
Turku Centre for Computer Science

TUCS Dissertations
No 230, February 2018

Erkki Kaila

Utilizing Educational Technology
in Computer Science and
Programming Courses

Theory and Practice

Utilizing	Educational	Technology	
in	Computer	Science	and	

Programming	Courses	
	

Theory	and	Practice	

Erkki	Kaila	

To be presented, with the permission of the Faculty of Science and Engineering of the
University of Turku, for public criticism in Auditorium XXI on February 17th, 2018,

at 12 noon.

University of Turku
Department of Future Technologies

Vesilinnantie 5, 20500 Turku, Finland

2018

SUPERVISORS

Professor Tapio Salakoski, Ph.D.
Department of Future Technologies
University of Turku
Finland

Adjunct Professor Mikko-Jussi Laakso, Ph.D.
Department of Future Technologies
University of Turku
Finland

REVIEWERS

Associate Professor Judithe Sheard, Ph.D.
Faculty of Information Technology
Monash University
Australia

Adjunct Professor Jarkko Suhonen, Ph.D.
School of Computing
University of Eastern Finland
Finland

OPPONENT

Professor Mike Joy
Department of Computer Science
University of Warwick
United Kingdom

The originality of this thesis has been checked in accordance with the University of Turku
quality assurance system using the Turnitin OriginalityCheck service.

ISBN 978-952-12-3677-8
ISSN 1239-1883

To my Loved Ones
and

One Love

i

ABSTRACT

There is one thing the Computer Science Education researchers seem to agree:
programming is a difficult skill to learn. Educational technology can
potentially solve a number of difficulties associated with programming and
computer science education by automating assessment, providing immediate
feedback and by gamifying the learning process. Still, there are two very
important issues to solve regarding the use of technology: what tools to use,
and how to apply them?

In this thesis, I present a model for successfully adapting educational
technology to computer science and programming courses. The model is
based on several years of studies conducted while developing and utilizing
an exercise-based educational tool in various courses. The focus of the model
is in improving student performance, measured by two easily quantifiable
factors: the pass rate of the course and the average grade obtained from the
course.

The final model consists of five features that need to be considered in order
to adapt technology effectively into a computer science course: active
learning and continuous assessment, heterogeneous exercise types, electronic
examination, tutorial-based learning, and continuous feedback cycle.
Additionally, I recommend that student mentoring is provided and cognitive
load of adapting the tools considered when applying the model. The features
are classified as core components, supportive components or evaluation
components based on their role in the complete model.

Based on the results, it seems that adapting the complete model can increase
the pass rate statistically significantly and provide higher grades when
compared with a “traditional” programming course. The results also indicate
that although adapting the model partially can create some improvements to
the performance, all features are required for the full effect to take place.

ii

Naturally, there are some limits in the model. First, I do not consider it as the
only possible model for adapting educational technology into programming
or computer science courses. Second, there are various other factors in
addition to students’ performance for creating a satisfying learning
experience that need to be considered when refactoring courses. Still, the
model presented can provide significantly better results, and as such, it works
as a base for future improvements in computer science education.

iii

TIIVISTELMÄ

Ohjelmoinnin oppimisen vaikeus on yksi harvoja asioita, joista lähes kaikki
tietojenkäsittelyn opetuksen tutkijat ovat jokseenkin yksimielisiä.
Opetusteknologian avulla on mahdollista ratkaista useita ohjelmoinnin
oppimiseen liittyviä ongelmia esimerkiksi hyödyntämällä automaattista
arviointia, välitöntä palautetta ja pelillisyyttä. Teknologiaan liittyy kuitenkin
kaksi olennaista kysymystä: mitä työkaluja käyttää ja miten ottaa ne
kursseilla tehokkaasti käyttöön?

Tässä väitöskirjassa esitellään malli opetusteknologian tehokkaaseen
hyödyntämiseen tietojenkäsittelyn ja ohjelmoinnin kursseilla. Malli perustuu
tehtäväpohjaisen oppimisjärjestelmän runsaan vuosikymmenen pituiseen
kehitys- ja tutkimusprosessiin. Mallin painopiste on opiskelijoiden
suoriutumisen parantamisessa. Tätä arvioidaan kahdella kvantitatiivisella
mittarilla: kurssin läpäisyprosentilla ja arvosanojen keskiarvolla.

Malli koostuu viidestä tekijästä, jotka on otettava huomioon tuotaessa
opetusteknologiaa ohjelmoinnin kursseille. Näitä ovat aktiivinen oppiminen
ja jatkuva arviointi, heterogeeniset tehtävätyypit, sähköinen tentti,
tutoriaalipohjainen oppiminen sekä jatkuva palautesykli. Lisäksi
opiskelijamentoroinnin järjestäminen kursseilla ja järjestelmän
käyttöönottoon liittyvän kognitiivisen kuorman arviointi tukevat mallin
käyttöä. Malliin liittyvät tekijät on tässä työssä lajiteltu kolmeen kategoriaan:
ydinkomponentteihin, tukikomponentteihin ja arviontiin liittyviin
komponentteihin.

Tulosten perusteella vaikuttaa siltä, että mallin käyttöönotto parantaa
kurssien läpäisyprosenttia tilastollisesti merkittävästi ja nostaa arvosanojen
keskiarvoa ”perinteiseen” kurssimalliin verrattuna. Vaikka mallin
yksittäistenkin ominaisuuksien käyttöönotto voi sinällään parantaa kurssin
tuloksia, väitöskirjaan kuuluvien tutkimusten perusteella näyttää siltä, että
parhaat tulokset saavutetaan ottamalla malli käyttöön kokonaisuudessaan.

iv

On selvää, että malli ei ratkaise kaikkia opetusteknologian käyttöönottoon
liittyviä kysymyksiä. Ensinnäkään esitetyn mallin ei ole tarkoituskaan olla
ainoa mahdollinen tapa hyödyntää opetusteknologiaa ohjelmoinnin ja
tietojenkäsittelyn kursseilla. Toiseksi tyydyttävään oppimiskokemukseen
liittyy opiskelijoiden suoriutumisen lisäksi paljon muitakin tekijöitä, jotka
tulee huomioida kurssien uudelleensuunnittelussa. Esitetty malli
mahdollistaa kuitenkin merkittävästi parempien tulosten saavuttamisen
kursseilla ja tarjoaa sellaisena perustan entistä parempaan opetukseen.

v

ACKNOWLEDGMENTS

It has been my privilege to be supervised by two very capable researchers.
Both Tapio and Mikko have given me excellent guidance when needed, and
known when to step aside and let me learn from my failures or wins on my
own, when necessary. This thesis is just a short trip in a long journey, and I
know I can rely on mentoring of my supervisors in the future as well. I also
like to thank my pre-examiners Judithe Sheard and Jarkko Suhonen for their
expertise in reviewing this thesis and for their deeply analytic and extremely
helpful comments on how to complete the work. I like to thank Mike Joy for
being my opponent in the public defense..

Teemu Rajala has been my brother in arms since we started the studies. We
co-created ViLLE together, started our PHD studies together and have
continued to work together for almost a decade in our department. I have
known Teemu for almost twenty years, and he has always been the most
trustworthy and technically high-skilled colleague, and a dear friend. The
same can be said of Ilkka Sillanpää, who helped me and Teemu to create the
first version of ViLLE before leaving for other duties.

Einari Kurvinen is one of the most enthusiastic and pedagogically skilled
researchers I have worked with. Due to sharing similar views to teaching and
research (and lately, due to ever-growing number of commitments outside
the office, a number of noisy train compartments, shady hotel rooms and a
fair amount of pints), Einari has become the colleague I seem to be calling out
the most. I have worked with many other excellent researchers as well during
the last decade. Rolf Lindén, Erno Lokkila, Ashok Kumar, Ville Karavirta,
Johannes Holvitie, Ari Korhonen, Lauri Malmi, Jani Turtiainen and Nikke
Leskelä are just a few examples of these highly skilled people.

This thesis would not have been possible without all the lovely people in the
ViLLE Team throughout these years. I have been lucky enough to form a team
with Rolf, Erno, Markus Kitola, Peter Larsson, Eero Suvanto and Tommy
Johansson. Riku Haavisto, Riku Kajasilta, Tommi Tapaninaho, Ali Leino,
Niko Hellgren and numerous others have been continuing to develop the

vi

system tirelessly for it to become what it is today. Essi Tamminen, Marika
Parviainen, Aleksi Hermonen, Säde Kankare and Eeva Laatikainen have
shown their creative talents in creating excellent content for learning.

I have been lucky to work in the department where I can have collaborated
with so many true experts, whether doing research, teaching or counseling
students. I would like to thank Antti Hakkala, Jari Björne, Sami Hyrynsalmi,
Jorma Boberg, Erkki Sutinen, Olli Nevalainen, Filip Ginter, Jukka Heikkonen
and Martti Tolvanen, to name a few. I would also like to thank Maria Prusila,
Sami Nuuttila, Marko Lahti, Heli Vilhonen, Pia Lehmussaari, Eija Nordlund
and others for making the daily life in the department so much easier.

I like to thank my family for believing that this thesis will be completed
someday (even when I myself had some doubts). My deepest gratitude and
appreciation go to my mother, Eija-Liisa and father, Esa, my sister, Elina and
her family, Mats, Anton and Amanda, and to my brother, Marko and his
family, Aino, Heikki, Esko and Antti. I also like to thank Timo, Jussi, Markku
and all my other friends, relatives and co-musicians for everything.

Finally, I want to thank Petra for making everything better every day. I love
you.

vii

LIST OF ORIGINAL PUBLICATIONS

P1. Kaila, E., Rajala, T., Laakso, M.-J. and Salakoski, T. 2009. Effects,
Experiences and Feedback from Studies of a Program Visualization Tool.
Informatics in Education. 8 (1), 17 – 34. Vilnius University.

P2. Kaila, E., Rajala, T., Laakso, M.J. and Salakoski, T., 2010. Effects of
Course-Long Use of a Program Visualization Tool. In Proceedings of the
Twelfth Australasian Conference on Computing Education (ACE
2010) - Volume 103, 97 – 106. Australian Computing Society, Inc.

P3. Kaila, E., Rajala, T., Laakso, M.J., Lindén, R., Kurvinen, E. and
Salakoski, T. 2014. Utilizing an Exercise-Based Learning Tool Effectively
in Computer Science Courses. Olympiads in Informatics, 8, 93 – 109.
Vilnius University.

P4. Kaila, E., Rajala, T., Laakso, M.J., Lindén, R., Kurvinen, E., Karavirta,
V. and Salakoski, T. 2015. Comparing Student Performance Between
Traditional and Technologically Enhanced Programming Course. In
Proceedings of the Seventeenth Australasian Computing Education
Conference (ACE 2015). CRPIT, 160, 147 – 154. Australian
Computing Society, Inc.

P5. Kaila, E., Kurvinen, E., Lokkila, E. and Laakso, M.J. 2016.
Redesigning an Object-Oriented Programming Course. ACM
Transactions on Computing Education (TOCE), 16 (4), Article no.
18. ACM New York, NY, USA.

viii

CONTRIBUTIONS OF THE AUTHOR

In papers P1 and P2 the data was collected and the setup of the studies
designed by me, Teemu Rajala and Mikko-Jussi Laakso, and the analysis and
reporting were done collaboratively by all authors.

In paper P3 the setup was designed and the data collected and analyzed
mainly by me, and the reporting was done collaboratively by all authors.

In paper P4 the setup was designed and the data collected by me, Teemu
Rajala and Mikko-Jussi Laakso, and the analysis and the reporting were done
collaboratively by all authors.

In paper P5 the setup was designed and the data collected by me and Mikko-
Jussi Laakso, and the results were analyzed and reported with help from the
other authors.

ix

LIST OF CO-AUTHORED ORIGINAL PUBLICATIONS

NOT INCLUDED IN THIS THESIS

∂ Laakso, M.-J., Kaila, E. and Rajala, T. 2018. ViLLE – Collaborative
Ecucation Tool: Designing and Adapting a Learning Environment for
Collecting and Analyzing Educational Data. Accepted for publication in
Education and Information Technologies.

∂ Lokkila, E., Kaila, E., Lindén, R., Laakso, M.-J. and Sutinen, E. 2017.
Refactoring a CS0 Course for Engineering Students to Use Active Learning.
Interactive Technology and Smart Education 14 (3).

∂ Rajala, T., Kaila, E., Lindén, R., Kurvinen, E., Lokkila, E., Laakso, M.-
J. & Salakoski, T. 2016. Automatically Assessed Electronic Exams in
Programming Courses. In proceedings of the Eighteenth Australasian
Computing Education Conference (ACE2016), Canberra, Australia.

∂ Kaila, E., Lindén, R., Rajala, T., Hellgren, N. & Laakso, M.-J. 2016.
Redesigning Methodology for Student Counseling in the First Year IT
Education. In proceedings of EDULEARN 2016 Conference, Barcelona,
Spain.

∂ Veerasamy, A. K., D'Souza D., Lindén R., Kaila E., Laakso M.-J. &
Salakoski T. 2016. The Impact of Lecture Attendance on Exams for Novice
Programming Students. International Journal of Modern Education and
Computer Science (IJMECS), 05/2016, Volume 8, Issue 5.

∂ Kurvinen, E., Hellgren, N., Kaila, E., Laakso, M.-J. & Salakoski, T.
2016. Programming Misconceptions in an Introductory Level Programming
Course Exam. In proceedings of the 21th Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE
2016), Arequipa, Peru.

x

∂ Wilman S., Lindén R., Kaila E., Rajala T., Laakso M.-J. and Salakoski
T. 2015. On Study Habits on an Introductory Course on Programming.
Computer Science Education, 25(3), 276-291.

∂ Kaila, E., Kurvinen, E., Lokkila, E., Laakso, M.-J. & Salakoski, T. 2015.
Enhancing Student-Teacher Communication in Programming Courses: a
Case Study Using Weekly Surveys. In proceedings of ICEE 2015 -
International Conference on Engineering Education

∂ Leskelä, N., Kaila, E., Kurvinen, E., Rajala, T. & Laakso, M.-J. 2015.
Teaching Programming in Elementary School - a Case Study Comparing
Play-Based Learning to Visual Programming. In proceedings of
EDULEARN15 - 7th International Conference on Education and New
Learning Technologies.

∂ Holvitie, J., Haavisto, R., Rajala, T., Kaila, E., Laakso, M.-J. &
Salakoski, T. 2012. A Robot exercise for learning programming concepts. In
proceedings of ICEE 2012 - International Conference on Engineering
Education, July 30th - August 3rd, 2012, Turku, Finland.

∂ Holvitie, J., Haavisto, R., Kaila, E., Rajala, T., Laakso, M.-J. &
Salakoski, T. 2012. Electronic exams with automatically assessed exercises.
Appeared in ICEE 2012 - International Conference on Engineering
Education, July 30th - August 3rd, Turku, Finland.

∂ Kaila, E., Rajala, T., Laakso, M.-J. & Salakoski, T. 2011. Important
features in program visualization. Appeared in ICEE : An International
Conference on Engineering Education, 21-26 August 2011, Belfast,
Northern Ireland, UK

∂ Rajala, T., Salakoski, T., Kaila, E. & Laakso, M-J. 2010. How Does
Collaboration Affect Algorithm Learning? A Case Study Using TRAKLA2
Algorithm Visualization Tool. In Proceedings of 2010 International

xi

Conference on Education Technology and Computer (ICETC 2010),
Jun 2010.

∂ Kaila, E., Laakso, M.-J., Rajala, T. & Salakoski, T. 2009. Evaluation of
Learner Engagement in Program Visualization. Appeared in 12th
IASTED International Conference on Computers and Advanced
Technology in Education (CATE 2009), November 22 - 24, 2009, St.
Thomas, US Virgin Islands.

∂ Laakso, M.-J., Rajala, T., Kaila, E. and Salakoski, T. 2008. The Impact of
Prior Experience in Using a Visualization Tool on Learning to Program.
Proceedings of CELDA 2008, Freiburg, Germany, 129-136.

∂ Rajala, T., Laakso, M.-J., Kaila, E. and Salakoski, T. 2008. Effectiveness
of Program Visualization: A Case Study with the ViLLE Tool. Journal of
Information Technology Education: Innovations in Practice, 7, 15-32.

