14 research outputs found

    Social Worked-Examples Technique to Enhance Student Engagement in Program Visualization

    Get PDF
    يعد تعلم البرمجة من بين أهم التحديات في تعليم علوم الكمبيوتر. حاليا، يتم استخدام تصوير البرامج ) PV ( كأداة للتغلب علىمعدلات الفشل والتسرب العالية في مادة اساسيات البرمجة. ومع ذلك، هناك مخاوف متزايدة بشأن فعالية أدوات تصوير البرامج الحالية استناداالى النتائج المختلطة المستمدة من الدراسات المختلفة. تعتبر مشاركة الطلاب أيضًا عاملاً حيويًا في بناء PV ناجحًا، كما تعد أيضًا جزءًا مهمًامن عملية التعلم بشكل عام. تم إدخال العديد من التقنيات لتعزيز المشاركة في أدوات تصوير البرامج؛ ومع ذلك، فإن مشاركة الطلاب في PVلا يزال يمثل تحديًا كبيراً. استخدمت هذه الورقة ثلاث نظريات مختلفة: البنيوية، والبناء الاجتماعي، والحمل المعرفي لاقتراح تقنية لتعزيزمشاركة الطلاب في استخدام أدوات تصوير البرامج. تعمل تقنية الأمثلة المكتملة الاجتماعية ) SWE ( على تحويل المثال المكتمل التقليدي إلىنشاط اجتماعي ، حيث يتم التركيز بشكل أكبر على دور التعاون في بناء معرفة الطلاب. حددت هذه الدراسة ثلاثة مبادئ يمكن أن تعززمشاركة الطلاب من خلال تقنية SWE : التعلم النشط والتعاون الاجتماعي والأنشطة ذاتس التحميل المنخفض.Learning programming is among the top challenges in computer science education. A part of that, program visualization (PV) is used as a tool to overcome the high failure and drop-out rates in an introductory programming course. Nevertheless, there are rising concerns about the effectiveness of the existing PV tools following the mixed results derived from various studies. Student engagement is also considered a vital factor in building a successful PV, while it is also an important part of the learning process in general. Several techniques have been introduced to enhance PV engagement; however, student engagement with PV is still challenging. This paper employed three theories—constructivism, social constructivism and cognitive load to propose a technique for enhancing student engagement with program visualisation. The social worked-examples (SWE) technique transforms the traditional worked-example into a social activity, whereby a greater focus is placed on the collaboration role in constructing students’ knowledge. This study identified three principles that could enhance student engagement through the SWE technique: active learning, social collaboration and low-load activity

    Social worked-examples technique to enhance student engagement in program visualization

    Get PDF
    Learning programming is among the top challenges in computer science education. A part of that, program visualization (PV) is used as a tool to overcome the high failure and drop-out rates in an introductory programming course. Nevertheless, there are rising concerns about the effectiveness of the existing PV tools following the mixed results derived from various studies. Student engagement is also considered a vital factor in building a successful PV, while it is also an important part of the learning process in general. Several techniques have been introduced to enhance PV engagement; however, student engagement with PV is still challenging. This paper employed three theories—constructivism, social constructivism and cognitive load to propose a technique for enhancing student engagement with program visualisation. The social worked-examples (SWE) technique transforms the traditional worked-example into a social activity, whereby a greater focus is placed on the collaboration role in constructing students’ knowledge. This study identified three principles that could enhance student engagement through the SWE technique: active learning, social collaboration and low-load activity

    Utilizing educational technology in computer science and programming courses : theory and practice

