
Generic Construction of Public-key Authenticated

Encryption with Keyword Search Revisited: Stronger Security and

Efficient Construction∗

Keita Emura§

§National Institute of Information and Communications Technology (NICT), Japan.

June 5, 2023

Abstract

Public-key encryption with keyword search (PEKS) does not provide trapdoor privacy, i.e.,
keyword information is leaked through trapdoors. To prevent this information leakage, public
key authenticated encryption with keyword search (PAEKS) has been proposed, where a sender’s
secret key is required for encryption, and a trapdoor is associated with not only a keyword but
also the sender. Liu et al. (ASIACCS 2022) proposed a generic construction of PAEKS based
on word-independent smooth projective hash functions (SPHFs) and PEKS. In this paper,
we propose a new generic construction of PAEKS. The basic construction methodology is the
same as that of the Liu et al. construction, where each keyword is converted into an extended
keyword using SPHFs, and PEKS is used for extended keywords. Nevertheless, our construction
is more efficient than Liu et al.’s in the sense that we only use one SPHF, but Liu et al.
used two SPHFs. In addition, for consistency we considered a security model that is stronger
than Liu et al.’s. Briefly, Liu et al. considered only keywords even though a trapdoor is
associated with not only a keyword but also a sender. Thus, a trapdoor associated with a
sender should not work against ciphertexts generated by the secret key of another sender, even
if the same keyword is associated. Our consistency definition considers a multi-sender setting
and captures this case. In addition, for indistinguishability against chosen keyword attack
(IND-CKA) and indistinguishability against inside keyword guessing attack (IND-IKGA), we
use a stronger security model defined by Qin et al. (ProvSec 2021), where an adversary is
allowed to query challenge keywords to the encryption and trapdoor oracles. We also highlight
several issues associated with the Liu et al. construction in terms of hash functions, e.g., their
construction does not satisfy the consistency that they claimed to hold.

1 Introduction

For providing a search functionality against encrypted keyword, public key encryption with key-
word search (PEKS) has been proposed by Boneh et al. [7]. As a feasibility result, PEKS can

∗An extended abstract appeared at ACMAPKC 2022 [16]. In this version, we give security proofs that were omitted
in the proceedings version. Moreover, we reconsider the feasibility of the proposed generic construction according to
the comment by Cheng and Meng [11], where the Benhamouda et al. word independent-SPHF construction, which
was considered as a building block of the proposed generic construction, requires a super-polynomial modulus q to
get statistical correctness. In this version, we explicitly mention that, at the expense of correctness error, we can
employ the Li-Wang word-independent approximate SPHF [26] that provides approximate correctness.

1

be generically constructed from anonymous identity-based encryption (IBE) [1]. PEKS is briefly
explained as follows. A sender encrypts a keyword using a receiver public key. A receiver generates
a token to search for a keyword, called trapdoor, using the receiver’s secret key. Then, based on
the test algorithm, anyone can determine whether a ciphertext is an encryption of a keyword using
a trapdoor. The test algorithm outputs 1 if the two keywords used for encryption and trapdoor
generation are the same. In addition to this correctness, consistency is required, with the test
algorithm outputting 0 if the two keywords used for encryption and trapdoor generation differ.
Moreover, it is required that no information of keyword is leaked from ciphertexts. Unfortunately,
PEKS does not provide trapdoor privacy, that is, information of keyword is leaked from trapdoors.
More concretely, one can freely generate a ciphertext of an arbitrary-chosen keyword using the
receiver’s public key. Thus, when one obtains a trapdoor, one can check whether the trapdoor is
associated to the keyword via the test algorithm.1 One way to prevent the keyword guessing attack
is to restrict searching, and another way is to restrict encryption.

The former approach is called designated-tester PEKS [3,17–19,21,35–37]. A server, who runs
the test algorithm, also has a public key and a secret key pair. A sender, who generates a ciphertext,
encrypts a keyword using both a receiver public key and the server public key. Then, the server
secret key is required for running the test algorithm, in addition to a trapdoor. In the designated-
tester setting, preventing the keyword guessing attack is relatively easy as mentioned by Chen [9],
where a receiver encrypts a trapdoor by using the server public key and sends the ciphertext to the
server (i.e., trapdoors are ciphertexts). The server still can run the test algorithm by decrypting the
ciphertext and obtaining the trapdoor. This simple modification works well since no information of
keyword is leaked owing to the encryption. As in Abdalla et al. generic construction of PEKS [1],
designated-tester PEKS can be generically constructed from anonymous IBE [17, 35]. Though
these generic constructions do not provide trapdoor privacy because a trapdoor is a secret key of
the underlying IBE scheme, they can be easily modified to provide trapdoor privacy by employing
the Chen observation above.

The latter approach is called public key authenticated encryption with keyword search (PAEKS)
[10,12,22,28,29,29,31–34], and we focus on PAEKS in this paper. A sender, who generates a cipher-
text, has a public key and a secret key pair. The sender encrypts a keyword using both a receiver’s
public key and the sender’s secret key. A trapdoor is associated with both a keyword and a sender’s
public key. That is, the trapdoor only works against ciphertexts generated by the corresponding
sender’s secret key. Currently, two generic constructions of PAEKS have been proposed [28, 29].
Liu et al. [29] claimed that the construction proposed in [28] does not follow the syntax of PAEKS
because it requires a trusted authority to assist users in generating their private keys. More pre-
cisely, the setup algorithm outputs a master secret key, and other sender/receiver key generations
require the master secret key. Thus, we mainly consider the Liu et al. generic construction [29]
in this paper. They employed word-independent smooth projective hash functions (SPHFs) [5,25].
Each keyword is converted into an extended keyword using SPHF, and they employed PEKS for
these extended keywords. We revisit their construction methodology in Section 4.

Our Contribution. In this paper, we propose a new generic construction of PAEKS from public
key encryption (PKE), word-independent SPHF (WI-SPHF), pseudorandom function (PRF), and
PEKS, and no random oracles are employed. The basic construction methodology is the same as
that of the Liu et al. construction. Nevertheless, our construction is more efficient than the Liu et

1Boneh, Raghunathan, and Segev proposed function-private IBE [8]. They showed that function-private IBE (with
anonymity) can be used for constructing PEKS schemes that are provably keyword private. Concretely, a trapdoor
enables to identify encryptions of an underlying keyword, while not revealing any additional information about the
keyword beyond the minimum necessary, as long as the keyword is sufficiently unpredictable. Owing to the search
functionality of PEKS, it is inevitable to leak information of keyword as mentioned.

2

al. construction in the sense that we just employ one SPHF but Liu et al. employed two SPHFs.
Moreover, for consistency we consider a stronger security model than that of Liu et al. Briefly, they
just considered keywords while a trapdoor is associated with not only a keyword but also a sender.
So, a trapdoor associated to a sender should not work against ciphertexts generated by a secret
key of other sender, even if the same keyword is associated. Our definition considers a multi-sender
setting, and captures this case. In addition, for indistinguishability against chosen keyword attack
(IND-CKA) and indistinguishability against inside keyword guessing attack (IND-IKGA) (defined
in Section 3.2), we employ a stronger security model defined by Qin et al. [34] where an adversary
is allowed to query challenge keywords to the encryption and trapdoor oracles (though we modify
it in accordance with our syntax).

We also point out there are several issues in the Liu et al. proposal regarding their construction
and security models (See Section 4.2 in detail). The main issue is related to hash functions they
employed. First, their construction does not satisfy the consistency requirement that they claimed
to hold. Second, they assume that a hash value does not leak input information, but it is not
guaranteed by the one-wayness of hash functions. These issues may be solved by introducing other
consistency definitions and by assuming that the underlying hash functions are modeled as random
oracles. Besides these issues, they considered a weak security model, as previously mentioned.

We introduce a designated-receiver setting, where the sender key generation algorithm takes as
input a receiver’s public key. The setting allows us to remove a trusted setup assumption. In other
words, if we assume a trusted setup, we do not have to introduce the designated-receiver setting.
See Section 3.1 in detail.

Disclaimer. We checked the ePrint version of Liu et al. paper, Version 3, posted on 23-Nov-
2021 [27] that is the same as their AsiaCCS 2022 version [29] as they declared. According to my
comments in [16], they have updated the ePrint paper and the latest version so far is Version 6,
posted on 19-Apr-2022. We decline to check whether their update appropriately addressed my
comments.

2 Preliminaries

Notations. For a positive integer n ∈ N, we write [1, n] = {1, 2, . . . , n}. If A is a probabilistic
algorithm, y ← A(x; r) denotes the operation of running A on an input x and a randomness r, and

letting y be the output. We omit r when it is not necessary to specify. x
$←− S denotes choosing

an element x from a finite set S uniformly at random. For a security parameter λ, negl(λ) is a
negligible function where for any c > 0, there exists an integer I such that negl(λ) < 1/λc for all
λ > I.

2.1 Pseudorandom Functions (PRFs)

Let m and ℓ be polynomial and λ be a security parameter. A pseudorandom function (PRF) is a
family of functions PRF = {FK : {0, 1}m(λ) → {0, 1}ℓ(λ)} where K ∈ {0, 1}λ.

Definition 1 (Pseudo-randomness). We say that PRF is pseudo-random if for all probabilistic

polynomial-time (PPT) adversaries A, Advpseudo-randomPRF,A (λ) := |Pr[K $←− {0, 1}λ : AFK(·)(1λ) =

1] − Pr[R
$←− RF : AR(·)(1λ) = 1]| is negligible in the security parameter λ where RF is a set of

random functions mapping m(λ) bits to ℓ(λ) bits.