CONTENTS

1 Introduction ... 1

1.1 Research Questions .. 2

1.2 Methodology .. 3

1.3 The Structure of this Thesis ... 5

2 About Educational Technology and Programming: Related Studies
and Tools ... 7

2.1 Programming Learning: Why and How is it Difficult? 7

2.2 Program Visualization ... 9

2.3 Other Educational Tools .. 11

2.4 Methods and Methodologies for Programming Education 13

3 Designing and implementing ViLLE ... 17

3.1 ViLLE 1 – Visual Learning Tool .. 17

3.1.1 Background ... 18

3.1.2 Features ... 20

3.2 ViLLE 2 – Collaborative Education Tool .. 23

3.2.1 Background ... 24

3.2.2 Features ... 26

3.3 Summary ... 32

4 Utilizing ViLLE in Programming Education ... 35

4.1 Laying the Foundation: Controlled Tests ... 35

4.1.1 Study 1: Effectiveness of ViLLE ... 36

4.1.2 Study 2: Role of Engagement ... 37

4.1.3 Study 3: Effect of Cognitive Load .. 38

4.1.4 Summary of Controlled Tests .. 39

4.2 Utilizing the Program Visualization Tool .. 39

4.2.1 Case 1: High school programming course 39

4.2.2 Case 2: Introductory Computer Science Course in University
Level .. 41

4.3 Utilizing the Collaborative Education Tool...................................... 43

4.3.1 Case 3: Introductory Programming Course for Bioinformatics
Majors .. 43

4.3.2 Case 4: Introductory Programming Course for CS Majors 45

4.3.3 Case 5: Object-Oriented Course at University Level 48

4.4 Summary ... 49

5 A Research-Based Model for Utilizing Educational Technology in CS
Education ... 53

5.1 Results Revisited .. 53

5.2 The Model ... 56

5.3 Applying the Model: Requirements and Limitations 62

6 Conclusion and Future Work ... 67

References ... 69

1

1 I n t r oduc t i on

Computers and programs can be found everywhere. In addition to our
laptops, mobile phones and tablets, for example, cars, household items and
various other things around us rely on microchips and programs running on
them. Hence, writing programs is even more essential skill than it used to be
during previous decades. Still, as shown in various studies (see for example
McCracken et al. 2001, Lahtinen et al. 2005, Lister et al. 2004), programming
is a very difficult skill to learn, and even more difficult skill to master. After
introductory courses, various students typically still have difficulties in
reading the program code and in writing simple programs. Moreover, the
dropout rates in introductory programming courses are typically quite high.
Without a solid base in basic programming concepts, mastering the advanced
topics presented later in the curriculum becomes close to impossible.

It would be easy to blame the teachers, but there is more to the issue. As
programming is considered an essential skill (not only in computer science,
but in other topics as well), introductory programming courses, especially at
university level, are usually crowded with students. This means, that the
course staff has very little time to spend on individually instructing the
students and on assessing the assignments. As programming is generally
considered a skill where active learning is essential (see for example Jenkins
2002), the lack of time leads to problems in learning. In general, you cannot
learn to program unless you write a plenty of programs yourself, and writing
programs without proper feedback and guidance might be an impossible task
for beginners.

Educational technology provides potential solution to the problem. Though
technology can be useful in teaching any topics, it can provide particular
benefits when utilized in programming or computer science education.
Assessing programming assignments and other tasks can be automatized,

2

and immediate feedback (Laakso 2010) can be provided on the correctness
(and to some extent, the quality) of the solutions. This enables practicing the
topics anywhere, anytime, and an unlimited number of iterations, if the tasks
are cleverly designed. Educational technology can potentially provide other
benefits as well, such as easy (and transparent) recording of assignment
scores and other tasks, gamification (Deterding et al. 2011) and continuous
assessment where completing tasks throughout the course becomes
meaningful.

Like any tools, educational tools are the most (or only) useful if utilized
correctly. There are several questions to consider when adapting the tools
into the courses: what tools would best suit the requirements, which features
should be utilized, how to reduce cognitive load (Sweller 1994) and how to
motivate and reward the students, to name a few. In other words, how to get
the best benefits out of the educational technology and still keep the
adaptation feasible in terms of the costs and the workload. There are several
educational tools designed especially for programming and computer science
education (see Sections 2.2 and 2.3 for some examples). However, it is quite
rare to see studies where the adaptation of the tools is studied extensively
after the introductory results.

In this thesis, I present the scientific background, the design and the
development of an educational tool called ViLLE, and discuss the
effectiveness of the tool by observing the results of the controlled tests and
the adaptation cases in different scenarios utilizing different methods. Hence,
the focus is both on the technology used, but even more on the ways the
technology is utilized. Based on the results, I form a model about utilizing
educational technology in programming and computer science courses. As a
goal, I expect that such model can be used to increase the quality of the
education in the field of information technology.

1.1 Research Questions

The goal of this thesis is to find out how educational technology can be
adapted successfully into programming and computer science courses. For

3

this goal, studies conducted with an educational tool called ViLLE during
recent years are observed and the results evaluated. The thesis attempts to
answer the following research questions:

RQ1. What kind of features are useful when adapting educational technology
into computer science and programming courses?

RQ2. If such features are found, can they be combined into a model of a
methodology for utilizing educational technology?

RQ3. What kind of requirements and limitations there are to consider when such
model is adapted in computer science or programming courses?

Hence, the goal of the first research question is to observe the individual
features that should be considered when an educational tool is utilized. The
second question is about combining the features that are proven to be
successful into a complete model that can be utilized by anyone interested in
utilizing educational technology in programming or computer science
courses. The third question is about the adaptation of such model, and the
requirements and possible limitations concerning the technology, course
contents and people that need to be addressed when the adaptation is done.

1.2 Methodology

The research reported in this thesis and the development of ViLLE is based
on the design research methodology. The framework used is loosely based
on one described by March & Smith (1995), but excluding the natural science
research components. Hence, it consists of two research outputs, Constructs
and Models, and two research activities, Build and Evaluate. The framework
is displayed in Figure 1.

4

Figure 1 The research methodology utilized. Based on work of March and Smith (1995).

There are a total of four components in the model, described below:

∂ Constructs form the vocabulary of the domain. In this thesis, the
vocabulary contains features such as assessment, round, assignment
and tutorial. It is essential to understand their meaning in this context
to understand the problem and the solution.

∂ Model expresses the joined constructs and their relationship.
According to March & Smith (1995), the model is a description of
“how things are”. In addition to model described in Section 5, the
cases described in Section 4 are sub models according to this
definition.

∂ Build is an action of preparing an artifact. The artifact can be an
individual construct or a whole model.

∂ The artifacts need to be evaluated based on how well they work. The
evaluation requires metrics that measure the effectiveness of the
artifacts. In this thesis, student performance (measured with pass rate
and grade average) is the main target of evaluation.

The matrix itself consists of four cells, labeled A to D in Figure 1. The cells are
described below.

5

A. In this stage, a construct is defined or build. Defining and
implementing individual features later utilized in the model belong
to this category.

B. After the features are defined, they can be joined into a model. The
final outcome of this thesis is the proposed model, but sub models are
defined and studied earlier.

C. Individual constructs are evaluated when possible. However, as
described in Section 5.1, it is not feasible or ethically sustainable to
test for the effects of all individual features in the model.

D. The model (or sub model) needs to be evaluated to find out if it is
effective in the task it was designed for. This thesis is concluded with
the evaluation of the complete model, but the sub models are
evaluated in papers P1, P2 and P3, and in Section 4.

It is to be noted, that the design and implementation process of this research
has been cyclic: new features have been designed, implemented, tested and
reworked gradually to complete the whole model. Detailed description of the
development process of ViLLE and the studies conducted is provided in
Sections 3 and 4.

1.3 The Structure of this Thesis

This thesis is structured as follows. First, in the second section, the related
literature by the research community is reviewed. The section starts with a
review on programming learning and its difficulty, and continues with a
discussion about program visualization, its potential effects and an overview
about prominent program visualization tools. After that, other educational
tools are discussed followed by a review about teaching methodologies and
their effectiveness in the course redesign process. In the third section, the
educational tool utilized in the studies of this thesis, ViLLE, is presented. As
there are two, vastly different versions of the tool, they are presented
separately along with a scientific background on which they were built upon,
and an overview of the features.

6

In the fourth section, the studies about utilizing ViLLE in programming and
computer science education are presented and discussed. The section starts
with an overview of controlled tests performed before the tool was adapted
into course-long usage. After that, five different use cases from courses with
different content and student profiles are presented, along with the most
important results gathered from the courses. The section is concluded with a
summary of all presented results. In the fifth section, a model for adapting
educational technology in computer science and programming courses is
presented, based on the results discussed in the previous section. In addition
to the model and the intervention features in it, adaptation and limitations of
the model are discussed.

The thesis is based on five research papers, where new features to be included
into the model are gradually presented. In paper P1, controlled tests and
other experiments about using a visualization tool are presented. In paper P2,
an early experiment about adapting the same tool into a computer science
course is studied. In paper P3, we present the new version of the tool, and
provide results of a study where the tool was adapted into a high school
programming course and into a bioinformatics programming course,
respectively. In papers P4 and P5 all features of the model to be formed are
utilized when the tool is adapted into university-level programming courses.

7

2 Abou t Educa t i ona l

Techno l ogy and

P rog r amm ing : Re l a t ed

S t ud i e s and Too l s

In this section, work related to concepts of this thesis by other authors is
reviewed. The section is divided into four subsections. First, the mechanisms
and fundamental problems in programming learning are discussed, with
focus on three questions: how programming is learned, why is programming
difficult to learn, and how the difficulties are observable. In the second
subsection, program visualization techniques and tools are observed. In the
third subsection, development and evaluation of other types of tools
representing different areas of educational technologies are presented, and
finally theories behind effective education and effective educational
technology are discussed. In that final subsection, a few examples of course
redesign methodologies are also presented. Some theoretical background
directly related into design of ViLLE is presented in Section 3.

2.1 Programming Learning: Why and how is it

Difficult?

Programming is without a doubt one of the most important skills in the
computer science and computing engineering curriculums. The skills needed
to learn programming can be roughly divided into two subcategories: first,
there are technical skills, such as the syntax of the programming language
and the usage of the control structures (such as loops, functions or conditional
statements). Second, to utilize programming as an effective tool, it is essential
to learn algorithmic problem solving skills. DuBoulay (1989) divides these

8

two categories further into five overlapping domains that are essential to
master to learn to program: orientation, notional machine, notation,
structures and pragmatics. As Havenga et al. (2013) note, students usually
focus on writing programs instead of programming, meaning that they
concentrate on the mechanical task instead of utilizing programming as a
problem solving mechanism. Davies (1993) makes a similar distinction
between programming knowledge and programming strategies.

In their systematic literature review about learning and teaching
programming, Robins et al. (2003) list novice programmers’ typical issues:
they are limited to superficial knowledge, lack adequate mental models, use
overly simplified problem solving strategies, and spend too little time in
planning, testing and debugging programs. Novices also have poor code
tracing skills and lack knowledge about the sequential nature of programs.
Schemas (see for example Mayer 1981) are also something that distinguish
experts from novices. Schemas are mental models representing solutions to
algorithmic problems and sub problems in programming. Since experts have
more developed schemas and better ability to apply them, problem solving
process is much easier for them. As a concrete example, experts typically have
highly developed schemas for sorting arrays or lists, and know which of them
to apply in different cases, while novices may spend a lot of time solving the
same problem and still come up with less suitable or ineffective solution.

There are various studies underlining the difficulties in programming
learning. In their multi-national, multi-institutional study, McCracken et al.
(2001) report that the programming skills of students are typically quite poor
after the introductory courses. In fact, out of 110 points in the test used for the
study, the students only gained an average of 23 points after taking the
introductory courses. Although the report is already 15 years old, the results
are likely still similar in many cases. Lahtinen et al. (2005) surveyed more
than 500 students about their perceptions of difficulties in programming.
Their results indicate, that the students find designing and building programs
as well as debugging the most difficult issues, and error handling, recursion
and references the most difficult concepts. The students also preferred

9

practical sessions and coursework as the best learning methods, and example
programs as the most useful learning materials.

Among several others, Bergin et al. (2005) underline the importance of
motivation in learning to program. However, they also distinguish between
internal and external motivation: the internal motivation derives from a
desire to learn the concepts, while the external motivation comes from desire
for a reward or to avoid a punishment. Gomez & Mendes (2014) state, that
students typically lack intrinsic motivation in the programming courses due
to their difficulty. One of the solutions they suggest, based on teacher
interviews, is to attribute classifications based on the difficulty of tasks, for
example by offering bonus points on more demanding exercises or
assignments.

Bosse & Gerosa (2017) present a systematic literature review about
programming difficulties, and present a “model, which may assist students
in sharpening their focus, and teachers in preparing their lessons and
teaching material, as well as researchers in employing methods and tools to
support learning.” Visual programming tools (see Section 2.2) may been seen
as a potential aid, but as Tijani et al. (2017) state, the skills acquired with
visual programming environment may have no correlation to procedural
programming, meaning that such tools, although entertaining, still cannot
provide any real help to the problem.

2.2 Program Visualization

Several methods and tools to assist programming learning have been
developed and used. Programming skills can be roughly divided into two
major areas: code writing, and code reading (typically referred as code
tracing) skills. There are some controversies in the research community about
whether the two are connected: for example, Lopez et al. (2008) found a
strong correlation between students’ code tracing and writing skills, but there
are opposite findings as well: Winslow (1996) for example states, that
according to studies, there is “very little correspondence between the ability to
write a program and the ability to read one.” Nevertheless, both are essential

10

skills to master. Tracing skills are particularly important in adopting example
programs and in debugging the program code.

Program visualization can potentially be used to enhance code reading skills.
Nowadays, the definition of program visualization seems quite
unambiguous for anyone in the research field. However, according to
Hyrskykari (1993), terms visual programming and program visualization
were used to describe anything that had something to do with computer
graphics and programs, until Myers (1986) defined visual programming as a
“system that allows the user to specify a program in a two or more dimensional
manner” and program visualization as specifying program as text, but using
graphics to illustrate some aspects of the program or its execution.

When discussing program visualization, it is nowadays usually common to
refer to tools that illustrate the execution of programs with graphical or
textual components. The goal of the program visualization is to illustrate what
the program does, why it does it, how it works and what happens in the process
(see for example Wiggins 1998). Typically the tools aim to visualize for the
sequence and the order of statements, execution control, states of variables
and objects, evaluation of expressions and the execution of procedures and
functions. For these purposes, program visualization tools utilize for example
code highlighting, call stacks, animated expression evaluation and verbal
explanations about the executed code lines (see for example Rajala et al. 2007
or Moreno et al. 2004). Typically visualization tools also allow students to
execute the programs step-by-step or in selectable speed.

There are several program visualizations tools developed over the years.
Jeliot 3 (Moreno et al. 2004) is one of the most prominent ones. It illustrates
the execution of example programs with various graphical and textual
features: for example, the currently executed code line is highlighted, the
execution of expressions is displayed animated in the “theatre area”, methods
are displayed in their own frames with their local variables, and program
output is visible in the console frame. Čisar et al. (2011) studied the utilization
of Jeliot 3 in two higher educate institutions with around 400 students in
Serbia. According to their findings, the groups utilizing Jeliot 3 achieved

11

better results than the students in the control group. However, the detailed
(and hence often quite slow paced) evaluation animations in Jeliot 3 are not
always favored by students (Kannusmäki et al. 2004).

VIP (a Visual Interpreter, Virtanen et al. 2005) is a program visualization tool
aimed for learning C++. Utilizing a restricted subset of the programming
language, VIP provides users some typical visualization features, such as
code line highlighting, variable values, output console and an evaluation
area. Isohanni & Knobelsdorf (2011) studied the long-term engagement of
students with VIP and isolated four different phases describing the
engagement. The authors state that high commitment with a visualization
tool is crucial, because “it distinguishes the use of a visualization tool from the use
of a normal program development environment”. Examples of other visualization
tools are jGRASP (Cross et al. 2004), which is a full development environment
with possibility to visualize the programs, and Jype (Helminen & Malmi
2010), which provides quite comprehensive feature set for visualizing
programs in Python, including for example the visualization of algorithms
and data structures.

2.3 Other Educational Tools

In addition to visualization tools, there are several other educational tools
developed to aid teachers and students. Dalsgaard (2006) makes a distinction
between integrated and separated tools. Separated tools are individual tools, for
example chat rooms, file sharing tools, shared whiteboards, e-portfolios and
wiki platforms. Integrated tools combine several tools under a single
platform. The platforms, called learning management systems (usually
abbreviated as LMS), are a typical and very widespread use of educational
technology. They are often used for administrative features and
communications: sharing materials, receiving student submissions and for
private and shared communications, but also for assignments, peer-reviews
and assessment.

Very common examples of widely used LMS’s are for example Moodle
(Dougiamas & Taylor 2003) and Blackboard (Bradford et al. 2007). Coates et

12

al. (2005) suggest reasons for universities’ enthusiasm in adapting learning
management systems: they provide means of increasing the efficiency of
teaching and are associated with the promise of enriched student learning.
Moreover, students’ expectations towards learning technology are
increasing, and there is a lot of competition among universities, which forces
them to seek improvement on the quality of education. Finally, LMS’s are
proposed as a solution to higher demand for greater access to higher
education, and as such, are part of a culture shift taking place in education.

In addition to LMS, term LCMS (learning content management system) is
sometimes used. Although the terms are often used as interchangeable, there
can be a semantic difference. According to Oakes (2002) LCMS’s are focused
on developing and delivering content in the form of learning objects, while
LMS’s are used for managing learners and activities. The concept of learning
objects is used quite widely when discussing educational technology
(although as Polsani (2006) points out, the term is often used without any
critique which reduces its meaning). Still, learning objects can be defined as
re-usable objects, based on one learning goal and being as cohesive and de-
coupled as possible (Boyle 2003). Although most authors define learning
objects as digital (see for example McGreal 2004), some also include objects
that are not associated with or do not utilize educational technology (in fact,
the IEEE standardization also includes non-digital objects, see Boyle 2003).

