password.Every host and server agrees upon family of commutative one-way hash functions. Due to this prevention mechanism, online and offline guessing attacks are defeated. The protocol provides host authentication. As a result, man-in-the-middle attack is averted. It also withstands malicious insider attack

    Identity based cryptography from pairings.

    Get PDF
    Yuen Tsz Hon.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 109-122).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiList of Notations --- p.viiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Identity Based Cryptography --- p.3Chapter 1.2 --- Hierarchical Identity Based Cryptosystem --- p.4Chapter 1.3 --- Our contributions --- p.5Chapter 1.4 --- Publications --- p.5Chapter 1.4.1 --- Publications Produced from This Thesis --- p.5Chapter 1.4.2 --- Publications During Author's Study in the Degree --- p.6Chapter 1.5 --- Thesis Organization --- p.6Chapter 2 --- Background --- p.8Chapter 2.1 --- Complexity Theory --- p.8Chapter 2.1.1 --- Order Notation --- p.8Chapter 2.1.2 --- Algorithms and Protocols --- p.9Chapter 2.1.3 --- Relations and Languages --- p.11Chapter 2.2 --- Algebra and Number Theory --- p.12Chapter 2.2.1 --- Groups --- p.12Chapter 2.2.2 --- Elliptic Curve --- p.13Chapter 2.2.3 --- Pairings --- p.14Chapter 2.3 --- Intractability Assumptions --- p.15Chapter 2.4 --- Cryptographic Primitives --- p.18Chapter 2.4.1 --- Public Key Encryption --- p.18Chapter 2.4.2 --- Digital Signature --- p.19Chapter 2.4.3 --- Zero Knowledge --- p.21Chapter 2.5 --- Hash Functions --- p.23Chapter 2.6 --- Random Oracle Model --- p.24Chapter 3 --- Literature Review --- p.26Chapter 3.1 --- Identity Based Signatures --- p.26Chapter 3.2 --- Identity Based Encryption --- p.27Chapter 3.3 --- Identity Based Signcryption --- p.27Chapter 3.4 --- Identity Based Blind Signatures --- p.28Chapter 3.5 --- Identity Based Group Signatures --- p.28Chapter 3.6 --- Hierarchical Identity Based Cryptography --- p.29Chapter 4 --- Blind Identity Based Signcryption --- p.30Chapter 4.1 --- Schnorr's ROS problem --- p.31Chapter 4.2 --- BIBSC and Enhanced IBSC Security Model --- p.32Chapter 4.2.1 --- Enhanced IBSC Security Model --- p.33Chapter 4.2.2 --- BIBSC Security Model --- p.36Chapter 4.3 --- Efficient and Secure BIBSC and IBSC Schemes --- p.38Chapter 4.3.1 --- Efficient and Secure IBSC Scheme --- p.38Chapter 4.3.2 --- The First BIBSC Scheme --- p.43Chapter 4.4 --- Generic Group and Pairing Model --- p.47Chapter 4.5 --- Comparisons --- p.52Chapter 4.5.1 --- Comment for IND-B --- p.52Chapter 4.5.2 --- Comment for IND-C --- p.54Chapter 4.5.3 --- Comment for EU --- p.55Chapter 4.6 --- Additional Functionality of Our Scheme --- p.56Chapter 4.6.1 --- TA Compatibility --- p.56Chapter 4.6.2 --- Forward Secrecy --- p.57Chapter 4.7 --- Chapter Conclusion --- p.57Chapter 5 --- Identity Based Group Signatures --- p.59Chapter 5.1 --- New Intractability Assumption --- p.61Chapter 5.2 --- Security Model --- p.62Chapter 5.2.1 --- Syntax --- p.63Chapter 5.2.2 --- Security Notions --- p.64Chapter 5.3 --- Constructions --- p.68Chapter 5.3.1 --- Generic Construction --- p.68Chapter 5.3.2 --- An Instantiation: IBGS-SDH --- p.69Chapter 5.4 --- Security Theorems --- p.73Chapter 5.5 --- Discussions --- p.81Chapter 5.5.1 --- Other Instantiations --- p.81Chapter 5.5.2 --- Short Ring Signatures --- p.82Chapter 5.6 --- Chapter Conclusion --- p.82Chapter 6 --- Hierarchical IBS without Random Oracles --- p.83Chapter 6.1 --- New Intractability Assumption --- p.87Chapter 6.2 --- Security Model: HIBS and HIBSC --- p.89Chapter 6.2.1 --- HIBS Security Model --- p.89Chapter 6.2.2 --- Hierarchical Identity Based Signcryption (HIBSC) --- p.92Chapter 6.3 --- Efficient Instantiation of HIBS --- p.95Chapter 6.3.1 --- Security Analysis --- p.96Chapter 6.3.2 --- Ordinary Signature from HIBS --- p.101Chapter 6.4 --- Plausibility Arguments for the Intractability of the OrcYW Assumption --- p.102Chapter 6.5 --- Efficient HIBSC without Random Oracles --- p.103Chapter 6.5.1 --- Generic Composition from HIBE and HIBS --- p.104Chapter 6.5.2 --- Concrete Instantiation --- p.105Chapter 6.6 --- Chapter Conclusion --- p.107Chapter 7 --- Conclusion --- p.108Bibliography --- p.10