3

2.2 Public Key Encryption (PKE)

A PKE scheme PKE consists of three algorithms (PKE.KeyGen,PKE.Enc,PKE.Dec). The key gen-
eration algorithm PKE.KeyGen takes a security parameter λ as input, and outputs a public key
pkPKE and a secret key dkPKE. The encryption algorithm takes pkPKE and a plaintext M ∈MS as
input, whereMS is a message space, and outputs a ciphertext ctPKE. When we need to explicitly
treat the randomness ρ for encryption, we denote ctPKE ← PKE.Enc(pkPKE,M ; ρ). The decryption
algorithm PKE.Dec takes dkPKE and ctPKE as input, and outputs M . For correctness, it is re-
quired that for any security parameter λ, any (pkPKE, dkPKE)← PKE.KeyGen(1λ) and any plaintext
M ∈ MS, Pr[PKE.Dec(dkPKE,PKE.Enc(pkPKE,M)) = M] = 1 − negl(λ) holds. We also require
that the standard indistinguishability against chosen plaintext attack (IND-CPA) holds. Let state
be state information that A can preserve any information, and state is used for transferring state
information to the other stage.

Definition 2 (IND-CPA). For all PPT adversaries A, we define the following experiment:

ExpIND-CPA
PKE,A (λ) :

(pkPKE, dkPKE)← PKE.KeyGen(1λ)

(M∗
0 ,M

∗
1 , state)← A(pkPKE) s.t. M∗

0 ,M
∗
1 ∈MS ∧M∗

0 ̸= M∗
1 ∧ |M∗

0 | = |M∗
1 |

b
$←− {0, 1}; ct∗PKE ← PKE.Enc(pkPKE,M

∗
b)

b′ ← A(ct∗PKE, state)
If b = b′ then output 1 and 0 otherwise.

We say that a PKE scheme PKE is IND-CPA secure if the advantage

AdvIND-CPA
PKE,A (λ) := |Pr[ExpIND-CPA

PKE,A (λ) = 1]− 1/2| < negl(λ)

2.3 Word-independent Smooth Projective Hash Functions (WI-SPHFs)

Cramer and Shoup proposed hash proof systems (HPSs) [13], which are special kind of non-
interactive zero-knowledge proof systems for a language, for constructing PKE. Later, several
applications of HPSs have been considered such as password-based authenticated key exchange
(PAKE) (e.g., [5, 25]). In this paper, we employ word-independent smooth projective hash func-
tions (WI-SPHFs) (which are also called KV-SPHF [5] in reference to [25]). We introduce the
definition given by Benhamouda et al. [6].

Definition 3 (Languages). Let Setup.lpar be a PPT algorithm that takes a security parameter λ
as input, and outputs (lpar, ltrap) where lpar is a parameter and ltrap is a trapdoor. Llpar,ltrap is a

language indexed by (lpar, ltrap) together with an NP language indexed by lpar L̃lpar, with witness

relation R̃lpar such that L̃lpar = {χ ∈ Xlpar | ∃w s.t. R̃lpar(χ,w) = 1} ⊆ Llpar,ltrap ⊆ Xlpar. We

denote (L̃lpar,Llpar,ltrap,Xlpar)lpar,ltrap as a family of languages.

Next, we define languages of ciphertexts. Benhamouda et al. [6] introduced languages of cipher-
texts for a labeled PKE scheme. More precisely, Benhamouda et al. defined the languages for
a IND-CCA2 secure labeled PKE scheme that is converted from (a simplified variant of) the
tag-IND-CCA2 secure Micciancio-Peikert PKE scheme [30] using the Dolev-Dwork-Naor (DDN)
transformation [14]. Then, they also showed that the tag PKE scheme is IND-CPA secure when
the tag of the ciphertext is known in advance or is constant, and proposed a WI-SPHF for IND-
CPA ciphertexts. Since we need to employ the WI-SPHF, we focus on their languages of IND-CPA

4

ciphertexts. Since the tag/label can be a constant value, it can be included in pkPKE in advance,
and then we do not have to consider tag/label anymore. Thus, we define languages of ciphertexts
for a standard PKE scheme (defined in Section 2.2). Moreover, Benhamouda et al. focused on the
languages of ciphertexts of 0, we also consider such ciphertexts as follows.

Definition 4 (Languages of Ciphertexts [6]). Let PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) be a
PKE scheme. The Setup.lpar algorithm is set as PKE.KeyGen, and (lpar, ltrap) = (pkPKE, dkPKE).

Then, languages of ciphertexts are defined as L̃pkPKE = {ctPKE | ∃ρ s.t. ctPKE = PKE.Enc(pkPKE, 0; ρ)}
⊆ LpkPKE,dkPKE = {ctPKE | PKE.Dec(dkPKE, ctPKE) = 0} where XpkPKE is a set of valid ciphertexts

generated by pkPKE. Here, R̃lpar(ctPKE, ρ) = 1 iff ctPKE = PKE.Enc(pkPKE, 0; ρ).

In the actual Benhamouda et al. construction, dual-Regev ciphertexts of 0 is considered: c =
As+ e ∈ Zm

q where A ∈ Zm×n
q is a public matrix, s ∈ Zn

q and e ∈ Zm
q are the randomness. If e is

supposed to be small, then c is close to the q-ary lattice Λ generated by A. On the other hand, if c
is an encryption of 1, then c is far from the q-ary lattice Λ generated by A. Thus, whether a word
c belongs to L̃pkPKE (i.e., a ciphertext of 0) or XpkPKE \LpkPKE (i.e., a ciphertext whose decryption
result is 1) is indistinguishable owing to the IND-CPA security of PKE. Obviously, the membership
in LpkPKE,dkPKE can be checked in polynomial time by dkPKE.

Next, we define the syntax of WI-SPHF. Here, the term “word independent” means that the
ProjKG algorithm does not take a word χ ∈ Xlpar as an input, and the smoothness (defined below)
holds even if the word is chosen adaptively after seeing the projection key (thus, the smoothness is
called adaptive smoothness).

Definition 5 (Syntax of Word-independent SPHF [6]). Let (L̃lpar,Llpar,ltrap,Xlpar)lpar,ltrap be a
family of languages. A word-independent SPHF WI-SPHF for these languages consists of four
algorithms (HashKG,ProjKG,Hash,ProjHash) defined as follows. Let λ be a security parameter used
for running the Setup.lpar algorithm.

HashKG: The hash key generation algorithm takes lpar as input, and outputs a hashing key hk.

ProjKG: The projection key derivation algorithm takes hk and lpar as input, and outputs a projection
key hp.

Hash: The hash algorithm takes hk, lpar, and a word χ ∈ Xlpar as input, and outputs a hash value
H ∈ {0, 1}ν for some positive integer ν = Ω(λ).

ProjHash: The projected hash algorithm takes hp, lpar, χ, and the witness w for the word χ ∈ L̃lpar

as input, and outputs a projected hash value pH ∈ {0, 1}ν .

Definition 6 (Approximate Correctness [6]). For any security parameter λ, let (lpar, ltrap) ←
Setup.lpar(1λ). With overwhelming probability over the randomness of Setup.lpar, for any χ ∈ L̃lpar

and associated witness w, H← Hash(hk, lpar, χ) is approximately determined by hp← ProjKG(hk, lpar)
relative to the Hamming distance HD where Pr[HD(Hash(hk, lpar, χ),ProjHash(hp, lpar, χ, w)) >
ϵ · ν] = negl(λ). Here, the probability is taken over the choice of hk ← HashKG(lpar) and the
randomness of Hash and ProjHash.2 Then, we say that WI-SPHF is approximately ϵ-correct. More-
over, we say that WI-SPHF is statistically correct if it is 0-correct.

We remark that Benhamouda et al. first constructed a word-independent bit-PHF for languages
of IND-CPA ciphertexts, where the hash value is just a bit (i.e., ν = 1). Next they showed that

2As mentioned by Benhamouda et al., they considered probabilistic Hash and ProjHash algorithms.

5

a WI-SPHF, with the output length {0, 1}ν where ν = Ω(λ), can be constructed from a word-
independent bit-PHF generically (Lemma B.4 [6]). Here, the original word-independent bit-PHF is
supposed to be statistically correct (if it is approximate ϵ-correct, then the converted SPHF is not
word-independent due to additional error correcting codes, even the underlying bit-PHF is word-
independent). Benhamouda et al. showed how to construct a bit-PHF with statistical correctness
(Lemma 4.1 [6]). Li and Wang [26] also proposed a word-independent approximate SPHF without
employing error correcting codes which can also be employed in our construction.

Definition 7 (Adaptive Smoothness [6]). For any security parameter λ, let (lpar, ltrap)← Setup.lpar(1λ).
With overwhelming probability over the randomness of Setup.lpar, for all functions f onto Xlpar \
Llpar, the following two distributions have statistical distance negligible in λ: {(lpar, f(hp), hp,H)|hk←
HashKG(lpar), hp ← ProjKG(hk, lpar),H ← Hash(hk, lpar, f(hp))} and {(lpar, f(hp), hp,H)|hk ←
HashKG(lpar), hp← ProjKG(hk, lpar),H

$←− {0, 1}ν}.

2.4 Public-key Encryption with Keyword Search (PEKS)

In this section, we introduce the definitions of PEKS given in [1].

Definition 8 (Syntax of PEKS [1]). A PEKS scheme PEKS consists of four algorithms (PEKS.KG,
PEKS.Enc,PEKS.Trapdoor,PEKS.Test) defined as follows.

PEKS.KG: The key generation algorithm takes a security parameter λ as input, and outputs a public
key pkPEKS and a secret key skPEKS. We assume that pkPEKS implicitly contains the keyword
space KS.

PEKS.Enc: The keyword encryption algorithm takes pkPEKS and a keyword kw ∈ KS as input, and
outputs a ciphertext ctPEKS.

PEKS.Trapdoor: The trapdoor algorithm takes pkPEKS, skPEKS, and a keyword kw ∈ KS as input,
and outputs a trapdoor tdkw.

PEKS.Test: The test algorithm takes ctPEKS and tdkw as input, and outputs 1 or 0.

In accordance with the definition given in [1], correctness and consistency are separately defined.
Briefly, for a ciphertext of a keyword kw and a trapdoor of a keyword kw′, the former guarantees
that the PEKS.Test algorithm outputs 1 if kw = kw′, and the latter guarantees that the PEKS.Test
algorithm outputs 0 if kw ̸= kw′. We emphasize that we employ computational consistency, i.e.,
consistency holds against computationally bounded adversaries.