As stated before, LMS’s can be used for delivering different kinds of content
and learning objects to students. Wiki (an example of a typical learning
content in almost any LMS) for example can enable collaborative creation and
learning and support distant learning (see for example Wheeler et al. 2008 or
Engstrom & Jewett 2005). Another common feature is an electronic (learning)
portfolio, a collection of learning artifacts that offers students a possibility for
self-reflection (Barret 2007). Electronic portfolios are typically used for
assessing students as well. Computer-assisted grading rubrics can improve
the quality of feedback and enable easier personalized comments about
students’ work (Auvinen et al. 2009, Anglin et al. 2008). Other tools that can
either assist teachers in their daily tasks, or enable whole new approach to

13

teaching are for example lecture polling tools (see for example Menon et al.
2004) and peer-review (see for example Gehringer 2001).

In addition, there are other kinds of tools designed especially for
programming education. First, there are the tools for automatic assessment
of program code. Examples of such tools are Web-CAT (Edwards & Perez-
Quinones, 2008), Scheme-robo (Saikkonen et al. 2001) and BOSS (Joy et al.
2005). Features offered by such tools include for example the support for
different programming languages, possibility for resubmissions, defining
automated tests for submitted code, sandboxing for executing the submitted
code securely, and a possibility for manual assessment (Ihantola et al. 2010).
Other tools designed for programming education include for example the
tools and IDEs for supporting programming process, such as BlueJ (Kölling
et al. 2003), tools for program simulation (which can be seen as “reverse”
visualization), such as UUHistle (Sorva & Sirkiä 2010) and to some extent,
graphical programming tools such as Scratch (Resnick et al. 2009), Greenfoot
(Henriksen & Gölling 2004) and Alice (Cooper et al. 2000).

2.4 Methods and Methodologies for Programming

Education

Appropriate tools are still just a first step towards more effective and
motivating computer science and programming courses. The study methods
utilized are even more important. Hence, various studies about utilizing
different methods have been conducted. Student collaboration, especially in
the form of pair programming, is one example. For example, Lee et al. (2013)
and Simon et al. (2010) found a positive correlation between pair-
programming and student performance. Moreover, Porter et al. (2013)
conclude, that pair-programming, peer instruction and media computation
provide better results in introductory programming courses because they can
make programming courses “easier” by making them less asocial, boring and
competitive. Similarly, Nagappan et al. (2003) found out that students who
utilized pair-programming were “more self-sufficient, generally perform better on

14

projects and exams and were more likely to complete the class with grade C or higher
than their counterparts.”.

Flipped learning is an example of a methodology that is used quite often
nowadays to try to enhance the classroom experience. In flipped learning,
lectures are usually served as short videos, and the time in classroom is spent
in doing exercises (see for example Sams & Bergmann 2013). However, the
results from the flipped classroom experiments are somewhat mixed. For
example, Amresh et al. (2013) report an experiment of utilizing flipped
classroom in CS1 course. They found out, that the group utilizing the flipped
methodology gained higher scores in the assignments, but on the other hand
some students found the methodology “overwhelming and intimidating at
times”. Similarly, Bruff et al. (2013) report a study where a MOOC (massive
open online course) was integrated into a machine learning course. The
authors found out, that while some of the feedback from students was
positive, there were also concerns about combining online materials with in-
class components.

Although MOOCs do not really fit into the scope of this thesis (as they rely
almost solely on distant and independent learning) they should still be
discussed, since they rely heavily on educational technology and as such,
provide excellent examples on the adaptation of such technology and tools.
MOOCs have become extremely popular in recent years. According to
Pappano (2012), Coursera – a popular MOOC platform – partners with many
elite universities to offer distant learning to anyone, regardless of their base
education or socioeconomic status. Probably at least partly because of the low
threshold to enter the courses, the pass rates of students in MOOC courses
are typically very low compared to traditional courses. For example,
according to a survey conducted among professors utilizing MOOCs
(Kolowich 2013) the pass percentage is only 7.5% (although the author states
that the results of the survey are not “scientific” due to respondents being
most likely “the most enthusiastic of the MOOC professors”).

Nevertheless, there are various educational tools and methodologies
developed for and used in MOOC courses about programming or CS. For

15

example, Vihavainen et al. (2012) report a development of introductory
programming MOOC where they utilized a pedagogical method called
Extreme Apprenticeship, which, according to the authors, is extremely
effective in programming education. The MOOC in question is also used as
an entrance exam into the formal computer science degree, which further
extends the possibilities of MOOC courses. Warren et al. (2014) underline the
importance of human interaction, even when taking an online course. They
report the development and utilization of a programing environment
CodeSkulptor (see also Tang et al. 2014) enabling code sharing with other
students in a MOOC course they found to be successful. Other examples of
technology utilized in programming MOOCs are reported for example by
Nguyen et al. (2014), Miller et al. (2014), Pieterse (2013) and Yin et al. (2015).

There are examples of successful adaptation of new methodologies for
teaching programming in traditional classroom setup. For example, Boyle et
al. (2003) report an experiment where blended learning was utilized to try to
improve student success in an introductory programming course. Changes
made included for example an extensive usage of online environment.
According to the authors, the changes resulted in better pass rates and the
study indicated “widespread use of the new online features”. Similarly,
Leutenegger & Edgington (2007) report an experiment where game
programming was utilized in an introductory programming course to make
the course more motivating for students. According to the authors, the
approach used improved the understanding of all basic topics in the course.

Vihavainen et al. (2014) conducted a systematic review of different
methodologies and on their success in teaching introductory programming.
The authors isolated several intervention methods (including for example
collaboration, content change, game-theme and peer-support) and evaluate
the success based on improvements in pass rates and changes in the size of
the student population. According to the results of analyzing 32 carefully
selected articles, the most successful methods for improving the pass rates
were the utilization of media computing (or relatable content, in other
words), group work and the introduction of CS0 course before the first
programming course. Hybrid approaches (approaches utilizing more than

16

one of intervention methods studied) provided quite good results, but there
was also a lot of variation between the results. This shows, that the
methodology must be carefully designed and studied when adapting it.

17

3 Des i gn i ng and

imp l emen t i ng V iL LE

In this chapter, an educational tool utilized in this thesis is described. ViLLE
(originally Visual Learning Tool, later Collaborative Education Tool) has
been developed at the Department of Information Technology, University of
Turku since early 2004. The lifespan of the tool can be divided into two
separate versions. The first version – a program visualization tool – was
developed starting from early 2004, first as a student project by me, Teemu
Rajala and Ilkka Sillanpää, and later in the department by Teemu, me and
Mikko-Jussi Laakso. The version is studied in papers P1, P2 and P3 in this
thesis. The second version – a collaborative learning tool – was started in late
2008. The version was again designed by Teemu, me and Mikko. Later the
development has been done by dedicated ViLLE Team research group. The
latter version is studied in papers P3, P4 and P5 in this thesis.

Since the versions were developed one after another, the design process and
scientific background are discussed separately in this section. Both versions
were based on the existing research by the community and ourselves, and
were designed to utilize the best practices to enhance learning as significantly
as possible. Hence, for both versions, a brief history and a scientific
background for design are presented, along with an overview of the most
important features. In this thesis, the versions are labeled ViLLE 1 and ViLLE
2 when the distinction needs to be clarified.

3.1 ViLLE 1 – Visual Learning Tool

The first version of ViLLE was primarily a program visualization tool. The
development started as a student project in early 2004, and the first version
was published in 2005. The first version was developed until 2009, when the

18

next generation was released for the first time. ViLLE 1 was developed as a
standalone Java application, but was later extended with support for an
external server side application to enable recording of scores and submission
counts. From the very beginning, ViLLE supported the visualization of
programs written by the user (alongside the examples provided in the
package), and had a support for various programming languages. Latter
versions added some features to encourage active learning, including for
example multiple choice questions.

3.1.1 Background

Program visualization is a method of illustrating the execution of computer
program or algorithm step by step. Typically in visualization, the program
can be executed continuously or in steps controlled by the user. While the
program is executed, the visualization tool depicts the changes in the state of
the program graphically or textually. Hence, typical program visualization
tools resemble the debugging features found in most advanced programming
IDEs, with two differences: the visualizations are usually simplified in
visualization systems, and it is common to add features to activate students,
such as questions or other tasks to complete during the execution of the
example program.

Some early studies (see for example Hyrskykari 1993) already suggested that
program visualization can be an efficient tool in concretizing abstract
concepts, such as variables or method calls. These concrete models can then
be combined with existing knowledge to create schemas for programming.
According to Naps et al. (2002), the educators do believe that visualization
tools can aid learning, but still there is a “significant disconnect between the
intuitive belief […] and the willingness to and ability of instructors to deploy
visualizations in their classrooms”. The authors state, that for teachers, the
most significant reasons for not adapting visualization tools are the time
required to search for good examples, the time it takes to learn to use the tool
and the time it takes to develop pedagogically valid visualizations.

19

Naps et al. (2003) state that visualization systems can be roughly divided into
two extremes: the systems that are meant for single purpose and single
platform, are undocumented and do not engage students actively into
learning, and the systems built for comprehensive learning experience with
exercises that encourage active learning and that can be run in multiple
platforms. The authors argue, that the systems that fall in the first category
are only usable by their designers for a specific course and for a specific
purpose, and could not be seen as generally usable. The support for active
learning can be measured by engagement taxonomy, proposed by Naps et al.
(2002). In this taxonomy, the relationship between the user and the
visualization is divided into six levels according to the user’s engagement
into visualization. The levels are

1. No viewing – there is no visualization tool at use
2. Viewing – the visualization is viewed passively with no further

engagement
3. Answering – the user is shown questions about visualization during

the viewing
4. Changing – the user can change the algorithm or program visualized
5. Constructing – the user builds own visualizations
6. Presenting – the user presents his or her visualizations for peers to

review

Important hypothesis about the taxonomy, proposed by Naps et al. (2003) is
that visualizations are useful for learning only if used in level three or higher.
This means that visualization tools should provide some form of active
engagement for them to pedagogically useful.

One of the fundamental questions in programming education is the choice of
the first programming language. Several studies have been conducted on the
topic. For example, Grandell et al. (2006) argue, that Python provides many
features that make it suitable as a first programming language in high school
level, including easy-to-learn syntax and immediate feedback. In the
extended study, Mannila et al. (2006) state, that if a language with simpler
syntax (such as Python) is taught as the first language, the transition to more

20

advanced language (such as Java) is smoother, as the students made less
syntax or logic errors. However, the transition from a language to another
should be made as effortless as possible, since the industry often requires the
knowledge of advanced languages as well.

3.1.2 Features

Based on the requirements observed in the previous section, the design of
ViLLE 1 was decided to be based on two major principles: first, the tool
should activate learner in the upper levels of engagement, and second, it
should support a variety of programming languages, making the transition
between languages as easy as possible. The core feature of the first ViLLE was
the visualization of programs: when a program is executed, the execution is
illustrated with various graphical and textual components. The execution can
be accompanied with multiple choice questions as well as graphical array
questions. Moreover, the visualized programs can be displayed using any of
the supported programming languages (including for example Python, Java,
C, PHP and pseudo language). The features are described in more detail
below, divided according to the design principles.

First, the visualization was designed to be simple, fluid and still detailed
enough to provide adequate information about the program visualized. The
program code visualized is displayed in the left frame, with the current and
the previously executed code lines highlighted. The controls above the code
frame allow the student to execute the program one code line at a time, or
continuously with selected speed. The call stack on the right hand side of the
window displays all subprogram calls in their own frames, with information
about all variables (including parameters) created in those subprograms.
Alternatively, the user can display a comprehensive view of all variables in
the right frame. The program output is displayed below the call stack and a
verbal explanation about the executed code line (such as “Initialize variable
‘number’ with value from expression 2 + 3 == 5”) below the program code.
The visualization view of ViLLE 1 is displayed in Figure 2.

21

Figure 2 Example program calculating the first six values in the Fibonacci series visualized.

Multiple choice questions and visual array questions can be included into
desired points of the program execution. ViLLE 1 does not automatically
generate questions. After experimenting with such feature, we found out that
automatically generated questions do not provide enough pedagogical value
to the visualization (as they tend to be mechanical and self-repeating),
although they do make the generation of exercises easier for teachers. Still, in
this case less is more: questions carefully designed and inserted into adequate
points of the execution can engage the students deeper into visualization than
repeated automated questions. The questions inserted into visualizations can
be roughly divided into two categories: 1) questions about the program
execution (such as “which is the next line executed” or “what will be the value
of variable a after this code line is executed”) and 2) general questions about
programming (such as “What operator is used to calculate the remainder of
division?”). Typically questions from both categories were contained in the

22

example programs to try to come up with pedagogically valid and holistic
tasks.

ViLLE 1 supports a variety of programming languages. All examples
provided can be displayed in any programming language supported.
Moreover, the tool has a parallel view (Figure 3), where the program
execution can be displayed in two different programming languages at the
same time.

Figure 3 Example program visualized in Java and Python at the same time.

The view was designed to help the transfer from one programming language
to another. The feature is also meant for illustrating the similarities between
imperative programming languages.

Though ViLLE 1 came pre-packaged with various example programs, it also
allows teachers (and to some extent students) to create their own
visualizations. The example programs are written in Java, and ViLLE
automatically translates them into all other supported languages. It is also
possible to modify the automatic translations, if necessary. When the

23

translations are done, questions can be attached into the visualization by
anchoring them to the execution steps.

The last version of ViLLE 1 provided some additional features. In addition to
program visualization exercises, a new exercise type was added. In the code
shuffling exercise the students need to order the shuffled code lines into correct
order according to given task. The exercise, also known as Parsons puzzle
(Parsons & Haden 2006), is intended for teaching basic syntactical and logical
constructs of programming. Including code shuffling exercises among
visualization exercises also provides some variation for students. The very
final version of ViLLE 1 also introduced a simple coding exercise, where the
students needed to complete the given task by writing a program or a missing
part of it (however, the feature was never studied or used extensively).
Another addition to the last version was the information about roles of
variables (see Kuittinen & Sajaniemi 2004). Each variable in the program is
assigned a role (such as Stepper, Follower, Gatherer or Temporary) to
illustrate its role in the execution. Sajaniemi & Kuittinen (2005) had
promising results about introducing the roles of variable to students.
Unfortunately, in ViLLE the effect of adding the role information into
visualizations was neither complete nor properly studied due to
concentrating into other research topics. Hence, the role information was
discarded when ViLLE 2 was introduced.

3.2 ViLLE 2 – Collaborative Education Tool

ViLLE 1 was deemed unfit for lot of areas in education by 2008 by the
development team, and hence a design and implementation of a new version
was started by Teemu Rajala, me and Mikko-Jussi Laakso. Though the
original version worked well enough as a program visualization tool, it
lacked a lot of features found necessary in the more comprehensive education
tool. Most importantly, there was no support for teacher or student
collaboration, the exercise selection was limited for computer science
education (and more specifically, for programming education), and no
support for other educational activities (such as assessing, lectures or

24

assignments) was included. Moreover, it was executed as a Java applet, a
technology that was found as obsolete and unsecure by many, and which
required an external plugin to browser to be executed.

The second major version of ViLLE was designed with this in mind. The
implementation was done on Vaadin framework (Grönroos 2011). Vaadin is
a web-based server side framework, based on Google Web Toolkit (Johnson
et al. 2007), enabling the client and server side programming in Java. The
applications can be executed in all modern browsers without additional
plugin requirements. Though ViLLE 1 could utilize an external server for
delivering the exercises, the services offered by the server were inadequate
for features designed for the next generation of ViLLE. Hence, a dedicated
server environment was designed and implemented for the new version. The
second version of ViLLE was first released in 2010, and the development has
continued ever since.

3.2.1 Background

Student collaboration, especially in the form of pair programming, has been
studied quite extensively. For example, in the quite comprehensive literature
review about pair programming in CS education (Salleh et al. 2011) the
authors found out, that pair programming can improve student satisfaction
and students’ grades on assignments. Moreover, they found a positive
correlation between pair programming and on the time spent in
programming. This is actually logical, as the time spent in assignments is
likely to increase when the students discuss the assignment when working
on it. In fact, our research group (see Rajala et al. 2011) measured the time the
students spent on discussing the topic during the collaboration and found
out, that over 90 % of the discussion is about the topic. Laakso et al. (2009)
state similarly, that based on the analysis of collaboration and discussion
during a session spent with algorithm visualization, it can be said that the
students are “truly learning collaboratively”.

Another important aspect of collaboration is the joint work of teachers.
According to Briscoe et al. (1997) teacher collaboration can facilitate change

25

as it “provides opportunities for teachers to learn both content and
pedagogical knowledge from one another”. Moreover, the authors claim that
collaboration can encourage teachers to implement new ideas and promote
individual change in [science] teaching. Meiring et al. (2010) studied the
relationship between teacher learning and collaboration in innovative teams,
and found out, that collaboration can be mostly characterized as sharing. As
a more practical result, they suggest that collaboration in professional teams
(described as innovative, voluntary and, interestingly, temporary) could be a
good direction for the professional development of teachers. The temporary
team forming can be hence emphasized by creating a system where instead
of having pre-defined teams, all teachers can collaborate in whatever forms
they find the most useful.