    Get PDF
    There is one thing the Computer Science Education researchers seem to agree: programming is a difficult skill to learn. Educational technology can potentially solve a number of difficulties associated with programming and computer science education by automating assessment, providing immediate feedback and by gamifying the learning process. Still, there are two very important issues to solve regarding the use of technology: what tools to use, and how to apply them? In this thesis, I present a model for successfully adapting educational technology to computer science and programming courses. The model is based on several years of studies conducted while developing and utilizing an exercise-based educational tool in various courses. The focus of the model is in improving student performance, measured by two easily quantifiable factors: the pass rate of the course and the average grade obtained from the course. The final model consists of five features that need to be considered in order to adapt technology effectively into a computer science course: active learning and continuous assessment, heterogeneous exercise types, electronic examination, tutorial-based learning, and continuous feedback cycle. Additionally, I recommend that student mentoring is provided and cognitive load of adapting the tools considered when applying the model. The features are classified as core components, supportive components or evaluation components based on their role in the complete model. Based on the results, it seems that adapting the complete model can increase the pass rate statistically significantly and provide higher grades when compared with a “traditional” programming course. The results also indicate that although adapting the model partially can create some improvements to the performance, all features are required for the full effect to take place. Naturally, there are some limits in the model. First, I do not consider it as the only possible model for adapting educational technology into programming or computer science courses. Second, there are various other factors in addition to students’ performance for creating a satisfying learning experience that need to be considered when refactoring courses. Still, the model presented can provide significantly better results, and as such, it works as a base for future improvements in computer science education.Ohjelmoinnin oppimisen vaikeus on yksi harvoja asioita, joista lähes kaikki tietojenkäsittelyn opetuksen tutkijat ovat jokseenkin yksimielisiä. Opetusteknologian avulla on mahdollista ratkaista useita ohjelmoinnin oppimiseen liittyviä ongelmia esimerkiksi hyödyntämällä automaattista arviointia, välitöntä palautetta ja pelillisyyttä. Teknologiaan liittyy kuitenkin kaksi olennaista kysymystä: mitä työkaluja käyttää ja miten ottaa ne kursseilla tehokkaasti käyttöön? Tässä väitöskirjassa esitellään malli opetusteknologian tehokkaaseen hyödyntämiseen tietojenkäsittelyn ja ohjelmoinnin kursseilla. Malli perustuu tehtäväpohjaisen oppimisjärjestelmän runsaan vuosikymmenen pituiseen kehitys- ja tutkimusprosessiin. Mallin painopiste on opiskelijoiden suoriutumisen parantamisessa. Tätä arvioidaan kahdella kvantitatiivisella mittarilla: kurssin läpäisyprosentilla ja arvosanojen keskiarvolla. Malli koostuu viidestä tekijästä, jotka on otettava huomioon tuotaessa opetusteknologiaa ohjelmoinnin kursseille. Näitä ovat aktiivinen oppiminen ja jatkuva arviointi, heterogeeniset tehtävätyypit, sähköinen tentti, tutoriaalipohjainen oppiminen sekä jatkuva palautesykli. Lisäksi opiskelijamentoroinnin järjestäminen kursseilla ja järjestelmän käyttöönottoon liittyvän kognitiivisen kuorman arviointi tukevat mallin käyttöä. Malliin liittyvät tekijät on tässä työssä lajiteltu kolmeen kategoriaan: ydinkomponentteihin, tukikomponentteihin ja arviontiin liittyviin komponentteihin. Tulosten perusteella vaikuttaa siltä, että mallin käyttöönotto parantaa kurssien läpäisyprosenttia tilastollisesti merkittävästi ja nostaa arvosanojen keskiarvoa ”perinteiseen” kurssimalliin verrattuna. Vaikka mallin yksittäistenkin ominaisuuksien käyttöönotto voi sinällään parantaa kurssin tuloksia, väitöskirjaan kuuluvien tutkimusten perusteella näyttää siltä, että parhaat tulokset saavutetaan ottamalla malli käyttöön kokonaisuudessaan. On selvää, että malli ei ratkaise kaikkia opetusteknologian käyttöönottoon liittyviä kysymyksiä. Ensinnäkään esitetyn mallin ei ole tarkoituskaan olla ainoa mahdollinen tapa hyödyntää opetusteknologiaa ohjelmoinnin ja tietojenkäsittelyn kursseilla. Toiseksi tyydyttävään oppimiskokemukseen liittyy opiskelijoiden suoriutumisen lisäksi paljon muitakin tekijöitä, jotka tulee huomioida kurssien uudelleensuunnittelussa. Esitetty malli mahdollistaa kuitenkin merkittävästi parempien tulosten saavuttamisen kursseilla ja tarjoaa sellaisena perustan entistä parempaan opetukseen