Definition 9 (Correctness [1]). For any security parameter λ, any key pairs (pkPEKS, skPEKS) ←
PEKS.KG(1λ) and any keyword kw ∈ KS, let ctPEKS ← PEKS.Enc(pkPEKS, kw) and tdkw ←
PEKS.Trapdoor(pkPEKS, skPEKS, kw). Then Pr[PEKS.Test(ctPEKS, tdkw) = 1] = 1− negl(λ) holds.

Definition 10 (Computational Consistency [1]). For all PPT adversaries A, we define the fol-
lowing experiment:

ExpconsistPEKS,A(λ) :

(pkPEKS, skPEKS)← PEKS.KG(1λ)

(kw, kw′)← A(pkPEKS) s.t. kw, kw′ ∈ KS ∧ kw ̸= kw′

ctPEKS ← PEKS.Enc(pkPEKS, kw)

tdkw′ ← PEKS.Trapdoor(pkPEKS, skPEKS, kw
′)

If PEKS.Test(ctPEKS, tdkw′) = 1 then output 1 and 0 otherwise.

6

We say that a PEKS scheme PEKS is consistent if the advantage

AdvconsistPEKS,A(λ) := Pr[ExpconsistPEKS,A(λ) = 1]

is negligible in the security parameter λ.

Next, we define ciphertext indistinguishability against chosen keyword attack (IND-CKA)3 which
guarantees that no information of keyword is leaked from ciphertexts.

Definition 11 (IND-CKA [1]). For all PPT adversaries A, we define the following experiment:

ExpIND-CKA
PEKS,A (λ) :

(pkPEKS, skPEKS)← PEKS.KG(1λ)

(kw∗
0, kw

∗
1, state)← AOT (pkPEKS,skPEKS,·)(pkPEKS) s.t. kw

∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; ct∗PEKS ← PEKS.Enc(pkPEKS, kw

∗
b)

b′ ← AOT (pkPEKS,skPEKS,·)(state, ct∗PEKS)

If b = b′ then output 1 and 0 otherwise.

OT takes kw ∈ KS as input, and returns tdkw ← PEKS.Trapdoor(pkPEKS, skPEKS, kw). Here kw ̸∈
{kw∗

0, kw
∗
1}. We say that a PEKS scheme PEKS is IND-CKA secure if the advantage

AdvIND-CKA
PEKS,A (λ) := |Pr[ExpIND-CKA

PEKS,A (λ) = 1]− 1/2| < negl(λ)

is negligible in the security parameter λ.

We emphasize that PEKS does not provide trapdoor privacy, i.e., information of kw is leaked from
tdkw. Actually, for some trapdoor tdkw, anyone can compute ctPEKS ← PEKS.Enc(pkPEKS, kw

′) for
any kw′ ∈ KS, and then anyone can check whether kw = kw′ or not by running PEKS.Test(ctPEKS, tdkw).

3 Definitions of Designated-Receiver Multi-Sender PAEKS

3.1 Designated-Receiver Setting

In the previous definition [10, 12, 22, 29, 31–34], a setup algorithm is defined that takes a security
parameter as input, and outputs a public parameter pp. Then, two key generation algorithms,
PAEKS.KGR and PAEKS.KGS, are defined which take as input pp, and output a key pair, respectively.
In our definition, the sender key generation algorithm PAEKS.KGS takes a receiver public key pkR
as input, i.e., our definition captures a designated-receiver setting.

One may think that this setting restricts the flexibility of key generations. However, a sender
needs to designate a receiver before the sender encrypts a keyword. Then, due to the functionality of
PAEKS, the sender needs to use its own secret key skS. Since the sender has designated the receiver,
the designated-receiver key generation does not restrict encryption. Of course, the designated-
receiver setting restricts the order of searching, i.e., no trapdoor can be generated before the
corresponding sender’s public key is generated. Beyond this restriction, there is a merit of the
designated-receiver setting that can avoid introducing a trusted setup. It is required in the Liu
et al. construction [29] that no one knows a decryption key dkPKE of the underlying PKE scheme
because dkPKE = ltrap can be used to break the underlying membership problem. Thus, the setup

3In [1], this security notion is called PEKS-IND-CPA.

7

algorithm outputs pkPKE only. Liu et al. introduced a hash function that generates pkPKE (it seems
to guarantee that there is no corresponding decryption key). However, how to construct such a
hash function is unclear (we will discuss it in detail in Section 4.2). In the designated-receiver
setting, the PAEKS.KGR algorithm simply runs (pkPKE, dkPKE) ← PKE.KeyGen(1λ) and dkPKE can
be regarded as a secret key of the receiver. Then, we do not have to consider how to erase dkPKE
anymore (we will show that giving dkPKE to a receiver does not affect security). In other words, if
we assume a trusted setup, where a setup algorithm runs (pkPKE, dkPKE)← PKE.KeyGen(1λ), erase
dkPKE and outputs pkPKE only as a public parameter, we do not have to introduce the designated-
receiver setting. However, it would be better to clarify who can know dkPKE. In this sense, our
setting is more desirable.

3.2 Definitions of PAEKS

Owing to the functionality of PAEKS, a trapdoor is associated with not only a keyword kw but
also a sender by indicating the sender’s public key pkS. Thus, we explicitly denote a trapdoor
tdS,kw. Because we consider multiple senders, the PAEKS.KGS algorithm is run by each sender.
For simplicity, we assume that there are n senders, and we denote the i-th sender’s key pair as
(pkS[i], skS[i]) where i ∈ [1, n] is the sender index, and denote tdS[i],kw as a trapdoor generated by
indicating pkS[i] and kw. We use (pkS, skS) and tdS,kw when no sender index is explicitly appeared.

Definition 12 (Syntax of Designated-Receiver Multi-Sender PAEKS). A PAEKS scheme PAEKS
consists of five algorithms (PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,PAEKS.Trapdoor,PAEKS.Test) de-
fined as follows.

PAEKS.KGR: The receiver key generation algorithm takes a security parameter λ as input, and
outputs a public key pkR and a secret key skR. We assume that pkR implicitly contains the
keyword space KS.

PAEKS.KGS: The sender key generation algorithm takes pkR as input, and outputs a public key pkS
and a secret key skS.

PAEKS.Enc: The keyword encryption algorithm takes pkR, pkS, skS, and a keyword kw ∈ KS as
input, and outputs a ciphertext ctPAEKS.

PAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, and a keyword kw ∈ KS as input,
and outputs a trapdoor tdS,kw.

PAEKS.Test: The test algorithm takes ctPAEKS and tdS,kw as input, and outputs 1 or 0.

Definition 13 (Correctness). For any security parameter λ, any key pairs (pkR, skR)← PAEKS.KGR(1
λ)

and (pkS, skS)← PAEKS.KGS(pkR), and any keyword kw ∈ KS, let ctPAEKS ← PAEKS.Enc(pkR, pkS,
skS, kw) and tdS,kw ← PAEKS.Trapdoor(pkR, pkS, skR, kw). Then Pr[PAEKS.Test(ctPAEKS, tdS,kw) =
1] = 1− negl(λ) holds.

Next, we define consistency. Previous works employ the following definition: as in the same setting
of the correctness, except for two keywords kw, kw′ ∈ KS,

Pr[PAEKS.Test(ctPAEKS, tdS,kw′) = 0] = 1− negl(λ)

holds where ctPAEKS is a ciphertext of kw, tdS,kw′ is a trapdoor of kw′, and kw ̸= kw′. Before giving
our definition, we point out two problems of this previous definition.

8

1. It captures statistical consistency where it requires to hold even against computationally
unbounded adversaries. However, the previous schemes do not satisfy this definition because
they used a collision-resistant hash function for providing consistency (i.e., if kw ̸= kw′, then
its hash values are supposed to be different). That is, there “exists” kw and kw′ such that its
hash values are the same but kw ̸= kw′ and computationally unbounded adversaries can find
them. Thus, we need to consider computationally bounded adversaries. Of course, there is a
room for providing statistical consistency as in a PEKS scheme given by Abdalla et al. [1].
We remark that the construction methodology of the statistically consistent Abdalla et al.
PEKS scheme completely contradicts trapdoor privacy because a keyword itself is contained
in a trapdoor (this setting does not contradict to provide IND-CKA). Thus it seems difficult
to construct a statistically consistent PAEKS scheme with trapdoor privacy (though we do
not exclude the possibility). Thus, in this paper we define computational consistency that
considers PPT adversaries.

2. The previous definitions only considered keywords, however, a trapdoor is associated with
not only a keyword kw but also a sender by indicating the sender’s public key pkS. Thus, for
ctPAEKS ← PAEKS.Enc(pkR, pkS[0], skS[0], kw) and tdS[1],kw′ ← PAEKS.Trapdoor(pkR, pkS[1], skR,
kw′), PAEKS.Test(ctPAEKS, tdS[1],kw′) = 0 should hold even if kw = kw′. This case is not
captured in the previous definition. We consider this case by setting (kw, i) ̸= (kw′, j) in the
experiment.

Definition 14 (Computational Consistency). For all PPT adversaries A, we define the following
experiment:

ExpconsistPAEKS,A(λ) :

(pkR, skR)← PAEKS.KGR(1
λ)

(pkS[0], skS[0])← PAEKS.KGS(pkR); (pkS[1], skS[1])← PAEKS.KGS(pkR)

(kw, kw′, i, j)← A(pkR, pkS[0], pkS[1]) s.t. kw, kw′ ∈ KS ∧ i, j ∈ {0, 1} ∧ (kw, i) ̸= (kw′, j)

ctPAEKS ← PAEKS.Enc(pkR, pkS[i], skS[i], kw); tdS[j],kw′ ← PAEKS.Trapdoor(pkR, pkS[j], skR, kw
′)

If PAEKS.Test(ctPAEKS, tdS[j],kw′) = 1 then output 1 and 0 otherwise.