    Soft Error Resistant Design of the AES Cipher Using SRAM-based FPGA

    Get PDF
    This thesis presents a new architecture for the reliable implementation of the symmetric-key algorithm Advanced Encryption Standard (AES) in Field Programmable Gate Arrays (FPGAs). Since FPGAs are prone to soft errors caused by radiation, and AES is highly sensitive to errors, reliable architectures are of significant concern. Energetic particles hitting a device can flip bits in FPGA SRAM cells controlling all aspects of the implementation. Unlike previous research, heterogeneous error detection techniques based on properties of the circuit and functionality are used to provide adequate reliability at the lowest possible cost. The use of dual ported block memory for SubBytes, duplication for the control circuitry, and a new enhanced parity technique for MixColumns is proposed. Previous parity techniques cover single errors in datapath registers, however, soft errors can occur in the control circuitry as well as in SRAM cells forming the combinational logic and routing. In this research, propagation of single errors is investigated in the routed netlist. Weaknesses of the previous parity techniques are identified. Architectural redesign at the register-transfer level is introduced to resolve undetected single errors in both the routing and the combinational logic. Reliability of the AES implementation is not only a critical issue in large scale FPGA-based systems but also at both higher altitudes and in space applications where there are a larger number of energetic particles. Thus, this research is important for providing efficient soft error resistant design in many current and future secure applications

    Law and Policy for the Quantum Age

    Get PDF
    Law and Policy for the Quantum Age is for readers interested in the political and business strategies underlying quantum sensing, computing, and communication. This work explains how these quantum technologies work, future national defense and legal landscapes for nations interested in strategic advantage, and paths to profit for companies

    The Proceedings of 15th Australian Information Security Management Conference, 5-6 December, 2017, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fifteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The papers cover topics from vulnerabilities in “Internet of Things” protocols through to improvements in biometric identification algorithms and surveillance camera weaknesses. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Twenty two papers were submitted from Australia and overseas, of which eighteen were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conference. To our sponsors, also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Authentication and Data Protection under Strong Adversarial Model

    Get PDF
    We are interested in addressing a series of existing and plausible threats to cybersecurity where the adversary possesses unconventional attack capabilities. Such unconventionality includes, in our exploration but not limited to, crowd-sourcing, physical/juridical coercion, substantial (but bounded) computational resources, malicious insiders, etc. Our studies show that unconventional adversaries can be counteracted with a special anchor of trust and/or a paradigm shift on a case-specific basis. Complementing cryptography, hardware security primitives are the last defense in the face of co-located (physical) and privileged (software) adversaries, hence serving as the special trust anchor. Examples of hardware primitives are architecture-shipped features (e.g., with CPU or chipsets), security chips or tokens, and certain features on peripheral/storage devices. We also propose changes of paradigm in conjunction with hardware primitives, such as containing attacks instead of counteracting, pretended compliance, and immunization instead of detection/prevention. In this thesis, we demonstrate how our philosophy is applied to cope with several exemplary scenarios of unconventional threats, and elaborate on the prototype systems we have implemented. Specifically, Gracewipe is designed for stealthy and verifiable secure deletion of on-disk user secrets under coercion; Hypnoguard protects in-RAM data when a computer is in sleep (ACPI S3) in case of various memory/guessing attacks; Uvauth mitigates large-scale human-assisted guessing attacks by receiving all login attempts in an indistinguishable manner, i.e., correct credentials in a legitimate session and incorrect ones in a plausible fake session; Inuksuk is proposed to protect user files against ransomware or other authorized tampering. It augments the hardware access control on self-encrypting drives with trusted execution to achieve data immunization. We have also extended the Gracewipe scenario to a network-based enterprise environment, aiming to address slightly different threats, e.g., malicious insiders. We believe the high-level methodology of these research topics can contribute to advancing the security research under strong adversarial assumptions, and the promotion of software-hardware orchestration in protecting execution integrity therein
    corecore