    The development of design guidelines for educational programming environments

    Get PDF
    Introductory programming courses at university are currently experiencing a significant dropout and failure rate. Whilst several reasons have been attributed to these numbers by researchers, such as cognitive factors and aptitude, it is still unclear why programming is a natural skill for some students and a cause of struggle for others. Most of the research in the computer science literature suggests that methods of teaching programming and students’ learning styles as reasons behind this trend. In addition to the choice of the first programming language taught. With the popularity of virtual learning environments and online courses, several instructors are incorporating these e-learning tools in their lectures in an attempt to increase engagement and achievement. However, many of these strategies fail as they do not use effective teaching practices or recognise the learning preferences exhibited by a diverse student population. Therefore this research proposes that combining multiple teaching methods to accommodate different learners' preferences will significantly improve performance in programming. To test the hypothesis, an interactive web based learning tool to teach Python programming language (PILeT) was developed. The tool’s novel contribution is that it offers a combination of pedagogical methods to support student’s learning style based on the Felder-Silverman model. First, PILeT was evaluated by both expert and representative users to detect any usability or interface design issues that might interfere with students’ learning. Once the problems were detected and fixed, PILeT was evaluated again to measure the learning outcomes that resulted from its use. The experimental results show that PILeT has a positive impact on students learning programming

    A constructivist, mobile and principled approach to the learning and teaching of programming

    Get PDF
    Novices in programming courses need to acquire a theoretical understanding of programming concepts as well as practical skills for applying them, but in traditional learning environments students passively listen to the lecture without proactive practice-based learning. There is a need for a constructivist approach to learning based on the ability of the learner to construct his or her own knowledge from the concepts provided by the instructors. Therefore, learning that uses a practical approach offers more in-depth understanding to students and sustains students’ attention as well as encourages students to be active players in their own learning process. The ubiquitous use of mobile devices and the evolution of mobile device technologies have led to a growing interest in these devices as pedagogical aids in a constructivist learning approach where students can immediately practice the concepts being taught in the lecture on their mobile devices

    Enhancing comprehension in open distance learning computer programming education with visualization

    Get PDF
    This thesis describes a research project aimed at improving the tracing skills of first-year programming students enrolled for an introductory C++ course at an open distance learning institution by means of a tutorial in the form of a program visualization tool to teach the students to draw variable diagrams. The research was based on the findings from the BRACElet project (Clear, Whalley, Robbins, Philpott, Eckerdal, Laakso & Lister, 2011). A design-based research methodology was followed. To guide the process of developing the tutorial, a framework of 26 guidelines for developing and using visualization tools to teach programming was synthesized from the literature on computing education research CER, educational psychology and computer graphics. Guidelines were supplemented with reasons or explanations for their recommendation and considerations to be taken into account when using a guideline. The framework was enhanced by lessons learnt during the development and testing of the tutorial. The tutorial was tested and refined during two implementation cycles. Both cycles included quantitative and qualitative investigations. All students registered for the introductory module received the tool with their study material. For the quantitative investigations, students completed a questionnaire after using the tutorial. Through the questionnaire biographical data was acquired, the manner in which students used the tutorial and how they experienced using it. The responses to the questionnaires were statistically analysed in combination with respondents’ final marks. The statistical modelling indicated that the students’ biographical properties (a combination of level of programming experience, marks obtained for Mathematics and English in matric and first-time registration for COS1511 or not), had the biggest impact on their final marks by far. During the qualitative investigations students were eye tracked in a Human-Computer Interaction laboratory. The gaze replays in both cycles revealed that students’ reading skills impacted largely on their success, connecting with the findings from the quantitative investigations. Reflections on why the tutorial did not achieve its purpose; and why poor reading skills may have such a strong effect on learning to program, contribute some theoretical understanding as to how novices learn to program.Computer ScienceD. Phil. (Computer Science

    Challenges for engineering students working with authentic complex problems

    Get PDF
    Engineers are important participants in solving societal, environmental and technical problems. However, due to an increasing complexity in relation to these problems new interdisciplinary competences are needed in engineering. Instead of students working with monodisciplinary problems, a situation where students work with authentic complex problems in interdisciplinary teams together with a company may scaffold development of new competences. The question is: What are the challenges for students structuring the work on authentic interdisciplinary problems? This study explores a three-day event where 7 students from Aalborg University (AAU) from four different faculties and one student from University College North Denmark (UCN), (6th-10th semester), worked in two groups at a large Danish company, solving authentic complex problems. The event was structured as a Hackathon where the students for three days worked with problem identification, problem analysis and finalizing with a pitch competition presenting their findings. During the event the students had workshops to support the work and they had the opportunity to use employees from the company as facilitators. It was an extracurricular activity during the summer holiday season. The methodology used for data collection was qualitative both in terms of observations and participants’ reflection reports. The students were observed during the whole event. Findings from this part of a larger study indicated, that students experience inability to transfer and transform project competences from their previous disciplinary experiences to an interdisciplinary setting
    corecore