We say that a PAEKS scheme PAEKS is consistent if the advantage

AdvconsistPAEKS,A(λ) := Pr[ExpconsistPAEKS,A(λ) = 1]

is negligible in the security parameter λ.

Next, we define two indistinguishability notions. First, we define ciphertext privacy by formalizing
indistinguishability against chosen keyword attack (IND-CKA) which guarantees that no informa-
tion of keyword is leaked from ciphertexts (as in PEKS). In the previous IND-CKA definition, two
oracles are defined, an encryption oracle OC and a trapdoor oracle OT . Then, two keywords, kw∗

0

and kw∗
1 are chosen by the adversary A, and the challenge ciphertext ct∗PAEKS is computed by either

kw∗
0 or kw∗

1. Here, we need to consider what values can be input to these oracles. To exclude
the trivial case, we need to restrict A to obtain a trapdoor that can be used for distinguishing
between kw∗

0 and kw∗
1. In other words, A should be allowed to obtain any trapdoor excluding the

above case, e.g., tdS,kw∗
0
← PAEKS.Trapdoor(pkR, pkS, skR, kw

∗
0) if skS is not used for generating the

challenge ciphertext. In almost previous definition, A is not allowed to input kw∗
0 and kw∗

1 to OC

and OT . Qin et al. [34] have improved this restriction where kw∗
0 and kw∗

1 can be inputs. They call

9

this security notion fully CI-security (Cipher-keyword Indistinguishability). For OT , the receiver is
fixed and it matches the multi-sender setting. For OC , the sender is fixed, and it does not consider
the multi-sender setting. Thus, we modify the definition of OC following the multi-sender setting.
Since OC has no restriction, our definition implies fully CI-security.

Definition 15 (IND-CKA). For all PPT adversaries A, we define the following experiment:

ExpIND-CKA
PAEKS,A(λ, n) :

(pkR, skR)← PAEKS.KGR(1
λ)

For i ∈ [1, n], (pkS[i], skS[i])← PAEKS.KGS(pkR)

(kw∗
0, kw

∗
1, i

∗, state)← AOC(pkR,·,·),OT (pkR,·,skR,·)(pkR, {pkS[i]}i∈[1,n])
s.t. kw∗

0, kw
∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1 ∧ i∗ ∈ [1, n]

b
$←− {0, 1}; ct∗PAEKS ← PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw

∗
b)

b′ ← AOC(pkR,·,·),OT (pkR,·,skR,·)(state, ct∗PAEKS)

If b = b′ then output 1 and 0 otherwise.

OC takes kw ∈ KS and i ∈ [1, n] as input, and returns the result of PAEKS.Enc(pkR, pkS[i], skS[i], kw).
Here, there is no restriction. OT takes kw ∈ KS and i ∈ [1, n] as input, and returns the result of
PAEKS.Trapdoor(pkR, pkS[i], skR, kw). Here (kw, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)}. We say that a PAEKS

scheme PAEKS is IND-CKA secure if the advantage

AdvIND-CKA
PAEKS,A(λ, n) := |Pr[ExpIND-CKA

PAEKS,A(λ, n) = 1]− 1/2|

is negligible in the security parameter λ.

Next, we define trapdoor privacy by formalizing indistinguishability against inside keyword guessing
attack (IND-IKGA) which guarantees that no information of keyword is leaked from trapdoors. To
exclude the trivial case, we need to restrict that A obtains a ciphertext that can be used for
distinguishing kw∗

0 or kw∗
1. Again we revisit Qin et al.’s definition [34]. For OT , the receiver is

fixed, and it matches the multi-sender setting. For OC the sender is fixed and it does not capture
the multi-sender setting. So, we modify the definition of OC in accordance with the multi-sender
setting. Cheng and Meng [11] introduced an IND-IKGA notion where OT has no restriction,
i.e., an adversary is allowed to obtain a trapdoor for (kw, i) ∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)}. They call

this security notion fully TI-security (Trapdoor Indistinguishability). Since OT has a restriction
(kw, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)} in our definition, our IND-IKGA does not imply fully TI-security.

Definition 16 (IND-IKGA). For all PPT adversaries A, we define the following experiment:

ExpIND-IKGA
PAEKS,A (λ, n) :

(pkR, skR)← PAEKS.KGR(1
λ)

For i ∈ [1, n], (pkS[i], skS[i])← PAEKS.KGS(pkR)

(kw∗
0, kw

∗
1, i

∗, state)

← AOC(pkR,·,·),OT (pkR,·,skR,·)(pkR, {pkS[i]}i∈[1,n]) s.t. kw∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1 ∧ i∗ ∈ [1, n]

b
$←− {0, 1}

td∗S[i∗],kw∗
b
← PAEKS.Trapdoor(pkR, pkS[i∗], skR, kw

∗
b)

b′ ← AOC(pkR,·,·),OT (pkR,·,skR,·)(state, td∗S[i∗],kw∗
b
)

If b = b′ then output 1 and 0 otherwise.

10

OC takes kw ∈ KS and i ∈ [1, n] as input, and returns the result of PAEKS.Enc(pkR, pkS[i], skS[i], kw).
Here, (kw, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)}. OT takes kw ∈ KS and i ∈ [1, n] as input, and returns the

result of PAEKS.Trapdoor(pkR, pkS[i], skR, kw). Here (kw, i) ̸∈ {(kw∗
0, i

∗), (kw∗
1, i

∗)}. We say that a
PAEKS scheme PAEKS is IND-IKGA secure if the advantage

AdvIND-IKGA
PAEKS,A (λ, n) := |Pr[ExpIND-IKGA

PAEKS,A (λ, n) = 1]− 1/2|

is negligible in the security parameter λ.

3.3 Relation among our definitions, fully CI/TI-security, and multi-ciphertext/multi-
trapdoor indistinguishability

As mentioned before, our IND-CKA definition implies fully CI-security since challenge keywords
can be input to the encryption oracle. On the contrary, our IND-IKGA definition does not imply
fully TI-security. That is, if A is allowed to send either (kw∗

0, i
∗) or (kw∗

1, i
∗) to the trapdoor oracle

(which is allowed in the fully TI-security model), two trapdoors may be linked, i.e., whether these
trapdoors are for the same keyword can be checked.

Qin et al. [33] considered multi-ciphertext indistinguishability (MCI) where in the IND-CKA
experiment A declares two keyword vectors (kw∗

0,1, . . . , kw
∗
0,N) and (kw∗

1,1, . . . , kw
∗
1,N) for some N ,

and the challenger returns the challenge ciphertexts of kw∗
b,i for i ∈ [1, N]. As mentioned in [34],

if the encryption oracle OC has no restriction (i.e., any input is allowed), then IND-CKA implies
MCI. Thus, our IND-CKA definition provides MCI security.

Similarly, Pan and Li [32] considered multi-trapdoor indistinguishability (MTI) where in the
IND-IKGA experiment A declares two keyword vectors (kw∗

0,1, . . . , kw
∗
0,N) and (kw∗

1,1, . . . , kw
∗
1,N)

for some N , and the challenger returns the challenge trapdoors of kw∗
b,i for i ∈ [1, N]. Our IND-

IKGA definition does not directly imply MTI since it does not imply fully TI-security. As mentioned
by Qin et al. [33], a trapdoor generation algorithm must be probabilistic to provide MTI. Because
Benhamouda et al. [6] introduced a probabilistic rounding function, our construction could provide
fully TI-security and MTI. However, adaptive smoothness guarantees that when (lpar, χ, hp) is
fixed, H← Hash(hk, lpar, f(hp)) is statistically close to uniform over {0, 1}ν , but it does not directly
guarantee unlinkability of two hash values, i.e., information whether two hash values are computed
by the same input or not might be leaked. We leave how to provide fully TI-security and MTI in
a generic construction as a future work.

4 Analysis of Liu et al. Generic Construction

In this section, we analyze the Liu et al. generic construction [29] from the viewpoint of security,
security models, efficiency, and instantiability of the generic construction.

4.1 Core Idea of Liu et al. Construction

First, we revisit the Liu et al. construction methodology as follows. Basically, they employed
the Katz-Vaikuntanathan password-based authenticated key exchange (PAKE) construction [25]
which is explained as follows. Let pkPKE be a common public key where no one knows the
corresponding dkPKE. A client (a sender in the PAEKS context) setups hkc ← HashKG(pkPKE)
and hpc ← ProjKG(hkc, pkPKE), and a server (a receiver in the PAEKS context) setups hks ←
HashKG(pkPKE) and hps ← ProjKG(hks, pkPKE), respectively. Here, hpc and hps are public keys
and hkc and hks are secret keys, respectively. The client generates an encryption C of the pass-
word pw using pkPKE, and the server also generates an encryption C ′ of the password pw using

11

pkPKE. Then, the shared key is shard-key := Hash(hkc, pkPKE, C
′) ⊕ ProjHash(hps, pkPKE, C, pw) =

Hash(hks, pkPKE, C)⊕ ProjHash(hpc, pkPKE, C
′, pw). The left-side of the equation can be computed

by the client using its secret key hkc and the witness pw, and the right-side of the equation can
be computed by the server using its secret key hks and the witness pw. The equation holds owing
to the (approximate) correctness of SPHF. Moreover, thanks to the word-independency, projected
keys, hpc and hps, can be public keys before seeing words (ciphertexts).

The basic idea of the Liu et al. PAEKS construction is to prepare an extended keyword
der-kw from a keyword kw by der-kw ← HF(kw, shard-key) where HF is a secure hash function (we
intentionally use “secure hash function” in accordance with the Liu et al. description). Then, a
ciphertext of der-kw is computed by the PEKS.Enc algorithm, and a trapdoor of der-kw is computed
by the PEKS.Trapdoor algorithm.