Even before the redesigned version, active learning was already an important
part of ViLLE. A definition by Freeman et al. (2014) illustrates the principle
perfectly: active learning can be described as any activity wherein the student
actively partakes in the process of forming a solution to a given problem.
Active learning using educational technology, without connection to specific
time or place, can be enabled with automatic assessment and immediate
feedback (see for example the work of Laakso 2010). A clever utilization of
aforementioned properties allows students to answer the exercises anywhere,
anytime without compromising the quality or motivation of teaching. If
exercises are initialized randomly (see Malmi et al. 2004 for an example), the
reusability of them as well as a meaningful iteration of the same exercises
increases drastically.

Gamification provides a lot of potential into educational technology. The
definition of the term varies a bit, as stated by Deterding et al. (2011).
However, based on the investigation on the historic use of the term, the
authors propose a definition of gamification as “the use of game design
elements in non-game contexts”. In educational technology, gamification has
two obvious applications. First, game-like exercises can be included to
enhance motivation and make solving the exercises more entertaining, which
can result into better learning performance (see for example Giannakos 2013).
In fact, in their literature survey of 40 studies about the effectiveness of

26

educational games, Backlund et al. (2013) conclude that 29 of the studies
reported positive effects. Second application of gamification is the utilization
of virtual achievements, trophies and awards (Huang et al. 2013).

An educational tool enabling comprehensive usage throughout the course
would also enable continuous assessment. Again, the concept varies
depending on the definer: Nitko (1995) for example discusses the different
views towards the definition, and continues to present a conceptual
framework for organizing continuous assessment. Interestingly, in a survey
conducted by Hernandez (2012), teachers reported providing feedback on
student progress as the most important purpose of continuous assessment.
Educational technology can potentially provide real-time data about
students’ progress in course to both, teacher and the students. There are
however some requirements for this, including for example the
comprehensive use of the tool in all aspects of the course, and the ability to
provide meaningful feedback on the progress.

3.2.2 Features

New ViLLE (referred to as VILLE 2 when distinguished from the old version)
is divided into two main views: the teacher view and the student view.
Teachers can also access the student view to test their courses in the role of
student, and to support cases where user has both roles (for example,
assistant teachers can also be students in other courses). Both views can be
accessed via web-based interface using any modern internet browser with no
additional plugins required. ViLLE 2 uses a client-server architecture, where
most of the data processing is done on the server side, and the communication
via client, displayed as HTML and JavaScript in the browser. The data is
stored into MySQL database or into flat files, depending on its type.

The model used in ViLLE relies on the concept of virtual courses. The courses
are divided into rounds, which are primarily collections of assignments. Each
round has its own properties, including for example the opening and closing
times as well as score limits for virtual trophies. ViLLE currently supports
four different types of rounds: normal rounds, exam rounds, conditional

27

rounds and tutorials. The major distinction between normal rounds and exam
rounds is the ability to limit the access and feedback in the latter. Tutorial
rounds are combinations of materials (including for example text, images and
videos) with exercises embedded into them. The structure of ViLLE’s
learning resources is displayed in Figure 4.

Figure 4 The structure of ViLLE's learning resources. Courses consist of rounds, which consist of
assignments. External materials can be attached to courses, rounds or assignments.

Currently there are more than 5,000 teachers and over 100,000 students using
ViLLE. The platform is used in 15 different countries around the world.

ViLLE has around one hundred different kinds of exercise types, divided into
three main categories:

1. Computer science related exercises: exercises that are meant for
teaching programming and computer science in general. Some
examples are coding exercises, visualization exercises (similar to ones
in ViLLE 1), Parsons Puzzles (see Parsons et al. 2006), conversion
exercises and program simulation exercises.

2. Math exercises: ViLLE contains several exercise types designed for
mathematics learning. Most of these exercises are designed for
elementary school level (including several math drilling games), but
there are exercises for university level mathematics as well.

3. General exercises: there are several exercise types that can (and are)
used to teach any subjects. These include traditional quizzes and

28

surveys alongside with different kinds of categorization, sorting and
selection exercises.

3.2.2.1 Student View

The student view of ViLLE 2 is divided into four separate sub views. In the
Profile view, the students can see an overview of their courses, latest messages
from teachers, the upcoming deadlines for rounds and the collected virtual
achievements. In the Course view all rounds (excluding the ones hidden by the
teacher) are displayed, and similarly the Round view displays all assignments
in the round. The assignments are answered in the Exercise view (see Figure
5).

Figure 5 ViLLE's Exercise View in the student mode. The exercise displayed is a coding exercise,
where a student needs to write a program (or a missing part of a program) according to given

specifications.

A majority of the view is reserved for the exercise to be solved. Additionally,
the view displays the obtained score and number of submissions. The student
can also view the exercise description and attached materials in their own
windows. In exam round, most of the feedback (such as the score obtained)
can be set as hidden by the teacher.

29

Most of the exercises in ViLLE are automatically assessed and provide
immediate feedback when submitted. These allow students to immediately
retake the assignment, if there were errors in it. To allow meaningful
iteration, the exercises are randomly initialized when possible. An example
of the immediate feedback is displayed in Figure 6.

Figure 6 Immediate feedback provided by the coding exercise shows the student output along with the
model answer's output. The exercise is initialized with random seed to provide different input values

with each submit.

The amount and nature of feedback naturally varies between different kinds
of exercises. Simplest form is to color the choices with different colors
according to whether they’re correct or incorrect, while the most complicated
ones display for example the full solution to quadratic equation with graph
and other information included.

30

3.2.2.2 Teacher View

The teacher view in ViLLE has three distinctive main functions: creating
resources, browsing and utilizing existing resources and evaluating student
performance. The resource creation is done with dedicated editors for
courses, tutorials, exercises and materials. Since all content in ViLLE can be
shared with all other teachers, there are separate content browsers for
courses, exercises and materials. The exercise browser is displayed in Figure
7.

Figure 7 ViLLE's Teacher view in Exercise browser mode. In total, there are more than 40,000 public
exercises. In the figure, the user is browsing for English exercises.

Teachers can browse and search exercises based on their name, description
or tags attached. ViLLE utilizes features familiar from social media
applications, such as commenting and rating, to enable easier browsing and
interaction with other teachers.

Finally, there are dedicated views for analyzing and evaluating student
performance and other activities. Statistics views provide detailed
information about students’ submissions and enable evaluation of manually
graded tasks, such as essays or study journals. ViLLE also supports a number
of other manual tasks, such as recording of attendances or demonstrations

31

via RFID (Radio Frequency Identification) tags and readers, course projects,
peer reviews and discussion forums.

3.2.2.3 Collaboration

Collaboration was one of the major design principles behind the new ViLLE.
Collaboration is enabled from two different perspectives. First, as described
before, VILLE 2 supports teacher collaboration by enabling resource sharing,
browsing, rating and commenting. From students’ point of view, ViLLE
supports collaboration specifically in tutorial rounds (although nowadays the
support is extended to other rounds as well): two students can work together
in answering the tutorial using the same computer. All submissions are
recorded for both students logged into same session. This mechanism
supports our research team’s earlier results on the benefits of collaboration
(see Rajala et al. 2010, Rajala et al. 2011), where the benefit of the collaboration
comes largely from discussing the tutorial with another student.

3.2.2.4 Active Learning with ViLLE

Active learning, another important design principle, is considered all around
ViLLE. Automatic assessment and immediate feedback (Laakso 2010) are
utilized in most of the exercise types. As mentioned before, these enable
active learning regardless of the time and the place. Additionally, most of the
manually graded assignment types support constructive and active learning
as well. For lecture-time activation, ViLLE has a built-in lecture poll tool
(Kurvinen et al. 2016), which can be used to create polls that can be opened
during the lecture and answered via computer or ViLLE Mobile application.
The results can be visualized instantly after the question is answered.

3.2.2.5 Gamification and Continuous Assessment

ViLLE 2 supports gamification with various features. First, there are game-
like exercises that can be used to make answering more motivating and fun.
Second, ViLLE supports virtual trophies, medals with score levels that can be
customized for individual students. Example of virtual trophies is displayed
in Figure 8.

32

Figure 8 Virtual trophies displayed in ViLLE's round view. The user has completed almost full score
from all assignments.

The figure displays student’s total score in a single round, with virtual
trophies set to defined limits. Moreover, users can be awarded virtual
achievements, either automatically (for example when a certain amount of
rounds or assignments is completed with full scores) or manually by the
teacher (for example when a student makes an important observation or a
clever question in classroom).

3.3 Summary

The two versions of ViLLE are rather different. Still, the work and research
done with the first version are almost completely utilized in the second
version. A comparison of the two versions, based mostly on the features
observed in this thesis, is displayed in Table 1.

33

Table 1 A comparison of ViLLE's versions 1 and 2.

Feature ViLLE 1 ViLLE 2
Technical
implementation

Java applet served via
external server
application

Java server with Vaadin
framework, serving
HTML and JavaScript

Viewer Web browser with Java
support

Web browser with no
additional plugins
required

Exercise types Visualization, code
sorting, coding

Around 100 public
exercise types

Course management None Support for multiple
courses per teacher

Resource sharing No All resources can be
shared with all teachers
registered into tool

Programming language
support

Various Various

Possible to create new
program language
syntaxes

Yes No

Teachers can create own
exercises

Yes Yes

Exam rounds No Yes
Tutorial rounds No, but exercises can be

embedded into external
web pages

Yes

Manually graded
assignments

No Yes

Lecture attendances and
demonstrations

No Yes, with RFID servers
connected to main
server, and with
portable RFID readers
connected to client

Surveys No Yes
Statistics External server supports

the displaying of student
scores

Multifaceted, including
learning analytics

Student collaboration No Yes
Automatic assessment Yes Yes
Immediate feedback Yes Yes

34

35

4 U t i l i z i ng V i L LE i n

P rog r amming Educa t i on

Potentially, educational technology allows teachers to enhance their teaching,
to improve student performance and motivation and to lower drop-out rates.
Still, although an adequate tool is definitely a requirement for effective
results, it is by no means a definitive answer. What to use is an important
question, but how to use it might be even more important when it comes to
educational technology. In this section, I review the usage of ViLLE in
different programming and computer science courses. This is done by first
introducing the features utilized in adapting the tool, and then showing their
effectiveness in the light of the results obtained.

4.1 Laying the Foundation: Controlled Tests

Before adapting ViLLE into courses, the effect of several features were tested
in controlled tests. The setup of the tests was always identical. The students
were randomly assigned into two groups (control and treatment), and before
the procedure, both groups answered a pre-test. The time reserved for pre-
test was typically 15 minutes. After this, the treatment group utilized ViLLE
while the control group either used a stripped-down version (to test specific
features) or used an alternative form of education (such as programming
tutorial in paper). Finally, the learning effects were measured with a post-test.
The post-test always matched the questions in the pre-test (although with
variating content or phrasing), but often also contained some additional
questions. Hence, the time reserved for the post-test was usually a little
longer, typically 30 minutes. The structure of controlled tests is displayed in
Figure 9.

36

Figure 9 The structure of controlled tests; note, that sometimes more than two different treatments
were used.

In the scope of this thesis, the controlled tests (reported in P1) were used to
test the effectiveness of ViLLE, the role of engagement in the learning and the
effect of cognitive load when using a learning tool. All tests are summarized
in this Section.

4.1.1 Study 1: Effectiveness of ViLLE

The effectiveness was tested by utilizing a web-based programming tutorial
with intention to teach fundamental programming concepts (see P1, section
3.1 for details). The tutorial consisted of text, images and code examples. The
difference between groups was that the treatment group (N=32) was able to
visualize the examples in the tutorial by using ViLLE 1, while the control
group (N=40) used the tutorial without the tool. The study was conducted to
find out if ViLLE can be effectively used to teach basic programming
concepts, and whether previous programming experience has an effect on the
learning performance.

The pre-test and post-test results are displayed in Table 2.

Table 2 The pre-test and post-test results from a controlled test measuring the effectiveness of ViLLE 1.

Scores Control Group Treatment Group
Pre-test 10.58 10.41
Post-test 17.55 18.13
Total difference 6.98 7.72
p-value 0.000 0.000

Pre-test

Time (min).: 15 30 45 60 75 90

Treatment 1

Treatment 2 (control)

Post-test

37

As seen in the table, both groups performed statistically significantly better
(result obtained via two-tailed t-test, see Rajala et al. 2008) in the post-test
than in the pre-test, which indicates, that tutorials (such as the one used) can
be effectively used to teach programming with rather short exposure time.
There is a small trend towards a better performance in both, the post-test
score and in the total difference favoring the treatment group. However, the
differences are not statistically significant.

The earlier programming experience was taken into account by further
dividing both groups into two subgroups based on their earlier programming
experience. As expected, there was a statistical difference between students
with earlier experience in the pre-test in treatment and control groups.
However, in the post-test the difference remained only in the control group.
Hence, it seems, that accompanying the code examples in the tutorial with
visualization exercises is especially useful for novice programmers. The
comprehensive results, including an analysis of individual questions in the
pre-test and post-test is given in section 3.1 of P1.

4.1.2 Study 2: Role of Engagement

Study 1 was later expanded to contain three groups using ViLLE 1 in different
levels of engagement (Naps 2002). The goal was to find out whether there is
a change in the learning performance if the visualization tool is used in the
viewing or responding mode. The control group from the previous study was
titled as No-viewing group and the treatment group as Responding group
according to the corresponding level in the engagement taxonomy.
Additionally, a third group, titled Viewing group (N=65), was included in
Study 2. The group had access to ViLLE from the tutorials, but ViLLE was
used in a lower level of engagement than in the Responding group: with the
latter group, visualizations were accompanied with multiple choice questions
to facilitate active learning, while the Viewing group could only passively
follow the same visualizations.

As concluded in Study 1, there were no statistically significant differences in
the post-test scores between groups. Again, when the previous programming

38

experience was taken into account, the difference between experienced
programmers and novices in the pre-test vanished only in the Responding
group. Hence, it seems that ViLLE 1 is an effective tool for novice
programmers, but only if used in the higher level of engagement. This seems
to be in line with the hypothesis by Naps et al. (2002). To try to confirm the
results, a post-hoc Student-Newman-Keuls test was used to form two
homogeneous subsets. The results, displayed in tables 8 and 9 of P1 seem to
show similar results than the previously mentioned analysis: the difference
between experienced students and novices still disappeared only in the
Responding group.

4.1.3 Study 3: Effect of Cognitive Load

The final controlled test reported in P1 was conducted to find out if the
previous experience of using the educational tool has an effect into the results.
The assumption was that cognitive load (see for example Sweller 1994) of
adapting a new tool has a negative effect to learning performance. Study 3
was conducted in two instances of a high school programming course. The
students who had experience about using ViLLE 1 before the study were
chosen as a treatment group (N=7) while the students who used ViLLE for
the first time acted as a control group (N=17). In the study, both groups used
a similar tutorial, including the possibility to visualize the code examples
with ViLLE.

The pre-test and post-test scores for both groups are displayed in Table 3.

Table 3 Pre-test and post-test scores for both groups; post-test scores are displayed for shared questions
(i.e. questions common to pre-test and post-test) and for all questions in the post-test.

Pre-test total Post-test total
(shared)

Post-test total
(all)

Control Group
(N=17)

7.12 12.59 16.94

Treatment Group
(N=7)

9.43 19.57 26.43

p-value 0.515 0.047 0.046

39

As seen in the table, there is no statistical difference (obtained via two-tailed
t-test, see Laakso et al. 2008) between groups in the pre-test. However, in the
post-test the treatment group outperformed the control group statistically
significantly. Hence, it seems that cognitive load has a significant effect to
learning performance, and it would be beneficial to properly introduce the
learning tool before utilizing it.

4.1.4 Summary of Controlled Tests

There are hence at least three important findings from the controlled tests that
were utilized when ViLLE was later adapted in course-long use. First, the tool
can be used to teach the basic programming concepts effectively (P1 and
Rajala et al. 2008). Second, the visualizations are only useful if used in higher
levels of engagement (P1 and Kaila et al. 2009, Laakso et al. 2009), and third,
the students should be familiarized with the tool before utilizing it (P1 and
Laakso et al. 2008). The results from the controlled tests were used as basis
when ViLLE was adapted to computer science and programming courses
later. The next two sections describe the design of the new course
methodologies along with the results obtained.

4.2 Utilizing the Program Visualization Tool

In this section, the cases about utilizing the program visualization in
computer science and programming courses are illustrated. The case
numbering is continuous throughout this and the following section to enable
easier comparison and summarizing of cases in Section 4.4.

4.2.1 Case 1: High school programming course

The first reported study (P2) about the adaptation of ViLLE 1 into course-long
use was conducted in high school level. Naturally, the results from the
controlled tests were utilized in adaptation: ViLLE was used in engagement
level of responding, and the students were properly familiarized with the tool
before it was used in the course. In addition to the previously mentioned
design principles, course-long adaptation required new issues that needed to

40

be addressed. Rewarding students about using the tool was one of them. As
later shown in P3, if the exercises are served as non-mandatory or with no
external reward (such as bonus points for the final exam), it is likely that the
students do not spend as much time using the tool.

The study was conducted in three instances of a high school level
programming course. The first two instances, serving as a control group
(N=15), utilized ViLLE only in controlled test setup similar to ones reported
in the previous section. The third instance, the treatment group (N=7), used
ViLLE throughout the course. ViLLE was integrated into course by including
a set of ViLLE exercises to be completed after each lecture. The exercises were
automatically assessed, gave immediate feedback, included multiple choice
questions and graphical array questions (and were hence in the higher
engagement level) and were made mandatory. Hence, the course adaptation
followed the principles found to be effective.

Since both groups participated in a controlled test, the pre-test of that setup
can be used to measure their initial skills in programming. All groups also
took a similar final exam at the end of the course. To measure the effects as
validly as possible, all variables except the usage of ViLLE were kept
unchanged when possible: all instances were taught by the same teacher, all
materials were kept identical and the content of the final exam was similar.
Since the control group had no access to ViLLE, similar code examples were
provided instead. The results of the pre-test and the final exam results are
combined into Table 4.

Table 4 The pre-test and the final exam scores for both groups.

Pre-test total
 (max. 30)

Final exam total
(max. 60)

Control group (N=15) 7.79 26.33

Treatment group (N=7) 10.83 39.79

p-value 0.430 0.030

41

As seen in the table, there are no statistical differences (analyzed via t-test)
between the groups in the pre-test, but there is a significant difference in the
final exam. The same difference can be found in separated code reading and
writing sections of the final exam (see Table 3 in P2). The results seem to
provide quite clear evidence that utilizing ViLLE exercises results into
significantly better learning results. From the course methodology point of
view, this indicates that active learning with engaging exercises is an effective
method for education.

4.2.2 Case 2: Introductory Computer Science Course in University

Level

Although the first experiment in adapting ViLLE into a programming course
was successful, the study was still conducted with rather small groups and in
high school level only. Hence, the next reported study (P3) was conducted in
a university level computer science course. The course serves as an
introduction to computer science fundamentals (such as data representation
and the concept of an algorithm), and also introduces fundamental
programming concepts to students. It is mandatory for all computer science
majors and also for some other majors in the faculty. Three instances of the
course, taught between 2007 and 2009, were selected for the study.

In the first instance, ViLLE 1 was introduced as an optional learning tool. A
set of visualization exercises was prepared, and a link to them was offered for
the students. In the two latter instances ViLLE exercises were made
mandatory. The exercises were also integrated more tightly into the course
curriculum: instead of offering all exercises in one collection, exercise rounds
were opened after the corresponding topic was covered in the lecture. Mostly
visualization exercises of ViLLE 1 were used in all instances, but some
supplementary code sorting exercises were also included in some rounds. In
the final instance, couple of coding exercises were introduced, but their
completion was optional.

42

The course was evaluated based on the final exam. The accepted
performances were graded in scale of 1 to 5. The pass rates and grade
averages for all instances are displayed in Table 5.

Table 5 The pass rates and grade averages from all instances of the course. ViLLE exercises were
optional in 2007 and mandatory in latter instances.

Instance 2007 2008 2009
N 131 134 181
Pass rate 80.92% 82.09% 85.08%
Grade avg. (max. 5) 3.13 3.48 3.31

As seen in the table, there is a trend towards better pass rate and better grade
average in the latter instances, where ViLLE exercises were mandatory. The
grade distributions between instances were also compared with a Chi-test
(P3, Table 3), which shows that the distribution in the first instance is
independent while the other two follow the same pattern. Hence, it seems
that making the exercises mandatory has a positive effect on the learning
performance.

The students were also surveyed for their perceptions of ViLLE 1 in the 2008
instance (P1, section 3.4). In the first section of the three-part questionnaire,
the students were asked to evaluate statements about the tool in a Likert scale
of 1 to 7. The students found ViLLE suitable for teaching programming
(average 5.64) and quite easy to use (avg. 5.49). In the second section, the
students were asked to evaluate the usefulness of ViLLE in understanding
programming concepts (P1, Table 12). Based on the answers, ViLLE’s
visualization exercises are seen most useful for understanding loops and
conditional statements, but are not deemed as useful for arrays. In the final
section, the students evaluated the usefulness of ViLLE’s individual features.
Visualization of variable states and automatic assessment were listed as the
most useful.

43

4.3 Utilizing the Collaborative Education Tool

After the aforementioned studies were conducted, ViLLE 2 was introduced.
Hence, the final three cases, reported in this section, are conducted by using
the latest major version of the tool. Regardless, the design principles that were
proven effective by using ViLLE 1 were utilized in the adaptation of the new
version as well.

4.3.1 Case 3: Introductory Programming Course for Bioinformatics

Majors

The third observed case (P3) is an introductory programming course aimed
for bioinformatics majors. The course is quite typical first programming
course, taught in Python and following the imperative paradigm. The course
does not contain bioinformatics specific content, but the target audience
should be noted for another reason: most of the introductory programming
courses (and most of the research done about them) are aimed for computer
science majors or engineering students. A holistic methodology should be
effective in all courses, regardless of the students’ age or major topic.

A total of three instances of the course were observed between years 2010 and
2012. The new version of ViLLE was utilized in all three instances, but new
exercise types and other features were introduced in the latter instances. In
the first instance, a set of visualization exercises similar to one included in
ViLLE 1 was utilized. In the second version, a heterogeneous set of different
kinds of exercise types was introduced. In addition to visualization and code
sorting exercises, puzzles, coding exercises and quizzes were utilized. The
goal of variating exercise types was to make the set more motivating and to
cover more aspects of programming. In addition, some of the new exercise
types cover higher levels of engagement: for example, coding exercise is in
the constructing level.

In the final observed instance, even more features were included. The final
exam was replaced with an electronic ViLLE exam. An electronic exam has
several benefits over traditional pen and paper exam: first, automatic

44

assessment means that evaluating the answers is significantly faster and more
neutral. Second, utilizing electronic exams provides students to test, debug
and fix their answers before submitting them. This means, that the programs
could be written in a near-authentic environment. In the 2012 instance ViLLE
was also used to register lecture attendances and demonstration assignments
instead of pen and paper method used earlier. Whenever electronic exams
were utilized in the studies, their difficulty level was evaluated by at least
three non-affiliated researchers and/or teachers to match the pen and paper
exam used previously (in fact, the exam was only used after all the reviewers
agreed that the electronic exam was at least as difficult as the pen and paper
version).

The pass rates and grade averages for all observed instances are displayed in
Table 6.

Table 6 Pass rates and grade averages of all observed instances of the course.

Instance 2010 2011 2012
N 23 16 25
Pass rate 95.65% 87.50% 96%
Average grade
(max. 5)

3.52 3.75 4.04

As seen in the table, the pass rate has been quite high in all instances; the little
drop in 2011 is because instead of one student, there were two that failed the
course that year. There also seems to be at trend towards a higher grade
average after heterogeneous exercise set was introduced in 2011. The grade
average in all instances in nevertheless higher than in the instances of the
course not utilizing ViLLE (average of 2006 to 2009 was 3.14). After
introducing variating types of exercises, it also seems that the students
completed more ViLLE exercises, as can be seen in P3, Table 6. Hence,
utilizing different exercise types seems to have a positive effect to exercise
completion rate and to student performance.

45

4.3.2 Case 4: Introductory Programming Course for CS Majors

Probably the biggest changes in the methodology were done between cases 3
and 4. Experiences collected from the controlled tests and previous
adaptation cases were considered when an introductory programming
course at University of Turku was thoroughly renewed between academic
years of 2011 and 2012 (P4). The changes were made with three major steps:
1) facilitating active learning and collaboration, 2) underlining the
importance of lectures and 3) redefining testing procedure with electronic
exam. Other smaller changes were also introduced, including for example the
utilization of older students as mentors.

Tutorial-based learning was already utilized in controlled tests (see Section
4.2 and paper P1). The idea behind the concept is the combination of
automatically assessed exercises with learning materials, such as text, images
or videos. As collaboration was one of the major design principles behind
ViLLE 2 and the methodology, tutorials in the course were done in groups of
two students. With the introduction of tutorials, the course structure was
reformatted to contain two different sessions each week: instead of two two-
hour lectures, one lecture and one two-hour tutorial session were conducted.
The latter was reserved solely for active learning.

The importance of lectures was underlined with two changes. First, some
easy ViLLE exercises were prepared to be answered right after each lecture.
The goal of the exercises was to remind the students about the topic, and help
them actively process the topics discussed in the lecture. Second, a
continuous feedback cycle was introduced. After each lecture and tutorial the
students answered to a short survey consisting of three questions: “What did
you learn in this session?”, “What things were left unclear in the session?”
and “How would you improve the session?” The answers were shortly
evaluated after each session and the answers used to fix technical and content
errors and to improve the quality of materials and teaching. A complete
description about analyzing the surveys can be found in Kaila et al. (2015).
As seen in Figure 10, the number of technical and mentoring issues reported

46

got lower in the latter tutorials because analyzing the feedback helped the
course staff to fix them early.

Figure 10 Issues reported by students in tutorials via continuous feedback cycle (Kaila et al. 2015).

Final major change was the utilization of electronic exam. The change was
made largely due to the reasons listed in the Section 4.3.1 describing case 3:
to provide more authentic programming environment and less biased
evaluation method. Electronic exam also enables a larger amount of tasks in
less time. The comparison of the electronic exam to the paper version can be
seen in P4, Table 1. To ensure the comparability to the earlier instances, the
electronic exam and the pen and paper version were again given for
evaluation to four non-affiliated educators and/or teachers, who all agreed
independently that the new version of exam is at least as difficult as the earlier
one.

The redesigned instance of the course (2012) was compared to an earlier
instance using the old methodology (2011). The changes in the methodology
are combined into Table 7.

47

Table 7 The comparison of the methodologies used in old and redesigned instances of the course.

Component 2011 2012
Lectures 7 x 2 x 2h 7 x 2h
Tutorials None 7 x 2h
Demonstrations 4 x 2h 4 x 2h
ViLLE exercises None 3 to 4 each week in

addition to tutorials
Feedback cycle None Survey after each lecture

and tutorial
Exam Pen and paper Electronic

As with the previous cases, the comparison of the courses is done by
observing the pass rates and the final grades. In both instances, the grade was
affected by the final exam and the demonstrations, while in the latter instance
exceeding the minimum limit for the tutorial or ViLLE exercises scores also
awarded some bonus points. However, the bonus points were only awarded
if the students passed the exam (i.e. received at least 50 % of the maximum
points in the exam). The results are combined into Table 8.

Table 8 The pass rates and grade averages of all students in both instances of the course.

Instance 2011 2012
N 210 193
Pass rate 53.33% 80.82%
Grade average (max. 5) 3.63 3.57

As seen in the table, the pass rate increased statistically significantly (Mann-
Whitney U-Test, p = 0.004 and Kolmogorov-Smirnov test, p = 0.011). Again,
the phenomenon is similar to previous cases although the effect seems to be
stronger in this case. Curiously, the grade average remained almost the same.
However, the grade distribution was quite different (see P4, Figure 3): the
number of highest grades as well as the lowest grades is higher in the latter
instance.

48

4.3.3 Case 5: Object-Oriented Course at University Level

The final observed case (P5) is methodologically quite similar to case 4.
However, content-wise the course is different to all other programming
courses observed in this thesis. All other courses (although utilizing different
programming languages and aimed for different target groups) are
introductory programming courses. The course in the fifth case, however, is
an advanced course at university level with focus on object-oriented
programming. The course is mainly targeted for computer science majors and
engineering students, but there are some students with other majors as well.
All students in the course take the introductory course (case 4) before this
course, unless they have completed a similar course somewhere else.

The main focus of the course is in utilizing objects and writing own classes.
Some more advanced topics, such as inheritance, interfaces and
polymorphism are also covered. The structure of the redesigned course is
displayed in Table II, P5. As seen in the table, the structure is quite similar to
introductory course presented as case 4. The only major difference is the final
project included in case 5. Similarly, the changes in the methodology between
old and redesigned instances are similar to previous case, as illustrated in
Table III, P5. Again, the effectiveness of the methodology was evaluated by
comparing the pass rates and final grades of the old and new instances. In the
final case, a total of four instances – two using the new methodology and two
the old one – were observed.

The pass rates and grade averages of all four instances are collected into Table
9.

Table 9 Pass rates and grade averages of all instances of the course

Instance 2011 2012 2013 2014
Methodology Old Old New New
N 186 201 191 158
Pass rate 41.94% 50.75% 76.96% 74.05%
Grade avg.
(max 5)

3.27 3.37 3.55 4.06

49

Again, the pass rates are significantly higher (the Test of Equal or Given
Proportions implemented in R, p < 0.001; see P5 Section 5 for details) in the
latter instances using the redesigned methodology. This is in line with all
previous cases: utilizing the technology-based methodology seems to
increase pass rates, grade averages, or both in the courses. In the fifth case,
there is also a trend towards better grade averages in the latter instances. In
fact, grade distributions of all instances are statistically different to each other
(P5, Table VI), but the difference is a lot smaller among instances sharing the
same methodology.

4.4 Summary

All cases are summarized in Table 10.

Table 10 Cases summarized

Case # Course / level ViLLE
Version

Methodology features
introduced

1 High school
programming

ViLLE 1 Active learning

2 University CS ViLLE 1 Making exercises mandatory
3 University

programming for
non-CS majors

ViLLE 2 Heterogeneous exercise types,
electronic exam

4 University
programming for CS
majors

ViLLE 2 Collaboration, feedback cycle

5 University OO
programming for CS
majors

ViLLE 2 Whole methodology revisited in
object-oriented course

The changes in the methodology were made gradually. Hence, only the final
two cases can be seen as a complete implementation. The features utilized in
different cases are collected into Table 11.

50

Table 11 Features of the methodology utilized in different cases

Feature Case #
1 2 3 4 5

Active learning X X X X X
Exercises mandatory or reward given X X X X X
Cognitive load considered X X X X X
Heterogeneous exercises X X X
Lectures and demonstrations registered electronically X X X
Electronic exam X X X
Tutorial-based learning X X
Student collaboration X X
Continuous feedback cycle X X

As seen in the table, the complete methodology was utilized in two last cases
only. The individual features as part of the complete model are discussed in
section 5.2. The changes in pass rates and grade averages throughout all cases
(when available) are collected into Table 12.

Table 12 The pass rates and grade averages of all cases. Ctrl denotes a control instance, usually an
earlier instance of the course, where the methodology was not utilized, and Treat a treatment instance
where the methodology was applied. If more than one control or treatment instance is observed in the

case, the instances are combined.

Pass rate % Grade or score average
Case # Ctrl. Treat. Change Ctrl. Treat. Change
1 N/a N/a N/a 26.33 39.79 +51.12%
2 80.92 83.81 +3.57% 3.13 3.38 +8.06%
3 95.65 92.68 -3.1% 3.52 3.93 +11.56%
4 53.33 80.82 +51.55% 3.63 3.57 -1.65%
5 46.52 75.64 +62.60% 3.32 3.78 +13.82%

As seen in the table, the changes have been mostly positive in all cases after
the methodology was introduced. There are some issues that need to be noted
when observing the table. First, the negative change in pass rate in case 3 is a
bit misleading, as the pass rate was very high in all instances. In fact, the
difference is based on one of treatment instances having two failed students

51

instead of one in all other instances. Moreover, the change in grade average
in the same case would be higher (+20.38%) if all instances using ViLLE
would be compared to previous instances of the course. Still, in concept of
the whole methodology this is less relevant, as the case is included to
illustrate changes based on the usage of heterogeneous exercises.

In addition to quantitative results, student feedback was collected in various
instances throughout the cases. In addition to feedback about usefulness of
ViLLE 1 and its features discussed in Section 4.2.2, students’ perceptions were
collected about electronic exams (P5, Table VII) and collaboration (Rajala et
al. 2015). The results indicate, that students favor electronic exams over pen
and paper and found ViLLE feasible as an exam tool. Moreover, the students
seem to prefer collaboration over working alone, and see knowledge sharing,
faster problem solving and improved learning as the greatest benefits of
collaborative work in tutorials.

52

53

5 A Resea rch-Based Mode l

f o r U t i l i z i ng

Educa t i ona l Techno l ogy

i n CS Educa t i on

The results presented in the previous section enable a design of a functional
model for teaching programming and computer science by utilizing
educational technology. In this section, the model is presented. First, the
results and the features are discussed to provide an adequate scientific
background for the model. The suggested model and its adaptation are
presented in detail after that, followed with requirements and possible
limitations of the model and its utilization in the courses.

5.1 Results Revisited

The controlled tests were used as the basis for developing the model for the
methodology. The first two cases reported (P1) are probably the most
significant ones, as they provide evidence on the possibilities of active
learning: it is possible to improve learning performance significantly in rather
short exposure time. However, for the full effect, the students should be
properly engaged with the tool. The cognitive load also seems to have a
strong effect on the learning performance. To maximize the effect, the
students should be familiarized with the tool before the treatment. When
adapting a tool into a course, this should be considered, even though the
students probably get accustomed to the tools during the course.