4.2 Issues of the Liu et al. Construction

Security. Here, we highlight two issues regarding the underlying hash function to derive an
extended keyword der-kw ← HF(kw, shard-key). We note that they claimed that their construction
is secure in the standard model. That is, HF is not modeled as a random oracle. Liu et al. required
that if kw ̸= kw′, then der-kw ̸= der-kw′. Thus, they implicitly assumed that HF is collision
resistant. However, there “exists” kw and kw′ such that kw ̸= kw′ and der-kw = der-kw′. Of
course we can assume that no PPT adversary can find them, but obviously the construction does
not provide statistical consistency. The first issue can be easily fixed by introducing computational
consistency. However, the second issue is more important. Since a PAEKS trapdoor for kw is
a PEKS trapdoor for der-kw, information of der-kw is leaked from the trapdoor (because PEKS
does not provide trapdoor privacy). They required that if shard-key is random, then der-kw is also
random, and assumed that a hash value does not leak input information. However, since HF is
not modeled as a random oracle, this claim does not hold even if HF provides one-wayness. These
issues seem to be fixed by assuming that HF is a random oracle.

Regarding a hash function, we highlight that their setup algorithm is also problematic. The
setup algorithm runs (pkPKE, dkPKE) ← PKE.KeyGen(1λ), chooses a plaintext MPKE ∈ MS, and
generates a common public key mpk← HF(pkPKE,MPKE) where HF is a secure hash function (here
we omit label from the input). Then, mpk is set as lpar of the underlying SPHF, and it is required
that no one knows the corresponding decryption key. First, since Setup.lpar = PKE.KeyGen, it is not
directly guaranteed that mpk works as lpar. Even if mpk is identical from a public key generated by
the PKE.KeyGen algorithm, second, how to switch a ciphertext (a word in the SPHF context) from

L̃lpar to Xlpar \Llpar in the security proof is unclear. This step is mandatory to utilize smoothness.4

Owing to the IND-CPA security of PKE, this can be switched (as in our security proof); however,
to do so, mpk must be generated by the challenger of the PKE scheme and set as the common
public key. Since mpk is a hash value in the Liu et al. construction, how to set mpk as the hash
value must be considered. This issue can be solved by assuming that HF is a random oracle (i.e.,
using the programmability of the random oracle). Alternatively, specifying pkPKE as a common
public key is sufficient (even though the corresponding decryption key needs to be erased, which
requires a trusted setup).

Security Model. In the definition of consistency (besides statistical or computational), they did
not consider the case “kw = kw′ and senders are different”, which is considered in our consistency

4Precisely, Liu et al. did not directly employ smoothness. They assumed that a hash value H of SPHF for a word
χ ∈ L̃lpar is random (they called it pseudo-randomness), and they switched H to be random without switching the

word from L̃lpar to Xlpar \ Llpar. Even if this argument is correct, still mpk = lpar needs to be set as a hash value
mpk← HF(pkPKE,MPKE).

12

definition. Since a trapdoor is associated with not only a keyword but also a sender, considering
this case is important. In addition, regarding IND-CKA and IND-IKGA, they used a weak model,
where an adversary A is not allowed to send challenge keywords to two oracles: an encryption
oracle OC and a trapdoor oracle OT .

Liu et al. also claimed that their construction provides multi-trapdoor indistinguishability
(MTI) if the trapdoor algorithm of the underlying PEKS scheme is probabilistic (Theorem 5.3. [29]).
Besides the probabilistic algorithm, they implicitly assumed that two trapdoors are unlinkable, i.e.,
it hides whether two trapdoors are generated for the same keyword or not. Then, for simulating
MTI game in the proof of Theorem 3.3. [29], a simulator just responses random values as the
challenge trapdoors. However, even if the trapdoor algorithm is probabilistic, it does not directly
guarantee the unlinkability.

Efficiency. They employed two SPHFs as in the Katz-Vaikuntanathan PAKE construction. In
PAKE, this is mandatory because both a client and a server need to show the possession of witness
(password). However, this is not the case in PAEKS: a receiver does not have to prove the possession
of witness. In our construction, a sender is required to show the possession of witness (randomness
of a ciphertext), and a receiver just uses a hash key for computing the hash value. This improves
the efficiency of the construction.

Instantiability. Finally, we discuss the instantiability of the Liu et al. generic construction
(besides hash functions discussed above). They employed a labeled IND-CCA2 PKE scheme that
defines languages of ciphertexts of SPHF. However, Benhamouda et al. [6] proposed a WI-SPHF for
a IND-CPA PKE scheme, and mentioned that their SPHF construction for the IND-CCA2 PKE
scheme is not word-independent. Moreover, Liu et al. employed an IND-CCA1 PKE scheme in
their implementation. Although the Liu et al. construction may work well since IND-CCA2 implies
IND-CPA, however, it is not clear whether the underlying SPHF is word-independent (at least in
their implementation). In the next section, we show that the underlying PKE is required to be
IND-CPA secure, and no CCA2/CCA1 security is required.

We also remark that one of the main goals of Liu et al. was to construct a post-quantum PAEKS
scheme by instantiating their generic construction from lattices. Thus, even if the above-mentioned
issues regarding hash functions can be solved by introducing random oracles, it would be better to
determine whether these issues can be solved, even in the quantum random oracle model because
there exists a scheme which is secure in the random oracle model but is not secure in the quantum
random oracle model [39].

5 Our PAEKS Construction

5.1 Proposed Generic Construction

High-level Description. We also employ the methodology of Katz-Vaikuntanathan PAKE con-
struction. As an important difference from the Liu et al. construction, we introduce one SPHF
where a receiver publishes a projected key hp, and a sender generates a ciphertext ctPKE of 0 and
sets it as a public key pkS = ctPKE. Its randomness ρS is set as a secret key skS. For running
the ProjHash algorithm in the PAEKS.Enc algorithm, skS = ρS is used as the witness. That is, for
generating a ciphertext of a keyword, a secret key skS = ρS is required, whereas for generating a
trapdoor, a public key pkS = ctPKE is enough in addition to skR. This setting matches the syntax
of PAEKS. Since a word ctPKE is generated after seeing hp, the underlying SPHF needs to be
word-independent. Here, the public key of PKE pkPKE is generated by the receiver, and the sender
needs to know pkPKE for running the PAEKS.KGS algorithm. Thus, our construction employs a

13

designated-receiver setting. For deriving an extended keyword der-kw, we employ a PRF where a
PRF key is a hash value of SPHF. Intuitively, after utilizing adaptive smoothness, a hash value
of SPHF is random. Then, owing to the pseudo-randomness of PRF, der-kw is also random. For
extended keywords, we employ a PEKS scheme. As in the usual PEKS setting, the receiver runs
(pkPEKS, skPEKS)← PEKS.KG(1λ), and skPEKS is used for generating a trapdoor for der-kw.

Let PRF = {FK : KS → KS} be a family of PRFs where K ∈ {0, 1}ν , PEKS = (PEKS.KG,
PEKS.Enc,PEKS.Trapdoor,PEKS.Test) be a PEKS scheme with a keyword space KS, PKE =
(PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme, andWI-SPHF = (HashKG,ProjKG,Hash,ProjHash)
be a WI-SPHF with the output length {0, 1}ν . We remark that, because we employ a hash value
of SPHF as a PRF key, we assume that K ∈ {0, 1}ν , and because a PRF takes a keyword as
input and outputs an extended keyword, we assume that FK : KS → KS. We also assume that
2−ν is negligible in the security parameter λ to guarantee that for randomly chosen two values

H,H′ $←− {0, 1}ν , H ̸= H′ holds with overwhelming probability.

Proposed Generic Construction

PAEKS.KGR(1
λ): Run (pkPKE, dkPKE)← PKE.KeyGen(1λ), hk← HashKG(pkPKE), hp← ProjKG(hk,

pkPKE), and (pkPEKS, skPEKS) ← PEKS.KG(1λ). Set pkR = (hp, pkPKE, pkPEKS) and skR =
(hk, dkPKE, skPEKS), and output (pkR, skR).

PAEKS.KGS(pkR): Parse pkR = (hp, pkPKE, pkPEKS). Run ctPKE = PKE.Enc(pkPKE, 0; ρS), set pkS =
ctPKE and skS = ρS , and output (pkS, skS). If we explicitly describe the sender index i, then

we denote pkS[i] = ct
(i)
PKE and skS[i] = ρ

(i)
S .

PAEKS.Enc(pkR, pkS, skS, kw): Parse pkR = (hp, pkPKE, pkPEKS), pkS = ctPKE, and skS = ρS . Com-
pute pH ← ProjHash(hp, pkPKE, ctPKE, ρS) and run der-kw ← FpH(kw). Compute ctPEKS ←
PEKS.Enc(pkPEKS, der-kw), set ctPAEKS = ctPEKS, and output ctPAEKS.

PAEKS.Trapdoor(pkR, pkS, skR, kw): Parse pkR = (hp, pkPKE, pkPEKS), pkS = ctPKE, and skR =
(hk, dkPKE, skPEKS). Compute H ← Hash(hk, pkPKE, ctPKE) and run der-kw ← FH(kw). Com-
pute tdder-kw ← PEKS.Trapdoor(pkPEKS, skPEKS, der-kw), set tdS,kw = tdder-kw, and output
tdS,kw.

PAEKS.Test(ctPAEKS, tdS,kw): Parse ctPAEKS = ctPEKS and tdS,kw = tdder-kw. Output the result of
PEKS.Test(ctPEKS, tdkw).

If PKE is correct, then ctPKE ∈ L̃pkPKE where ctPKE = PKE.Enc(pkPKE, 0; ρS). Moreover, if WI-SPHF
is correct, then pH = H holds with overwhelming probability where pH← ProjHash(hp, pkPKE, ctPKE,
ρS) and H← Hash(hk, pkPKE, ctPKE). Moreover, if PEKS is correct, then PAEKS.Test(ctPAEKS, tdS,kw)
= 1 where ctPAEKS = ctPEKS. Thus, the proposed construction provides correctness if these building
blocks provide correctness.

5.2 Non Designated-Receiver Setting

As previously mentioned, if we assume a trusted setup, then we do not have to introduce the
designated-receiver setting. Concretely, a setup algorithm takes a security parameter λ as input,
runs (pkPKE, dkPKE)← PKE.KeyGen(1λ), erases dkPKE, and outputs pkPKE only as a public param-
eter. However, it would be better to clarify who can know dkPKE since dkPKE = ltrap can be used
for breaking the underlying membership problem. In this sense, our setting is more desirable.