There are some things that need to be noted about the results. In the first two
cases there are no statistically significant differences between the treatment
and the control group (although there is a trend towards a better performance

54

in the treatment group), if the previous programming experience is not taken
into account. However, both groups improved their performance statistically
significantly when the pre-test scores are compared to the post-test scores.
This finding has relevance of its own: tutorials can be used to teach quite
complicated concepts in relatively short time. This phenomenon is later
utilized in the methodology (see P4 and P5).

Other controlled tests performed by our research group, but not affiliated
with this thesis, provided valuable information that was also used as basis for
designing the methodology. For example, the studies done about
collaboration (Rajala et al. 2009, 2010, 2011, Laakso et al. 2009) provided
essential information about the benefits of pair-work when working with
exercises: the students’ learning performance can be significantly improved
if working in collaboration, and if appropriate learning material is combined
with exercises, the students will spend the majority of the time in the session
discussing the topic at hand. This information was later utilized when
tutorial-based learning was designed as part of the final methodology,
applied in cases 4 and 5 (P4 and P5).

The features were presented in the course-long adaptation cases gradually.
The first two cases, utilizing the first version of ViLLE, provide evidence on
the effectiveness of two major features in the methodology: active learning
with engaging exercises, and making exercises mandatory. The third case
introduced two new features, heterogeneous exercise types and an electronic
exam. The final two cases utilize the full methodology, with tutorial-based
learning (where collaboration is an important feature), continuous feedback
cycle and extended mentoring. The final cases naturally utilize all features
that were found effective in the controlled tests and in the previous cases.

Applying the methodology seems to have a positive effect in all cases.
However, there is some variation on the nature and extent of the effect. The
pass rate in courses has improved in cases 2, 4 and 5 (although the
improvement is not significant in case 2). There was no data available about
the pass rate in the first case, and in the third case the pass rate decreased
slightly. The drop is not significant, and can be explained with the low

55

number of participants and the high pass rates in all observed instances.
Notably, the positive effect seems to be the highest in the last two cases, where
the full methodology was applied. Hence, it seems that the features combined
provide the effect in the full extent. The effect can also be seen in the number
of participants of instances in case 5 (Table IV, P5): the final instance has
notably lower number of participants, probably due to high pass rate in 2013
instance.

The changes in the grade average were positive in all cases, except for case 4.
Again, the drop is quite small in the fourth case, and is not statistically
significant. Still, the grade average is a little lower than in the control instance.
The reason for this might be found in the grade distribution (Figure 3, P4):
the grade distribution in the treatment instance centers more around the
highest and the two lowest grades. The difference between grade averages in
cases 4 and 5 is also something that needs to be noted: the methodology
applied was similar, but the grade average improved with close to 14 percent
in the latter. In my opinion, there are two possible explanations for this: first,
the topic was different, and it is possible that object-oriented exercises
provide different score distribution in the final exam. In fact, it seems that the
grade distribution in the latter course (Table V, P5) is a little different than
that in case 4. Also, the starting grade average in the case 4 was already higher
than in the fifth case, so there was less room for improvement.

The second explanation might be the cumulative effect from the previous
course. The student who took the course reported in case 5 usually take the
introductory course reported in the previous case as well. Hence, in the
treatment instances, a large number of students was already accustomed to
methodology before starting the course. Still, this kind of cumulative effect is
difficult to measure from an ethical point of view, as offering the highest
quality courses possible should be the responsibility of every teacher. Hence,
experimenting with different combinations of new and old methodology
would not be ethically sustainable.

56

5.2 The Model

Based on the results and their significance, a research-based model for
technology-enhanced education can be constructed. The model contains five
features which are discussed below with the appropriate results linked.

1. Active learning and continuous assessment
The first (and to some extent the most important) feature is active
learning. Active learning, in this context, means utilizing exercises
that engage the students in the engagement level (Naps et al. 2002) of
responding or higher. Although the engagement taxonomy is a
hypothesis about visualization tools, in my opinion, it can be (to some
extent) applied to any educational tool. The benefits of active learning
are justified in controlled tests in P1, but the feature is applied in all
cases.

Continuous assessment should be enabled by making exercises
compulsory or giving a reward on completing them. As seen in case
2 (P3), if the exercises are made optional, the learning performance is
worse than when they are required to complete the course. Making
exercises mandatory can also increase their significance in students’
perceptions. Optionally, a reward can be given for completing the
exercises. This type of reward is external, and is typically offered as
bonus points for final exam, bonus in course grade or exemption from
other work at the course. The two cases can also be combined (like
done in cases 4 and 5): a certain minimum amount of work is
mandatory, and exceeding this limit gives students a reward. To
enable this, the score collected should be visible for the student at all
times – excluding the exam.

2. Heterogeneous exercise types
Utilizing different kinds of exercises in the course has at least two
possible benefits: the motivation for answering the exercises can be
increased (as repeating same type of exercise can get boring), and the
topics can be observed from different points of view. As seen in case

57

3, utilizing heterogeneous exercise types can have a positive effect on
student performance, at least in the light of the grade averages.

3. Electronic exam
In programming and computer science courses, electronic exam
provides several benefits over a traditional exam done in pen and
paper. The possibility to compile, execute, test and debug code before
submitting the answer takes the whole process closer to actual
programming. The process is also faster than when using pen and
paper, which means that it is possible to test students’ knowledge in
wider scale in the same time. Another advantage is the possibility to
use automatically assessed exercises, which both saves teachers’ time
significantly and makes the evaluation process less biased. All
exercise types that are utilized in practicing the topic should be
applicable in the exam as well. Electronic exam was utilized in cases
3, 4 and 5. Although there probably is no effect on the student
performance (and to keep the evaluation of course instances valid,
there should not be), the utilization makes the exam process a better
fit into the whole methodology. Student feedback about the electronic
exams has also been very positive (see Table 13).

58

Table 13 Students' perceptions of electronic exam in two programming courses. Although observed
instances are different, the courses are the same (and use the same redesigned methodology) than the
ones observed in P4 (Course 1) and P5 (Course 2). The comprehensive results are presented in Rajala

et al. 2016.

Statement
(1 – strongly disagree,
 5 – strongly agree)

Avg. Course 1, 2014
(N = 130)

Avg. Course 2, 2015 (N =
111)

There was enough time
to take to the exam

4.45 4.86

Answering to the exam
was easy

3.59 4.17

The exam application
was clear to use

3.98 4.24

I would prefer to use
pen-and-paper over
ViLLE

1.42 1.39

ViLLE suits very well for
the exam of this study
module

4.46 4.64

If possible, I would like
to take the exam of this
study module at home

3.91 3.68

I would recommend
ViLLE to other students

4.11 4.31

Technically ViLLE is an
excellent solution

3.73 3.89

How would you grade
ViLLE as an exam
platform

3.90 4.12

I got enough guidance
on how to use ViLLE
before the exam

4.65 4.20

The difficulty of the
exam content (1 – low,
5 – high)

2.75 3.27

59

It is to be noted, that the evaluation of the course should not be limited to
the final exam at the end of the course, but instead continuous assessment
throughout the course should be utilized if possible. Utilizing tutorial
based learning means that students can collect points from exercises and
similar tasks (such as attendances and other assignments) starting from
the beginning of the course, which gradually decreases the need for
comprehensive exam at the end of the course.

4. Tutorial-based learning
The utilization of tutorial-based learning (TBL) is probably one of the
most important features in the methodology. Used in cases 4 and 5,
TBL means replacing half of the lectures with tutorials, which in this
context are combinations of learning material and exercises. The
tutorials are answered in class room or computer lab in collaboration
with another student. The emphasis is on the active learning, but
collaboration brings another aspect to the feature: discussing the topic
with a peer can significantly improve the learning performance.

5. Continuous feedback cycle
The fifth feature in the methodology is the continuous collection of
feedback from students throughout the course. In practice, after each
lecture and tutorial the students are required to answer to the same
three questions about what they learned, what remains unclear and
how would they improve the session. Since the questions are kept
simple, the answers can be evaluated right after the session, and the
results utilized immediately to improve the quality of teaching,
materials and technical implementation. The feature was utilized in
the last two cases, and is observed in more detail in Kaila et al. (2015).

60

Additional Features: Mentoring and Considering cognitive Load
Although not really a part of the model, the utilization of older
students as mentors is highly recommended when the model is
applied. The mentors were utilized in cases 4 and 5 and have two
important roles. First, they are present in the tutorial sessions along
with course staff to aid students in whenever they have problems with
the exercises. This way no one gets stuck in any of the exercises. The
second usage is a dedicated mentoring session, organized every week.
In the session, students can come by to ask for assistance in any of the
course work, including for example tutorials or demonstrations. The
mentoring session also advances the forming of social groups, which
are highly useful for studies and later professional career (Kaila et al.
2016).

Another additional (but still important) feature is recognizing the
effect of cognitive load by familiarizing the students with the tool
before it is used. As seen in a controlled test (P1), the learning
performance can be significantly better if the amount of cognitive load
is kept to minimum. In course long usage, the familiarization can be
done with dedicated session about using the tool, or for example by
having a dedicated set of introductory exercises, that are designed for
familiarizing students with the tool. The latter option was utilized in
cases 3, 4 and 5, where an introductory round was included in the
virtual course in ViLLE. In the first two cases, the tool was introduced
to students by the teacher as part of the controlled tests setup.

The complete model with all features can be applied to programming or
computer science courses to enhance student performance and the general
quality of teaching, as seen in the two final cases (P4 and P5). However, all
features in the model are not solely meant for improving the student
performance. The intended roles of different features are illustrated in Figure
11.

61

Figure 11 Features in the model categorized by their intended effect for different outcomes of the
course. The scale is based on the desired amount of effect the feature has on the defined category (1 =

small effect, 2 = moderate effect, 3 = significant effect).

In the figure, improved performance stands for better pass rates and better
grade average, comfort and motivation denote better course quality from
students’ point of view, and better evaluation means easier, less biased and
higher quality evaluation process. A few things should be noted: active
learning has a high intended effect for evaluation, as it enables continuous
and more transparent evaluation and a higher number of tasks that can be
used as basis for evaluation. The electronic exam presumably has a low effect
on the performance, but provides better experience for the students as well
as less biased (from student’s point of view) and more effortless (from
teacher’s point of view) evaluation.

The model with all features classified is displayed in Figure 12.

0 1 2 3

1. Active learning and continuous assessment

2. Heterogeneous exercise types

3. Electronic exam

4. Tutorial-based learning

5. Continuous feedback cycle

Additional: Mentoring

Additional: Cognitive load considered

Improved performance Comfort and motivation Better evaluation

62

Figure 12 The model with all features classified, including the additional features (denoted with an
asterisk).

The figure displays the classification of all features in two categories: in the
x-axis the components are classified based on their role in the whole model,
divided into three categories: the core features of the model, the supportive
features and the features intended for student evaluation. The further down
the feature is in the y-axis, more human-based it is in comparison to
technology-based features in the top. Tutorial based learning could also be
positioned in the center of the image, but drawing it as an outline around the
all other features emphasizes its central role in the model.

5.3 Applying the Model: Requirements and

Limitations

The first requirement for applying the model is an adequate learning
environment with suitable features. The cases all utilized either the first or
the second version of ViLLE, and the complete model was tested by using the
latest version. Still, as long as an educational tool fulfills certain requirements,
the model should be applicable with any other platform as well. First, the
platform should support automatic assessment, immediate feedback, and a
number of heterogeneous exercises suitable for computer science and

Tutorial-based learning

Core componentSupportive Evaluation

Technology

Human

Active learning and continuous assessmentCognitive load
considered *

Heterogeneous
exercise types Electronic exam

Continuous feedback
cycle

Mentoring *

63

programming education. This enables active learning regardless of the time
and the place. Moreover, to enable continuous assessment by making the
exercises mandatory (or by offering a reward for completing them), the
progress and the scores should be made transparent for students.

The tool should also support electronic exams, preferably by utilizing the
same heterogeneous exercise types that are used to practice the topics. Hence,
the exam should support constructive answering (such as writing program
code or building algorithms) instead of multiple choice questions or short
answers only. To enable easier utilization in larger course instances, the exam
questions should likewise support automatic assessment. For the continuous
feedback cycle, the tool should also support surveys and a practical view for
evaluating the answers, either directly in the tool or by exporting them as a
text file, spreadsheet or similar.

The utilization of tutorial-based learning also sets some requirements for the
tool used. Naturally, the tool should support the combination of learning
materials and automatically assessed exercises. For learning materials, at
least basic components such as text and images should be supported. A
natural approach is to support HTML5 for adding content alongside the
exercises. Another requirement is the support for student collaboration. The
collaboration should preferably happen with a shared computer, but
collaboration over network should be fine as long as it enables discussion
about the topic.

Conducting the tutorials also provides some requirements for the staff and
the premises. First, there should be enough capacity provided for connecting
all the computers into the network at the same time. In cases 4 and 5, the
problem was easily solved by having local area network connectors in the
lecture hall used for tutorial sessions. Since the group size in the tutorials was
quite large, it is possible that using the wireless network would not have
provided enough network capacity for everyone. Using LAN connectors
instead of wireless network also provided another advantage, as all network
traffic could be routed via single switch. This meant, that for example in the

64

course exam, addresses besides ViLLE main server and Java API can be easily
blocked.

Tutorials also require a sufficient number of course staff or mentors available
during the sessions. For tutorials to be effective, the students should not get
stuck into individual exercises. Hence, there should be enough aid available
at any given time. In our experience, the students usually require more help
at the early stages of the courses, and typically are more self-directed when
the course advances a little more. In cases 4 and 5, there was typically one or
two more complex tasks in each of the tutorials, and the students required
assistance for these usually around the same time. The mentors are also
essential for organizing the dedicated mentorin sessions mentioned as the
final feature in the model.

All in all, adapting the model requires sufficient expertise on the course staff
and the mentors. Preparing suitable content and exercises is essential. For this
goal, ViLLE offers teachers a possibility to utilize, rate and comment materials
created by other teachers. This enables easy sharing of best practices. Still, if
no suitable resources can be found, the workload for constructing the courses
that utilize the model can be quite big. However, as discussed before, the
improved pass rates (and to some extent, better grades) should provide
enough motivation for taking the steps. Luckily, the workload needed to run
the courses becomes a lot smaller after the first instance. Utilizing automatic
assessment actually reduces the time needed for maintaining the course, and
enables teachers to dedicate their time more on personal guidance.

Some possible limitations for adapting the model should be noted. First, the
model was constructed by presenting individual features and adapting them
into the model when their adaptation provided better student performance.
However, the changes made in the two final cases where quite extensive
compared to the previous cases. Hence, the effectiveness of all individual
features in the model was not tested, as testing all possible combinations of
the features would be neither practical nor ethical. One could argue, that all
the features in the final model are not required. However, all the features

65

have a dedicated and intended role in the adaptation of the model, as
described in section 5.2.

It should be noted, that the application of the model discussed in this thesis
is done only in programming courses, although an early sub model was
applied into an introductory computer science course (case 2). Based on the
results, it is still possible, that a similar model would probably work at least
nearly as well in other topics’ courses, especially in the topics where
automatic assessment can be reliably utilized. Examples include STEM
subjects and language education. Still, in topics where the tasks are mostly
essays or other similar constructivist writing assignments, automatic
assessment is not as useful. This definitely makes adapting the model either
difficult or impossible. Another examples of courses where adaptation of the
model may be difficult are advanced courses, where the focus is more on a
deeper analysis of concepts.

The teachers’ effect on the results should also be discussed. Although the
variables outside the adapted features (or the complete model) were tried to
be kept as similar as possible, there were some cases (for example cases 4 and
5) where the treatment instances of the courses were taught by different
teachers than the control instances. Actually, in some cases different teachers
were the prerequisite for adapting a new methodology into the courses.
Hence, one could argue that some of the effect is due to different course staff.
Although it is possible that the teacher influenced the final results, the similar
effects found throughout all cases with different teachers seem to predict that
the effect of the teacher is not too significant. Another question about
teachers’ effect is whether the model could be applied to distant courses or
MOOCs. Though this would require some major modifications (for example,
the collaboration and mentoring should be done virtually), the model could
be applicable to online courses as well.

Finally, the proposed model is definitely not the only effective model for
utilizing educational technology effectively in programming and computer
science courses. Still, there are enough experiments with different setups and
target groups presented to prove the effectiveness of the model in education.

66

Though alternative ways to utilize technology exist, there are some features
that probably need to be preserved in any similar model to enhance the
performance as much as possible. These include at least the utilization of
active learning, mandatory exercises and student collaboration. For other
features, there could be alternative implementations that could work equally
well. Regardless, the model proposed has been proven to be both, effective
and relatively easy to implement. Having a skilled, personal tutor for each
student available all the time would almost definitely provide better results
than the model. Unfortunately, as educators we need to work in the real
world with real world’s limitations.

67

6 Conc l u s i on and

Fu t u r e Wo r k

Education and education technology are complex fields to study. It is often
impossible (and by no means practical) to find comprehensive solutions to
problems or unambiguous answers to questions. Rather, we need to come up
with good enough practices that will, in time, give way to improved or totally
new solutions. In this thesis, I tried to answer three research questions. The
questions and the related results in this thesis are summarized below.