14

5.3 Feasibility of our Generic Construction

In our construction, we employ WI-SPHF, PKE, PRF, and PEKS as building blocks. Any PRF can
be employed, e.g., HMAC-SHA-256. Since PEKS can be generically constructed from anonymous
IBE [1], and lattice-based IBE is basically anonymous, our generic construction yields post-quantum
PAEKS. For example, we can employ the Yamada IBE scheme [38] or the Jager-Kurek-Niehues
IBE scheme [23]. We can also employ the Gentry-Peikert-Vaikuntanathan (GPV) IBE scheme [20]
because Katsumata et al. [24] showed that the GPV IBE scheme is secure in the quantum random
oracle model. Alternatively, Behnia et al. [4] gave implementations of lattice-based PEKS schemes
when Agrawal-Boneh-Boyen IBE [2] or Ducas-Lyubashevsky-Prest IBE [15] are employed as the
underlying anonymous IBE scheme. These PEKS schemes may be attractive in terms of efficiency.

The last piece is WI-SPHF. Since Benhamouda et al. [6] proposed a WI-SPHF for a lattice-
based IND-CPA PKE scheme, our construction is feasible. We remark that the Benhamouda
et al. construction requires a super-polynomial modulus q to get statistical correctness. At the
expense of correctness error, we can employ the Li-Wang word-independent approximate SPHF [26]
that provides approximate correctness. In the Li-Wang construction, a word is a ciphertext and
plaintext pair (c,m) of the labeled CCA1 Micciancio-Peikert PKE scheme, and the witness is the
randomness used for encryption. Because the hash value is a bit, we need to amplify the length by
sampling several independent hash keys and concatenating the output of all the corresponding hash
results (Lemma B.2 [6]). We remark that no CCA security is required in the proposed construction
although Li and Wang employed a CCA1 PKE scheme.

5.4 Security Analysis

Theorem 1. Our construction is computationally consistent if PEKS is computationally consistent,
PKE is IND-CPA secure, WI-SPHF provides (approximate) correctness and adaptive smoothness,
and PRF is pseudo-random.

Proof Overview. Since the underlying PEKS scheme PEKS is computationally consistent, what
we need to show is as follows: for der-kw ← FpH(i)(kw) (computed in the PAEKS.Enc algorithm

in the experiment) and der-kw′ ← FH(j)(kw′) (computed in the PAEKS.Trapdoor algorithm in the ex-

periment), der-kw ̸= der-kw′ holds if (kw, i) ̸= (kw′, j), where pH(i) ← ProjHash(hp, pkPKE, ct
(i)
PKE, ρ

(i)
S)

and H(j) ← Hash(hk, pkPKE, ct
(j)
PKE). Our proof strategy is explained as follows. First, the computa-

tion of der-kw ← FpH(i)(kw) is switched to der-kw ← FH(i)(kw) where H(i) ← Hash(hk, pkPKE, ct
(i)
PKE).

Owing to the (approximate) correctness of WI-SPHF, this modification is indistinguishable. Next,

pkS[i] = ct
(i)
PKE ← PKE.Enc(pkPKE, 0; ρ

(i)
S) computed in the PAEKS.KGS algorithm is switched to

ct
(i)
PKE ← PKE.Enc(pkPKE, 1; ρ

(i)
S). In the SPHF-context, a word ct

(i)
PKE ∈ L̃pkPKE is switched to

ct
(i)
PKE ∈ XpkPKE \LpkPKE . Owing to the IND-CPA security of PKE, this modification is indistinguish-

able. We remark that, in this game the simulator does not know ρ
(i)
S since it is the randomness

of the challenge ciphertext of PKE. However, due to the modification in the previous game, the

simulator computes H(i) without using ρ
(i)
S . Then we can utilize adaptive smoothness, i.e., for com-

puting der-kw ← FH(i)(kw), H(i) is randomly chosen from {0, 1}ν . pkS[j] = ct
(j)
PKE is also switched

as well, and for der-kw′ ← FH(j)(kw′), H(j) is randomly chosen from {0, 1}ν (if i = j, then two
values are the same). Then, PRF keys H(i) and H(j) are random. Thus, we can replace FH(i) and
FH(j) with random functions owing to the pseudo-randomness of PRF. If i = j, then kw ̸= kw′.
Then, der-kw and der-kw′ are randomly chosen, respectively, and der-kw ̸= der-kw′ holds with
overwhelming probability. If kw = kw′, then i ̸= j. Then, FH(i) and FH(j) are different random

15

functions. Thus der-kw and der-kw′ are randomly chosen, respectively (even the input is the same),
and der-kw ̸= der-kw′ holds with overwhelming probability. Finally, owing to the computational
consistency of PEKS, our construction provides computational consistency.

Proof. We prove the theorem via sequences of games Game0, . . . ,Game9. Let Wk denote an event
that A wins in Gamek (k ∈ {0, 1, . . . , 9}). Without loss of generality, (i, j) ∈ {0, 1} × {0, 1} is
determined before generating (pkR, pkS[0], pkS[1]) with the probability 1/4.

Game0: This game is the same as the original computational consistency game in Definition 14.

Game1: This game is the same as Game0 except that the computation of ctPAEKS ← PAEKS.Enc(pkR,
pkS[i], skS[i], kw) is changed as follows. Let skR = (hk, dkPKE, skPEKS). Instead of comput-

ing pH(i) ← ProjHash(hp, pkPKE, ct
(i)
PKE, ρ

(i)
S), compute H(i) ← Hash(hk, pkPKE, ct

(i)
PKE) and run

der-kw ← FH(i)(kw). B computes ctPAEKS ← PEKS.Enc(pkPEKS, der-kw). If WI-SPHF provides
(approximate) correctness, then pH(i) = H(i) holds with overwhelming probability. Thus,
|Pr[W0]− Pr[W1]| is negligible in the security parameter λ.

Game2: This game is the same as Game1 except that (pkS[i], skS[i])← PAEKS.KGS(pkR) is changed as

pkS[i] = ct
(i)
PKE ← PKE.Enc(pkPKE, 1; ρ

(i)
S). We show that |Pr[W1]−Pr[W2]| is negligible if PKE

is IND-CPA secure as follows. Let C be the challenger of the IND-CPA game. We construct
an algorithm B as follows. C runs (pkPKE, dkPKE)← PKE.KeyGen(1λ) and sends pkPKE to B. B
runs hk ← HashKG(pkPKE), hp ← ProjKG(hk, pkPKE), and (pkPEKS, skPEKS) ← PEKS.KG(1λ),
and sets pkR = (hp, pkPKE, pkPEKS). For running (pkS[i], skS[i]) ← PAEKS.KGS(pkR), B sends

(M∗
0 ,M

∗
1) = (0, 1) to C. C chooses b

$←− {0, 1}, computes ct∗PKE ← PKE.Enc(pkPKE,M
∗
b), and

sends ct∗PKE to B. B runs (pkS[̄i], skS[̄i])← PAEKS.KGS(pkR) as usual, where ī = 0 if i = 1 and

ī = 1 if i = 0, and sends (pkR, pkS[0], pkS[1]) to A. We note that ρ
(i)
S is not used for running the

PAEKS.Enc algorithm due to the modification in Game1. If b = 0, then B simulates Game1
and if b = 1, B simulates Game2. Thus, |Pr[W1]− Pr[W2]| ≤ AdvIND-CPA

PKE,B (λ) holds.

Game3: This game is the same as Game2 except that H(i) $←− {0, 1}ν . Since ct
(i)
PKE ∈ XpkPKE \LpkPKE ,

|Pr[W2]− Pr[W3]| is negligible if WI-SPHF provides adaptive smoothness.

Game4: This game is the same as Game3 except that (pkS[i], skS[i])← PAEKS.KGS(pkR) is changed

as pkS[i] = ct
(i)
PKE ← PKE.Enc(pkPKE, 0; ρ

(i)
S). As in Game2, |Pr[W3]−Pr[W4]| ≤ AdvIND-CPA

PKE,B (λ)
holds.

Game5: This game is the same as Game4 except that (pkS[j], skS[j])← PAEKS.KGS(pkR) is changed

as pkS[j] = ct
(j)
PKE ← PKE.Enc(pkPKE, 1; ρ

(j)
S). As in Game2, |Pr[W4] − Pr[W5]| is negligible if

PKE is IND-CPA secure. If i = j, then skip this game.

Game6: This game is the same as Game5 except that H
(j) $←− {0, 1}ν . As in Game3, |Pr[W5]−Pr[W6]|

is negligible if WI-SPHF provides adaptive smoothness. If i = j, then skip this game.

Game7: This game is the same as Game6 except that der-kw
$←− KS. We show that |Pr[W6]−Pr[W7]|

is negligible if PRF is pseudo-random as follows. Let C be the challenger of PRF. We construct
an algorithm B as follows. B prepares all keys as in Game6. When B prepares der-kw, B
sends kw to C. Then, C returns either FK(kw) or a random R. In the former case, B
simulates Game6 (implicitly set K = H(i)), and in the latter case, B simulates Game7. Thus,

|Pr[W6]− Pr[W7]| ≤ Advpseudo-randomPRF,B (λ) holds.

16

Game8: This game is the same as Game7 except that der-kw
′ $←− KS. As in Game7, |Pr[W7]−Pr[W8]|

is negligible if PRF is pseudo-random.

Game9: We show that the probability that A wins in this game is negligible as follows. Let C be the
challenger of computational consistency of PEKS. We construct an algorithm B as follows. C
runs (pkPEKS, skPEKS)← PEKS.KG(1λ) and sends pkPEKS to B. B prepares (pkR, pkS[i], pkS[j])
in accordance with the previous game, except that B contains pkPEKS to pkR. When A sends

(kw, kw′, i.j) to B, B randomly chooses der-kw, der-kw′ $←− KS, and sends (der-kw, der-kw′)
to C. Here, the probability of der-kw = der-kw′ is 2−ν , and is negligible. C runs ctPEKS ←
PEKS.Enc(pkPEKS, der-kw) and tdder-kw′ ← PEKS.Trapdoor(pkPEKS, skPEKS, der-kw

′). Since
PEKS provides computational consistency, the probability that PEKS.Test(ctPEKS, tdder-kw′) =
1 holds is negligible. This concludes the proof.