RQ1. What kind of features are useful when adapting educational technology
into computer science and programming courses?

There are several useful features presented and discussed in this
thesis. Papers P1, P2, P3 and P4 all present features that have been
adapted into technology-enhanced learning process, and that have
been found useful in the related studies. The list is by no means
comprehensive (as no such list can or should ever be), but offers a
good base for extension. Some of the most important features are
summarized in Section 4.4, Table 10. The usage of features in
different cases is described in Table 11 in the same section.

RQ2. If such features are found, can they be combined into a model of a
methodology for utilizing educational technology?

The final model consisting of the most effective features is studied
in papers P4 and P5, and fully presented in Section 5. In addition to
five core features, two additional features are suggested. Based on
the studies reported in P4 and P5, utilizing the model can provide
significant results. Section 5.2 describes the features (including the
additional ones) in the model. Figures 10 and 11 display the features

68

classified by their intended effect and their role in the model,
respectively.

RQ3. What kind of requirements and limitations there are to consider when such
model is adapted?

The requirements and limitations of the model are discussed in P5
and, to full extent, in Section 5.3. To summarize, the requirements
for adapting the tool are 1) appropriate educational tool, 2)
sufficient technical infrastructure, 3) enough staff to prepare the
materials and assist the students and 4) sufficient pedagogical and
technical expertise on the course staff. The most notable limitations
are the incomplete testing of individual features (for ethical reasons
described in 5.1) and the focus on computer science courses.

The thesis opens up interesting possibilities for future research. First, the
possibility to utilize the same model to teach other topics, for example
mathematics or science topics, is something that should be experimented.
Second, the possibilities of learning analytics when utilizing the model are
very interesting. When the model is utilized, a vast amount of data is
collected. This data can be potentially used for detecting students with
learning difficulties and for assisting them in their problems. Our research
team’s first experiment in analyzing this type of data is published in Lindén
et al. (2016). Finally, the possibilities for applying the model into different
types of programming courses, aimed for different types of students, should
be experimented even further. After all, the true goal of this work is to make
the education of the future programmers a little easier.

69

Re fe r ences

Amresh, A., Carberry, A.R. and Femiani, J. 2013. Evaluating the effectiveness
of flipped classrooms for teaching CS1. In 2013 IEEE Frontiers in Education
Conference (FIE) (pp. 733-735). IEEE.

Anglin, L., Anglin, K., Schumann, P.L. and Kaliski, J.A. 2008. Improving the
efficiency and effectiveness of grading through the use of computer-assisted
grading rubrics. Decision Sciences Journal of Innovative Education, 6(1), 51 –
73

Auvinen, T., Karavirta, V. and Ahoniemi, T. 2009. Rubyric: an online
assessment tool for effortless authoring of personalized feedback. In ACM
SIGCSE Bulletin (Vol. 41, No. 3, pp. 377-377). ACM.

Backlund, P. and Hendrix, M., 2013. Educational games – are they worth the
effort? A literature survey of the effectiveness of serious games. In 5th
international conference on Games and Virtual Worlds for Serious
Applications (VS-GAMES), (pp. 1-8). IEEE.

Barrett, H.C. 2007. Researching electronic portfolios and learner engagement:
The REFLECT initiative. Journal of Adolescent & Adult Literacy, 50(6), 436 – 449

Bergin, S. and Reilly, R., 2005. The influence of motivation and comfort-level
on learning to program. In proceedings of the 17th Workshop on Psychology
of Programming, PPIG’05.

Bosse, Y. and Gerosa, M.A., 2017. Why is programming so difficult to learn?:
Patterns of Difficulties Related to Programming Learning Mid-Stage. ACM
SIGSOFT Software Engineering Notes, 41(6), 1–6.

Boyle, T. 2003. Design principles for authoring dynamic, reusable learning
objects. Australian Journal of Educational Technology, 19(1), 46 – 58.

70

Boyle, T., Bradley, C., Chalk, P., Jones, R. and Pickard, P. 2003. Using blended
learning to improve student success rates in learning to program. Journal of
Educational Media, 28(2-3), 165 – 178.

Bradford, P., Porciello, M., Balkon, N. and Backus, D., 2007. The Blackboard
learning system: The be all and end all in educational instruction?. Journal of
Educational Technology Systems, 35(3), pp.301-314.

Briscoe, C and Peters, J., 1997. Teacher collaboration across and within
schools: Supporting individual change in elementary science teaching.
Science Education, 81(1), pp.51-65.

Bruff, D.O., Fisher, D.H., McEwen, K.E. and Smith, B.E. 2013. Wrapping a
MOOC: Student perceptions of an experiment in blended learning. Journal of
Online Learning and Teaching, 9(2), 187

Čisar, S.M., Pinter, R. and Radosav, D. 2011. Effectiveness of program
visualization in learning java: a case study with Jeliot 3. International Journal
of Computers Communications & Control, 6(4), 668 – 680.

Coates, H., James, R. and Baldwin, G. 2005. A critical examination of the
effects of learning management systems on university teaching and learning.
Tertiary Education and Management, 11, 19 – 36

Cooper, S., Dann, W. and Pausch, R. 2000. Alice: a 3-D tool for introductory
programming concepts. In Journal of Computing Sciences in Colleges (Vol.
15, No. 5, pp. 107-116). Consortium for Computing Sciences in Colleges.

Cross, J.H., Hendrix, D. and Umphress, D.A. 2004 jGRASP: an integrated
development environment with visualizations for teaching java in CS1, CS2,
and beyond. In Frontiers in Education, 2004. FIE 2004. 34th Annual (pp. 1466-
1467). IEEE

Dalsgaard, C. 2006. Social software: E-learning beyond learning management
systems. European Journal of Open, Distance and e-learning, 9(2).

Davies, S.P. 1993. Models and theories of programming strategy.
International Journal of Man-Machine Studies, 39, 237–267.

71

Deterding, S., Dixon, D., Khaled, R. and Nacke, L. 2011. From game design
elements to gamefulness: defining gamification. In Proceedings of the 15th
International Academic MindTrek Conference: Envisioning Future Media
Environments (pp. 9-15). ACM.

Dougiamas, M. and Taylor, P. 2003. Moodle: Using learning communities to
create an open source course management system. MoodleResearch,
http://research.moodle.net/33/

duBoulay, B. 1989. Some difficulties of learning to program. In Soloway, E. &
Spohrer, C. (ed.). Studying the Novice Programmer. Hillsdale, NJ: Lawrence
Elrbaum, 283 – 299

Engstrom, M.E. and Jewett, D. 2005. Collaborative learning the wiki way.
TechTrends, 49(6), 12 – 15.

Freeman, S., Eddy, S., McDonough, M., Smith, M., Okoroafor, N., Jordt, H.
and Wenderoth, M. P. 2014. Active learning increases student performance in
science, engineering, and mathematics. Proceedings of the National Academy
of Sciences, 201319030.

Gehringer, E.F. 2001. Electronic peer review and peer grading in computer-
science courses. ACM SIGCSE Bulletin, 33(1), pp.139-143.

Giannakos, M.N., 2013. Enjoy and learn with educational games: Examining
factors affecting learning performance. Computers & Education, 68, 429 – 439

Gomes, A. and Mendes, A. 2014. A teacher's view about introductory
programming teaching and learning: Difficulties, strategies and motivations.
In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, IEEE, 1 –
8.

Grandell, L., Peltomäki, M., Back, R. J., and Salakoski, T. 2006. Why
complicate things?: Introducing programming in high school using Python.
In proceedings of the 8th Australasian Conference on Computing Education-
Volume 52 (pp. 71-80). Australian Computer Society, Inc.

Grönroos, M. 2011. Book of Vaadin. Lulu.com.

72

Edwards, S.H. and Perez-Quinones, M.A. 2008. Web-CAT: automatically
grading programming assignments. In ACM SIGCSE Bulletin (Vol. 40, No. 3,
pp. 328-328). ACM.

Havenga, M., Breed, B., Mentz, E., Govender, D., Govender, I., Dignum, F.
and Dignum, V. 2013. Metacognitive and problem-solving skills to promote
self-directed learning in computer programming: Teachers’ experiences. Sa-
educ Journal, 10(2), pp.1-14

Helminen, J. and Malmi, L. 2010. Jype – a program visualization and
programming exercise tool for Python. In proceedings of the 5th International
Symposium on Software Visualization. ACM. 153 – 162.

Henriksen, P. and Kölling, M. 2004. Greenfoot: combining object visualisation
with interaction. In Companion to the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications (pp. 73-82). ACM.

Hernández, R., 2012. Does continuous assessment in higher education
support student learning?. Higher Education, 64(4), pp.489-502.

Huang, W.H.Y. and Soman, D., 2013. Gamification of education. Research
Report Series: Behavioural Economics in Action.

Hyrskykari, A. 1993. Development of program visualization systems. The
2nd Czech British Symposium of Visual Aspects of Man-Machine Systems,
Praha, 1-21.

Ihantola, P., Ahoniemi, T., Karavirta, V. and Seppälä, O. 2010. Review of
recent systems for automatic assessment of programming assignments. In
proceedings of the 10th Koli Calling International Conference on Computing
Education Research (pp. 86-93). ACM.

Joy, M., Griffiths, N. and Boyatt, R. 2005. The BOSS online submission and
assessment System. ACM Journal on Educational Resources in Computing.
5(3), article 2.

73

IEEE. (2002) Draft standard for learning object metadata.
Available:http://ltsc.ieee.org/doc/wg12/LOM_WD6_4.pdf

Isohanni, E. and Knobelsdorf, M. 2011. Students' long-term engagement with
the visualization tool VIP. In Proceedings of the 11th Koli Calling
International Conference on Computing Education Research (pp. 33-38).
ACM.

Jenkins, T., 2002. On the difficulty of learning to program. In Proceedings of
the 3rd Annual Conference of the LTSN Centre for Information and
Computer Sciences (Vol. 4), 53 – 58.

Johnson, B. and Webber, J., 2007. Google web toolkit. Addison-Wesley.

Kaila, E., Kurvinen E., Lokkila E., Laakso M.-J., and Salakoski T. 2015.
Enhancing student-teacher communication in programming courses: a case
study using weekly surveys. In proceedings of ICEE 2015 - International
Conference on Engineering Education, (2015).

Kaila, E., Laakso, M.-J., Rajala, T. and Salakoski, T. 2009.Evaluation of learner
engagement in program visualization. 12th IASTED International Conference
on Computers and Advanced Technology in Education (CATE 2009),
November 22 - 24, 2009, St. Thomas, US Virgin Islands

Kaila, E., Lindén R., Rajala T., Hellgren N., and Laakso M.-J. 2016.
Redesigning methodology for student counseling in the first year IT
education. In proceedings of EDULEARN 2016, Barcelona, Spain.

Kannusmäki, O., Moreno, A., Myller, N. and Sutinen, E. 2004. What a novice
wants: Students using program visualization in distance programming
course. In proceedings of the Third Program Visualization Workshop
(PVW'04), 126 – 133.

Kolowich, S. 2013. The professors who make the MOOCs. The Chronicle of
Higher Education, 18.

Kuittinen, M. and Sajaniemi, J. 2004. Teaching roles of variables in elementary
programming courses. SIGCSE Bull. 36, 3 (June 2004), 57–61.

74

Kurvinen, E., Väätäjä J., Rajala, T. and Laakso, M.-J. 2016. Designing and
utilizing a course poll tool to enhance learning activity. In proceedings of
EDULEARN 2016 conference, Barcelona, Spain

Kölling, M., Quig, B., Patterson, A. and Rosenberg, J. 2003. The BlueJ system
and its pedagogy. Computer Science Education, 13(4), 249 – 268.

Laakso, M.-J., Rajala, T., Kaila, E. and Salakoski, T. 2008. The Impact of prior
experience in using a visualization tool on learning to program. In
proceedings of CELDA 2008, Freiburg, Germany, 129—136.

Laakso, M.J., Myller, N. and Korhonen, A. 2009. Comparing learning
performance of students using algorithm visualizations collaboratively on
different engagement levels. Educational Technology & Society, 12(2), 267 –
282.

Laakso, M.J., Rajala, T., Kaila, E. and Salakoski, T., 2008. The impact of prior
experience in using a visualization tool on learning to program. Appeared in
Cognition and Exploratory Learning in Digital Age (CELDA 2008), 13-15.

Laakso, M.-J. 2010. Promoting programming learning. Engagement,
automatic assessment with immediate feedback in visualizations. TUCS
Dissertations no 131.

Lahtinen, E., Ala-Mutka, K. and Järvinen, H.M., 2005, June. A study of the
difficulties of novice programmers. In ACM SIGCSE Bulletin (Vol. 37, No. 3,
pp. 14-18). ACM.

Lee, C.B., Garcia, S. and Porter, L. 2013. Can peer instruction be effective in
upper-division computer science courses? ACM Transactions on Computing
Education (TOCE), 13(3), p.12.

Leutenegger, S. and Edgington, J. 2007 A games first approach to teaching
introductory programming. In ACM SIGCSE Bulletin (Vol. 39, No. 1, pp. 115-
118). ACM.

Lindén, R., Rajala T., Karavirta V., and Laakso M.-J. 2016. Utilizing learning
analytics for real time identification of students-at-risk on an introductory

75

programming course. In proceedings of EDULEARN 2016 Conference,
Barcelona, Spain.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,
McCartney, R., Moström, J.E., Sanders, K., Seppälä, O. and Simon, B. 2004. A
multi-national study of reading and tracing skills in novice programmers. In
ACM SIGCSE Bulletin (Vol. 36, No. 4, pp. 119-150). ACM.

Lopez, M., Whalley, J., Robbins, P. and Lister, R, 2008. Relationships between
reading, tracing and writing skills in introductory programming. In
Proceedings of the Fourth International Workshop on Computing Education
Research (pp. 101-112). ACM.

Mayer, R. 1981. The Psychology of how novices learn computer
programming. Computing Surveys, 13 (1), 122 – 141.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O. and Silvasti,
P., 2004. Visual algorithm simulation exercise system with automatic
assessment: TRAKLA2. Informatics in education, 3(2), pp.267-288.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant,
Y.B.D., Laxer, C., Thomas, L., Utting, I. and Wilusz, T., 2001. A multi-national,
multi-institutional study of assessment of programming skills of first-year CS
students. ACM SIGCSE Bulletin, 33(4), pp.125-180.

McGreal, R. 2004. Learning objects: A practical definition. International
Journal of Instructional Technology and Distance Learning (IJITDL), 9(1).

March, S.T. and Smith, G.F., 1995. Design and natural science research on
information technology. Decision Support Systems, 15(4), 251-266.

Meirink, J.A., Imants, J., Meijer, P.C. and Verloop, N. 2010. Teacher learning
and collaboration in innovative teams. Cambridge Journal of Education,
40(2), pp.161-181

Menon, A.S., Moffett, S., Enriquez, M., Martinez, M.M., Dev, P. and
Grappone, T. 2004. Audience response made easy: using personal digital

76

assistants as a classroom polling tool. Journal of the American Medical
Informatics Association, 11(3), 217 – 220

Miller, H., Haller, P., Rytz, L. and Odersky, M. 2014. Functional programming
for all Scaling a MOOC for students and professionals alike. In companion
proceedings of the 36th International Conference on Software Engineering
(pp. 256-263). ACM

Moreno, A., Myller, N., Sutinen, E. and Ben-Ari, M. 2004. Visualizing
programs with Jeliot 3. In proceedings of the Working Conference on
Advanced visual interfaces (pp. 373-376). ACM.

Myers, B.A. 1986. Visual programming, programming by example, and
program visualization: a taxonomy. In ACM SIGCHI Bulletin (Vol. 17, No. 4,
pp. 59-66). ACM

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C. and
Balik, S. 2003. Improving the CS1 experience with pair programming. ACM
SIGCSE Bulletin, 35(1), pp.359-362.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen,
C., Korhonen, A., Malmi, L., McNally, M., Rodger, S. and Velázquez-Iturbide,
J. Á. 2002. Exploring the Role of Visualization and Engagement in Computer
Science Education. Working group reports from ITiCSE on Innovation and
Technology in Computer Science Education ITiCSE-WGR 02, 35 (2), 131-152.

Naps, T., Cooper, S., Koldehofe, B., Leska, C., Rößling, G., Dann, W.,
Korhonen, A., Malmi, L., Rantakokko, J., Ross, R. J., Anderson, J., Fleischer,
R., Kuittinen, M. and McNally, M. 2003. Evaluating the Educational Impact
of Visualization. Working group reports from ITiCSE on Innovation and
Technology in Computer Science Education. ACM Press, 124–136

Nguyen, A., Piech, C., Huang, J. and Guibas, L. 2014. Codewebs: scalable
homework search for massive open online programming courses. In
Proceedings of the 23rd International Conference on World Wide Web. ACM,
491–502.

77

Nitko, A.J., 1995. Curriculum-based continuous assessment: a framework for
concepts, procedures and policy. Assessment in Education, 2(3), pp.321-337.