Theorem 2. Our construction is IND-CKA secure if PEKS is IND-CKA secure, PKE is IND-
CPA secure, WI-SPHF provides (approximate) correctness and adaptive smoothness, and PRF is
pseudo-random.

Proof Overview. Basically, the theorem holds if PEKS is IND-CKA secure since a PAEKS
ciphertext is a PEKS ciphertext in our construction. What we need to care is: OT in the PAEKS
experiment needs to be simulated by OT in the PEKS experiment. We remark that if A sends
kw to OT in the PAEKS experiment, the keyword to be input to OT in the PEKS experiment
is not kw, is der-kw. That is, if there exists kw ̸∈ {kw∗

0, kw
∗
1} such that its extended keyword

der-kw ∈ {der-kw∗
0, der-kw

∗
1} where der-kw∗

0 and der-kw∗
1 are extended keywords of kw∗

0 and kw∗
1,

respectively, then the simulation fails (because the challenge ciphertext is computed by der-kw∗
b

for b
$←− {0, 1}). To exclude this case, we show that all extended keywords are random using the

same strategy of the proof of computational consistency. First, pH(i) is switched to H(i) owing

to the (approximate) correctness of WI-SPHF. Second, ct
(i)
PKE is switched to a ciphertext of 1

owing to the IND-CPA security of PKE. Third, H(i) is switched to a random value owing to
the adaptive smoothness of WI-SPHF. For all i ∈ [1, n], run the above procedures. Then, all
extended keywords are randomly chosen because of the pseudo-randomness of PRF. Here, the
maximum number of extended keywords is at most qC+qT +2 where qC is the number of encryption
queries, qT is the number of trapdoor queries, and 2 is for generating the challenge ciphertext, i.e,,
for (kw∗

0, kw
∗
1, i

∗) that A declares, and two extended keywords der-kw∗
0 and der-kw∗

1 are defined.
Finally, owing to the IND-CKA security of PEKS, our construction is IND-CKA secure. We remark
that OC in the PAEKS experiment can be simulated during extended keyword randomization
phases as in the same strategy of the proof of computational consistency that also prepares a
ciphertext. To simulate OT during extended keyword randomization phases, the simulator runs
(pkPEKS, skPEKS)← PEKS.KG(1λ), and uses skPEKS to compute a trapdoor.

Proof. We prove the theorem via sequences of games Game0, . . . ,Game6. Let Wk denote an
event that A wins in Gamek (k ∈ {0, 6}) and Wk,i denote an event that A wins in Gamek,i (k ∈
{1, 2, 3, 4}, i ∈ {1, . . . , n}) and in Game5,j (j ∈ {1, . . . , N}) where N is defined later. .

Game0: This game is the same as the original IND-CKA game in Definition 15.

Next, we introduce subgames Game1,1,Game2,1,Game3,1,Game4,1,Game1,2, , . . .Game4,2, . . . ,Game1,n,
. . . ,Game4,n.

Game1,i: Set Game4,0 = Game0. We describe Game1,i (i ∈ [1, n]) as follows. This game is the

same as Game4,i−1 except that compute H(i) ← Hash(hk, pkPKE, ct
(i)
PKE) instead of computing

17

pH(i) ← ProjHash(hp, pkPKE, ct
(i)
PKE, ρ

(i)
S). IfWI-SPHF provides (approximate) correctness, then

pH(i) = H(i) holds with overwhelming probability. Thus, |Pr[W4,i−1]− Pr[W1,i]| is negligible
in the security parameter λ.

Game2,i: We describe Game2,i (i ∈ [1, n]) as follows. This game is the same as Game1,i except that

(pkS[i], skS[i])← PAEKS.KGS(pkR) is changed as pkS[i] = ct
(i)
PKE ← PKE.Enc(pkPKE, 1; ρ

(i)
S). We

show that |Pr[W1,i] − Pr[W2,i]| is negligible if PKE is IND-CPA secure as follows. Let C
be the challenger of the IND-CPA game. We construct an algorithm B as follows. C runs
(pkPKE, dkPKE)← PKE.KeyGen(1λ) and sends pkPKE to B. B runs hk← HashKG(pkPKE), hp←
ProjKG(hk, pkPKE), and (pkPEKS, skPEKS)← PEKS.KG(1λ), and sets pkR = (hp, pkPKE, pkPEKS).
B generates (pkS[1], skS[1]), . . . , (pkS[i−1], skS[i−1]) as in Game1,i. For running (pkS[i], skS[i]) ←

PAEKS.KGS(pkR), B sends (M∗
0 ,M

∗
1) = (0, 1) to C. C chooses b

$←− {0, 1}, computes ct∗PKE ←
PKE.Enc(pkPKE,M

∗
b), and sends ct∗PKE to B. B generates (pkS[i+1], skS[i+1]), . . . , (pkS[n], skS[n])

as usual and sends pkR, {pkS[i]}i∈[1,n] to A. For an encryption query (kw, i), B uses H(i)

and it does not require ρ
(i)
S . So, even if pkS[i] = ct

(i)
PKE is switched to a ciphertext of 1, B

can answer the query. For a trapdoor query (kw, i), B generates a trapdoor tdS[i],kw using
skPEKS. If b = 0, then B simulates Game1,i and if b = 1, B simulates Game2,i. Thus,
|Pr[W1,i]− Pr[W2,i]| ≤ AdvIND-CPA

PKE,B (λ) holds.

Game3,i: We describe Game3,i (i ∈ [1, n]) as follows. This game is the same as Game2,i except that

H(i) $←− {0, 1}ν . |Pr[W2,i]− Pr[W3,i]| is negligible if WI-SPHF provides adaptive smoothness.

Game4,i: We describe Game4,i (i ∈ [1, n]) as follows. This game is the same as Game3,i except that

(pkS[i], skS[i]) ← PAEKS.KGS(pkR) is changed as pkS[i] = ct
(i)
PKE ← PKE.Enc(pkPKE, 0; ρ

(i)
S). As

in Game2,i, |Pr[W3,i]− Pr[W4,i]| is negligible if PKE is IND-CPA secure.

Next, we introduce subgames Game5,0, . . . ,Game5,N where N ≤ qC + qT + 2 is the number of
extended keywords appeared in the game. Here, qC is the number of encryption queries and qT is
the number of trapdoor queries.

Game5,i: Set Game5,0 = Game4,n. Let {der-kw1, . . . , der-kwN} be the set of distinct extended key-

words. This game is the same as Game5,i−1 except that der-kwi
$←− KS. We show that

|Pr[W5,i−1]−Pr[W5,i]| is negligible if PRF is pseudo-random. Let C be the challenger of PRF.
We construct an algorithm B as follows. When B prepares der-kwi for the i-th query (kw, j)5

for some j ∈ [1, n], B sends kw to C. Then, C returns either FK(kw) or a random value. In
the former case, B simulates Game4,i−1 (implicitly set K = H(j)), and in the latter case, B
simulates Game4,i. Thus, |Pr[W5,i−1]− Pr[W5,i]| ≤ Advpseudo-randomPRF,B (λ) holds.

Next, we show that the probability that A wins in the final game is negligible if PEKS is IND-CKA
secure.

Game6: Set Game5,N = Game6. Let C be the challenger of the IND-CKA game of PEKS. We
construct an algorithm B as follows. C runs (pkPEKS, skPEKS) ← PEKS.KG(1λ) and sends
pkPEKS to B. B prepares (pkR, pkS[i], pkS[j]) in accordance with the previous game, except
that B contains pkPEKS to pkR. When A sends an encryption query (kw, i) to B, if (kw, i)
has been queried as either an encryption query or a trapdoor query, then B uses der-kw

5It may be an encryption query, a trapdoor query, or the challenge query. In the challenge query, j = i∗.

18

that was previously generated. Otherwise, B randomly chooses der-kw
$←− KS, preserves

(der-kw, kw, i), runs ctPEKS ← PEKS.Enc(pkPEKS, der-kw), and returns ctPEKS to A. When
A sends a trapdoor query (kw, i) to B, if (kw, i) has been queried as either an encryption
query or a trapdoor query, then B uses der-kw that was previously generated. Otherwise,

B randomly chooses der-kw
$←− KS, preserves (der-kw, kw, i), and sends der-kw to C as a

trapdoor query. C runs tdder-kw ← PEKS.Trapdoor(pkPEKS, skPEKS, der-kw) and sends tdder-kw
to B. B returns tdder-kw to A. In the challenge phase, A sends (kw∗

0, kw
∗
1, i

∗) to B. If
(kw∗

0, i
∗) (resp. (kw∗

1, i
∗)) has appeared in an encryption query, then B uses der-kw∗

0 (resp.

der-kw∗
1) that was previously generated. Otherwise, B randomly chooses der-kw∗

0
$←− KS (resp.

der-kw∗
1

$←− KS). B sends (der-kw∗
0, der-kw

∗
1) to C as the challenge query. We remark that the

probability that either der-kw∗
0 or der-kw∗

1 has been appeared as a trapdoor query is negligible

since all extended keywords are randomly chosen from {0, 1}ν . C randomly selects b
$←− {0, 1},

runs ct∗PEKS ← PEKS.Enc(pkPEKS, der-kw
∗
b), and returns ct∗PEKS to B. B returns ct∗PEKS to A.

B simulates OC and OT as in the previous stage, Finally, A outputs b′. B also outputs the
same b′. Then, B can break IND-CKA security of PEKS with the same advantage of A. That
is, Pr[W6] ≤ AdvIND-CKA

PEKS,A (λ, n) holds. This concludes the proof.

Theorem 3. Our construction is IND-IKGA secure if PKE is IND-CPA secure, WI-SPHF provides
(approximate) correctness and adaptive smoothness, and PRF is pseudo-random.

Proof Overview. The underlying PEKS scheme does not provide trapdoor privacy, i.e., from
tdder-kw ← PEKS.Trapdoor(pkPEKS, skPEKS, der-kw), information of der-kw is leaked. So, the PEKS.Trapdoor
algorithm is meaningless for hiding information of der-kw. More concretely, from the challenge trap-
door td∗S[i∗],kw∗

b
= tdder-kw∗

b
where der-kw∗

b is the extended keyword for kw∗
b , information of der-kw∗

b

is leaked. Thus, for providing IND-IKGA security, we need to guarantee that information of kw is
not leaked from the corresponding extended keyword der-kw. Fortunately, we have already showed
that der-kw∗

b is indistinguishable from random. More concretely, in Game6 of the proof of Theo-
rem 2, the distribution of der-kw∗

b is identical when b = 0 and b = 1, respectively. This is sufficient
to provide IND-IKGA security.

Proof. The game descriptions is the same as those of the proof of Theorem 2. In Game6, der-kw
∗
0

and der-kw∗
1 are randomly chosen which are independent from kw∗

0 and kw∗
1. That is, the dis-

tribution of der-kw∗
b is identical when b = 0 and b = 1, respectively. This concludes the proof.

We remark that adaptive smoothness does not directly guarantee unlinkability that hides in-
formation whether two hash values are computed by the same input or not. Thus, the adversary
A above may distinguish b = 0 or b = 1 if A obtains a trapdoor for (kw∗

0, i
∗) (or (kw∗

1, i
∗)), and

obtains (information of) der-kw∗
0 (or der-kw∗

1). Thus, we have restricted that A is allowed to issue
a trapdoor query (kw, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)} in the definition of IND-IKGA.

6 Conclusion and Future Work

In this paper, we proposed a generic construction of PAEKS from WI-SPHF, PKE, PRF, and PEKS.
Our construction is not only more efficient than the Liu et al. construction but also provides
stronger security than that of Liu et al.

Cheng and Meng [11] claimed that their constructions employ totally different methodology
from Liu et al. [29] and ours [16], which is explained that: instead of using the shared key calculated

19

by SPHF, the sender and receiver achieve keyword authentication by using their own secret key
to sample a set of short vectors related to the keyword. Proposing a generic construction based
on the Cheng-Meng methodology is an interesting future work. Cheng and Meng proposed two
lattice-based PAEKS schemes: one is selectively secure in the standard model and other one is
adaptively secure in the random oracle model. Thus, proposing an adaptively secure lattice-based
PAEKS scheme secure in the standard model or secure in the quantum random oracle model is also
an interesting topic. Because Cheng and Meng did not consider consistency in the multi-sender
setting, a trapdoor associated with a sender may work against ciphertexts generated by the secret
key of another sender when the same keyword is associated. Thus, considering consistency in the
multi-sender setting with the Cheng-Meng methodology is also an interesting future work.

Acknowledgment: The author would like to thank anonymous reviewers of ACM APKC 2022 for
their invaluable comments and suggestions. The author would like to thank Leixiao Cheng and Fei
Meng for their invaluable comments regarding the feasibility of the proposed generic construction.
This work was supported by JSPS KAKENHI Grant Number JP21K11897.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymous IBE, and extensions. Journal of
Cryptology, 21(3):350–391, 2008.

[2] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In EUROCRYPT, pages 553–572, 2010.

[3] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key encryption with keyword
search revisited. In ICCSA, pages 1249–1259, 2008.

[4] Rouzbeh Behnia, Muslum Ozgur Ozmen, and Attila Altay Yavuz. Lattice-based public key
searchable encryption from experimental perspectives. IEEE Transactions on Dependable and
Secure Computing, 17(6):1269–1282, 2020.

[5] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. New techniques for SPHFs and efficient one-round PAKE protocols. In CRYPTO,
pages 449–475, 2013.

[6] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach. Hash proof systems over
lattices revisited. In Public-Key Cryptography, pages 644–674, 2018.

[7] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In EUROCRYPT, pages 506–522, 2004.

[8] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based encryption:
Hiding the function in functional encryption. In CRYPTO, pages 461–478, 2013.

[9] Yu-Chi Chen. SPEKS: secure server-designation public key encryption with keyword search
against keyword guessing attacks. The Computer Journal, 58(4):922–933, 2015.

[10] Leixiao Cheng and Fei Meng. Security analysis of Pan et al.’s “public-key authenticated
encryption with keyword search achieving both multi-ciphertext and multi-trapdoor indistin-
guishability”. Journal of Systems Architecture, 119:102248, 2021.

20

[11] Leixiao Cheng and Fei Meng. Public key authenticated encryption with keyword search from
LWE. In ESORICS, pages 303–324, 2022.

[12] Tianyu Chi, Baodong Qin, and Dong Zheng. An efficient searchable public-key authenticated
encryption for cloud-assisted medical internet of things. Wireless Communications and Mobile
Computing, 2020:8816172:1–8816172:11, 2020.

[13] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[14] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Review,
45(4):727–784, 2003.

[15] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryption over
NTRU lattices. In ASIACRYPT, pages 22–41, 2014.

[16] Keita Emura. Generic construction of public-key authenticated encryption with keyword search
revisited: Stronger security and efficient construction. In APKC, pages 39–49. ACM, 2022.

[17] Keita Emura, Atsuko Miyaji, Mohammad Shahriar Rahman, and Kazumasa Omote. Generic
constructions of secure-channel free searchable encryption with adaptive security. Security and
Communication Networks, 8(8):1547–1560, 2015.

[18] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. A secure channel free public
key encryption with keyword search scheme without random oracle. In CANS, pages 248–258,
2009.

[19] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. Public key encryption with
keyword search secure against keyword guessing attacks without random oracle. Information
Sciences, 238:221–241, 2013.

[20] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In ACM STOC, pages 197–206, 2008.

[21] Chunxiang Gu, Yuefei Zhu, and Heng Pan. Efficient public key encryption with keyword search
schemes from pairings. In Inscrypt, pages 372–383, 2007.

[22] Qiong Huang and Hongbo Li. An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks. Information Sciences, 403:1–14, 2017.

[23] Tibor Jager, Rafael Kurek, and David Niehues. Efficient adaptively-secure IB-KEMs and
VRFs via near-collision resistance. In Public-Key Cryptography, pages 596–626, 2021.

[24] Shuichi Katsumata, Shota Yamada, and Takashi Yamakawa. Tighter security proofs for GPV-
IBE in the quantum random oracle model. Journal of Cryptology, 34(1):5, 2021.

[25] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key
exchange. In TCC, pages 293–310, 2011.

[26] Zengpeng Li and Ding Wang. Achieving one-round password-based authenticated key exchange
over lattices. IEEE Transactions on Services Computing, 15(1):308–321, 2022.

21

[27] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen. Public-key au-
thenticated encryption with keyword search: Cryptanalysis, enhanced security, and quantum-
resistant instantiation. IACR Cryptology ePrint Archive, page 1008, 2021. Version 3, posted
on 23-Nov-2021.

[28] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen. Public-key au-
thenticated encryption with keyword search: A generic construction and its quantum-resistant
instantiation. The Computer Journal, 65(10):2828–2844, 2022.

[29] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen. Public-key au-
thenticated encryption with keyword search: Cryptanalysis, enhanced security, and quantum-
resistant instantiation. In ASIACCS, pages 423–436. ACM, 2022.

[30] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT, pages 700–718, 2012.

[31] Mahnaz Noroozi and Ziba Eslami. Public key authenticated encryption with keyword search:
revisited. IET Information Security, 13(4):336–342, 2019.

[32] Xiangyu Pan and Fagen Li. Public-key authenticated encryption with keyword search achieving
both multi-ciphertext and multi-trapdoor indistinguishability. Journal of Systems Architecture,
115:102075, 2021.

[33] Baodong Qin, Yu Chen, Qiong Huang, Ximeng Liu, and Dong Zheng. Public-key authenticated
encryption with keyword search revisited: Security model and constructions. Information
Sciences, 516:515–528, 2020.

[34] Baodong Qin, Hui Cui, Xiaokun Zheng, and Dong Zheng. Improved security model for public-
key authenticated encryption with keyword search. In ProvSec, pages 19–38, 2021.

[35] Hyun Sook Rhee, Jong Hwan Park, and Dong Hoon Lee. Generic construction of designated
tester public-key encryption with keyword search. Information Sciences, 205:93–109, 2012.

[36] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. Improved searchable
public key encryption with designated tester. In ACM ASIACCS, pages 376–379, 2009.

[37] Hyun Sook Rhee, Willy Susilo, and Hyun-Jeong Kim. Secure searchable public key encryption
scheme against keyword guessing attacks. IEICE Electron. Express, 6(5):237–243, 2009.

[38] Shota Yamada. Asymptotically compact adaptively secure lattice IBEs and verifiable random
functions via generalized partitioning techniques. In CRYPTO, pages 161–193, 2017.

[39] Takashi Yamakawa and Mark Zhandry. Classical vs quantum random oracles. In EURO-
CRYPT, pages 568–597, 2021.

22

	Introduction
	Preliminaries
	Pseudorandom Functions (PRFs)
	Public Key Encryption (PKE)
	Word-independent Smooth Projective Hash Functions (WI-SPHFs)
	Public-key Encryption with Keyword Search (PEKS)

	Definitions of Designated-Receiver Multi-Sender PAEKS
	Designated-Receiver Setting
	Definitions of PAEKS
	Relation among our definitions, fully CI/TI-security, and multi-ciphertext/multi-trapdoor indistinguishability

	Analysis of Liu et al. Generic Construction
	Core Idea of Liu et al. Construction
	Issues of the Liu et al. Construction

	Our PAEKS Construction
	Proposed Generic Construction
	Non Designated-Receiver Setting
	Feasibility of our Generic Construction
	Security Analysis

	Conclusion and Future Work