Oakes, K. 2002. E-learning: LCMS, LMS — they’re not just acronyms but
powerful systems for learning. Training & Development, 56(3), 73 – 75.

Pappano, L. 2012. The Year of the MOOC. The New York Times, 2(12), p.2012.

Parsons, D. and Haden, P. 2006. Parson's programming puzzles: a fun and
effective learning tool for first programming courses. In proceedings of the
8th Australasian Conference on Computing Education - Volume 52 (ACE '06)

Pieterse, V. 2013. Automated assessment of programming assignments. In
Proceedings of the 3rd Computer Science Education Research Conference on
Computer Science Education Research (pp. 45-56). Open Universiteit,
Heerlen.

Polsani, P.R. 2006. Use and abuse of reusable learning objects. Journal of
Digital information, 3(4).

Porter, L., Guzdial, M., McDowell, C. and Simon, B. 2013. Success in
introductory programming: What works? Communications of the ACM,
56(8), 34 – 36

Rajala, T., Laakso M.-J., Kaila E., and Salakoski T. 2007. VILLE - a language-
independent program visualization tool. In proceedings of the Seventh Baltic
Sea Conference on Computing Education Research (Koli Calling 2007), Koli
National Park, Finland, November 15-18, 2007, Volume 88, (2007)

Rajala, T., Laakso, M.-J., Kaila, E. and Salakoski, T. 2008. Effectiveness of
program visualization: A case study with the ViLLE tool. Journal of
Information Technology Education: Innovations in Practice, IIP715—32.

Rajala, T., Kaila E., Laakso M.-J., and Salakoski T. 2009. Effects of
collaboration in program visualization. Appeared in Technology Enhanced
Learning Conference 2009 (TELearn 2009), October 6 to 8, 2009, Academia
Sinica, Taipei, Taiwan, (2009)

78

Rajala, T., Kaila, E., Laakso, M.-J. and Salakoski, T. 2010. How does
collaboration affect algorithm learning? A case study using TRAKLA2
algorithm visualization tool. In proceedings of 2010 International Conference
on Education Technology and Computer (ICETC 2010)

Rajala, T., Kaila E., Holvitie J., Haavisto R., Laakso M.-J., and Salakoski T.
2011. Comparing the collaborative and independent viewing of program
visualizations. In Frontiers in Education 2011 Conference, October 12-15,
Rapid City, South Dakota, USA.

Rajala, T., Lokkila E., Lindén R., Laakso M.-J., and Salakoski T. 2015. Students’
perceptions on collaborative work in introductory programming course. In
ICEE 2015 - International Conference on Engineering Education.

Rajala, T., Kaila, E., Lindén, R., Kurvinen, E., Lokkila, E., Laakso, M.-J. and
Salakoski, T. 2016. Automatically assessed electronic exams in programming
courses. In proceedings of the Eighteenth Australasian Computing Education
ConferenceACM.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B. and Kafai, Y.
2009. Scratch: programming for all. Communications of the ACM, 52(11), 60
– 67

Robins, A., Rountree, J. and Rountree, N. 2003. Learning and teaching
programming: A review and discussion. Computer Science Education, 13(2),
pp.137-172.

Saikkonen, R., Malmi, L. and Korhonen, A. 2001. Fully automatic assessment
of programming exercises. ACM Sigcse Bulletin (Vol. 33, No. 3, pp. 133-136).
ACM.

Sajaniemi, J. and Kuittinen, M. 2005. An experiment on using roles of
variables in teaching introductory programming. Computer Science
Education 15(1), 59-82.

79

Sams, A. and Bergmann, J. 2013. Flip your students' learning. Educational
Leadership, 70(6), pp.16-20.

Salleh, N., Mendes, E. and Grundy, J. 2011. Empirical studies of pair
programming for CS/SE teaching in higher education: A systematic literature
review. Software Engineering, IEEE Transactions on 37.4 (2011): 509-525.

Simon, B., Kohanfars, M., Lee, J., Tamayo, K. and Cutts, Q. 2010. Experience
report: peer instruction in introductory computing. In proceedings of the 41st
ACM Technical Symposium on Computer Science Education (pp. 341-345).
ACM.

Sorva, J. & Sirkiä, T. 2010. UUhistle: a software tool for visual program
simulation. In proceedings of the 10th Koli Calling International Conference
on Computing Education Research (pp. 49-54). ACM

Sweller, J. 1994. Cognitive load theory, learning difficulty, and instructional
design. Learning and Instruction, 4(4), 295 – 312.

Tang, T., Rixner, S. and Warren, J. 2014. An environment for learning
interactive programming. In proceedings of the 45th ACM technical
symposium on Computer science education. ACM, 671-676.

Tijani, F. and Callaghan, R., 2017, March. Exploring college students’
program comprehension skills from visual to procedural programming. In
Society for Information Technology & Teacher Education International
Conference (pp. 83-88). Association for the Advancement of Computing in
Education (AACE).

Warren, J., Rixner, S., Greiner, J. and Wong, S. 2014. Facilitating human
interaction in an online programming course. In proceedings of the 45th ACM
technical symposium on Computer science education (pp. 665-670). ACM.

Wheeler, S., Yeomans, P. and Wheeler, D. 2008. The good, the bad and the
wiki: Evaluating student-generated content for collaborative learning. British
Journal of Educational Technology, 39(6), 987 – 995.

80

Vihavainen, A., Luukkainen, M. and Kurhila, J. 2012. Multi-faceted support
for MOOC in programming. In proceedings of the 13th Annual Conference
on Information Technology Education (pp. 171-176). ACM.

Vihavainen, A., Airaksinen, J. and Watson, C. 2014. A systematic review of
approaches for teaching introductory programming and their influence on
success. In proceedings of the Tenth Annual Conference on International
Computing Education Research (pp. 19-26). ACM.

Winslow, L.E. 1996. Programming pedagogy—a psychological overview.
ACM SIGCSE Bulletin, 28(3), pp.17-22.

Virtanen, A.T., Lahtinen, E. and Järvinen, H.M. 2005. VIP, a visual interpreter
for learning introductory programming with C++. In proceedings of The Fifth
Koli Calling Conference on Computer Science Education (pp. 125-130).

Yin, H., Moghadam, J. and Fox, A. 2015. Clustering student programming
assignments to multiply instructor leverage. In proceedings of the Second
(2015) ACM Conference on Learning@ Scale (pp. 367-372). ACM.

Paper	1	
Kaila, E., Rajala, T., Laakso, M.-J. and Salakoski, T. 2009.

Effects, Experiences and Feedback from Studies of a
Program Visualization Tool.

Informatics in Education. 8 (1), 17 – 34. Vilnius University.

Reprinted with permission from respective publisher and authors.

Informatics in Education, 2009, Vol. 8, No. 1, 17–34 17
© 2009 Institute of Mathematics and Informatics, Vilnius

Effects, Experiences and Feedback from Studies of
a Program Visualization Tool

Erkki KAILA, Teemu RAJALA, Mikko-Jussi LAAKSO,
Tapio SALAKOSKI
TUCS, Turku Centre for Computer Science, University of Turku
Joukahaisenkatu 3–5 B, 6th floor, FI-20520 Turku, Finland
e-mail: {ertaka, temira, milaak, sala}@utu.fi

Received: December 2008

Abstract. Program visualization (PV) is potentially a useful method for teaching programming
basics to novice programmers. However, there are very few studies on the effects of PV. We have
developed a PV tool called ViLLE at the University of Turku. In this paper, multiple studies on the
effects of the tool are presented. In addition, new qualitative data about students’ feedback of using
the tool is presented. Both, the results of our studies and the feedback indicate that ViLLE can be
used effectively in teaching basic programming concepts to novice programmers.

Keywords: program visualization, programming, education, effects,experiences, student feedback.

1. Introduction

Programming is one of the main objectives in computer science studies. However, ac-
cording to several studies (see, e.g., McCracken et al. (2001) and Ala-Mutka (2005))
students have significant problems in learning the very basics of programming. Because
of scarce teaching resources and large group sizes students often get inadequate personal
instruction. Thus, there is clearly a need for instructional tools that support students’ in-
dependent learning.

Visualization systems use various graphical means in concretizing abstract program-
ming and algorithmic problems. According to Wiggins (1998), the purpose of visualiza-
tion is to help the user understand what a program does, why it does it, how it works,
and what the end result is. Hence, visualization systems can supposedly help students to
understand programs better, thus improving the learning results. There are several studies
on the effects of different algorithm visualization systems (see, e.g., Hundhausen et al.
(2002) and Laakso et al. (2008a)), but very few on program visualization.

We have developed a program visualization tool called ViLLE at the University of
Turku, Finland. The purpose of developing the tool was to find out if program visual-
ization can indeed help students in learning to program. ViLLE has been tested with
different kind of setups taking student competence levels and backgrounds into account.
In this paper we describe the tool itself for both in teacher’s and student’s point of view
and present the results of our studies on the effects of ViLLE so far. Moreover, we present

18 E. Kaila et al.

new quantitative results, based on the student feedback about using the tool. Finally, the
future of ViLLE is discussed.

2. ViLLE

ViLLE is a program visualization tool, developed at the University of Turku. Its main
purpose is to illustrate the changes in the programs states during the execution with var-
ious graphical and textual means. ViLLE supports multiple programming languages and
has built-in editors for defining and editing syntaxes, examples and questions. With the
export function the defined examples can be published as an independent collection, dis-
tributable in web or other media. By using the TRAKLA server (see Malmi et al. (2004)),
ViLLE’s automatically assessed exercises can be easily integrated as a part of a program-
ming course.

2.1. Teacher’s Point of View

From a teacher’s point of view, the suitability for different kinds of courses can be seen as
the number one feature of ViLLE. Programming languages, examples and questions are
all customizable with the built-in editors. Hence, it should be relatively easy to integrate

Fig. 1. Example editor in ViLLE.

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 19

ViLLE into almost any programming course. Moreover, the flexibility gives teachers a
chance to fulfil their own teaching philosophy, without a need to adjust to tool’s limita-
tions.

2.1.1. Example Editor
Examples are divided into categories. Teacher can create new examples and edit the ex-
isting ones by using the built-in example editor (see Fig. 1). The examples are written
in Java, and ViLLE automatically translates the program code to all defined languages.
Moreover, the visualizations of examples are automatically generated, as well as explana-
tions on each program line. The list of supported Java features is limited, mainly, because
all the programs should be easily translatable to other defined languages, and because the
tool is directed for novice programmers. Furthermore, the visualization of more complex
features (e.g., GUI components) can get quite tricky.

2.1.2. Question Editor
To further engage the learners to visualization, teacher can create questions about the
example programs. Currently multiple choice questions and graphical array questions are
supported. The questions are attached to program execution with a built-in question editor
(see Fig. 2), and are automatically launched when desired point of program is reached.

Fig. 2. Question editor.

20 E. Kaila et al.

The TRAKLA2 server can be used with ViLLE to keep the score of answered questions
and correct answers.

2.1.3. Syntax Editor
Teacher can add or edit syntaxes with the built-in syntax editor (Fig. 3). The editable
syntax is presented on the right hand side of the window, and the correspondent Java
syntax on the left hand side. Additionally, an explanation of the edited syntax line is
presented in the bottom window. All defined syntaxes must have matching lines with the
Java syntax to ensure the flow of execution and the consistency of questions.

2.2. Student’s Point of View

ViLLE’s key features from the student’s point of view can be divided into following
categories:

Visualizing the program execution: The execution of the example program is visu-
alized line by line (see Fig. 4). Currently and previously executed lines are highlighted,
and the variable values, program line explanation and the output of the program are pre-
sented in their own frames. All subprograms, and their return values, are presented in the
call order in their own frames in the call stack. Moreover, all global variables (namely
arrays) are presented graphically in their own area.

Fig. 3. Syntax editor.

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 21

Fig. 4. Visualization view.

Language independency: The visualization of the execution works similarly, regard-
less of the chosen programming language. Programming language can be changed any-
time during the visualization. In addition, ViLLE has a parallel mode (see Fig. 5) where
execution can be viewed in two different languages simultaneously.

Visualization controls: Controls are flexible – the user can move one step at a time,
both forwards and backwards in the execution of a program. In addition, the program can
be executed continuously in adjustable speed. The execution slider at the bottom of the
window can be used to move directly to a desired state of execution. The slider also has a
secondary function: the number of steps can be used to determine the complexity of the
program, and with suitable examples to compare the complexities of algorithms.

Interaction: Besides answering questions (see Fig. 6) the students can edit the pro-
gram code in the visualization view. The changes in program code can be visualized
instantly. However, since the editing must be done in Java, the feature can’t naturally be
utilized in all courses.

2.3. Automatic Assessment of Exercises

Examples made with ViLLE can be transferred to a collection in a web (see Fig. 7) by
using the TRAKLA2 server. The server keeps score on students’ logins and submissions,
and makes it possible to set opening and expiration dates for example rounds. Individual

22 E. Kaila et al.

Fig. 5. Parallel view.

examples can be retaken an unlimited number of times. Additionally, the teacher can set
the minimum number of points required for each round to pass the course. Web-based
ViLLE exercises are nowadays in use in most universities in Finland, and the student
feedback (see Subsection 3.4) has been mostly positive: it seems that ViLLE has a positive
role in enhancing the reading and tracing skills of novice programmers.

3. The Studies on ViLLE

3.1. The Effectiveness of ViLLE

The effectiveness of ViLLE was studied at the University of Turku, Finland, in a course
called ”Introduction to information technology”. There were 72 students participating in
the study. We tried to find the answer to two research questions: 1) “Is ViLLE useful in
learning basic programming concepts?” and 2) “Is there any difference in learning results
when earlier programming experience is taken into account?”. The null-hypotheses were
that ViLLE is not useful in learning to program, and that the effect is same for both
novices and more experienced students. No programming was taught before the study,
taking place in the third week of the course. However, a lecture was arranged before
the study where the programming language and the tool used were introduced. A link

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 23

Fig. 6. Array question in visualization view.

Fig. 7. ViLLE exercises in TRAKLA2 environment.

24 E. Kaila et al.

to ViLLE was added to course homepage in the second week so that the students could
familiarize themselves with the tool before the study.

The students were randomly divided into two groups: there were 32 (N = 32) stu-
dents in the treatment group and 40 (N = 40) in the control group. At the beginning
of the two hour session students first took a pre-test that lasted for 15 minutes. The pre-
test included three program reading exercises where students were asked to write down
the output of each program. After the pre-test, students rehearsed programming concepts
presented in the test with a web-based tutorial for 45 minutes. The treatment group could
also visualize the program code examples presented in the tutorial with the ViLLE tool.
After the tutorial session students had 30 minutes to answer to a post-test. The post-test
had the same three questions as the pre-test with two more demanding questions, in which
the students had to write a program implementing a given task, and write down the output
of a recursive program.

Pre- and post-test exercises were analyzed in the scale of zero to ten. Thus, the maxi-
mum points of the pre- and post-test were 30 and 50. Table 1 presents the pre-test scores
for both groups, including point averages, standard deviations (in parentheses) and p-
values calculated with a two-tailed t-test.

No statistically significant differences were found in any of the questions. In absolute
scale the treatment group performed better in questions Q2 and Q3, and the control group
in question Q1.

The scores from the post-test are presented in Table 2. Corresponding questions from
the pre-test are shown in square brackets beside the post-test question names. Total points
averages are presented both for the shared questions (questions that were the same in the
pre- and post-test) and for all questions. Additionally, the point difference between the
shared questions in the pre- and post-test is shown.

The comparison between the shared questions shows that the control group performed
better in question PQ1 and the treatment group in questions PQ2 and PQ3. One reason
for the smaller difference in the scores of the treatment group in PQ1 is the relatively
high scores they got from the pre-test. In any case, the differences are so small that the
null-hypothesis can not be rejected.

Table 3 displays a comparison between the pre- and post-test scores inside the groups.
As seen in the table, both groups performed statistically significantly better in the

post-test than in the pre-test (p-value < 0.01). Based on this, it seems that it is possible

Table 1

Pre-test scores

Question Control Group (N = 40) Treatment Group (N = 32) p-value

Q1 5.20 (2.67) 6.19 (2.46) 0.111

Q2 2.70 (3.53) 2.13 (3.53) 0.494

Q3 2.68 (4.15) 2.09 (3.88) 0.546

Total 10.58 (8.64) 10.41 (7.18) 0.930

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 25

Table 2

Post-test scores

Question Control group (N = 40) Treatment Group (N = 32) p-value

PQ1 [Q1] 6.30 (2.81) 6.13 (2.69) 0.790

PQ2 [Q2] 5.10 (4.35) 5.50 (4.50) 0.704

PQ3 6.28 (3.75) 5.88 (3.75) 0.654

PQ4 [Q3] 6.15 (4.56) 6.50 (4.42) 0.744

PQ5 7.05 (3.78) 6.69 (4.08) 0.698

Total (shared) 17.55 (9.08) 18.13 (8.81) 0.788

Total (all) 30.88 (15.20) 30.69 (15.08) 0.959

Difference PQ1 – Q1 1.10 (2.60) − 0.06 (2.81) 0.073

Difference PQ2 – Q2 2.40 (3.30) 3.38 (4.02) 0.262

Difference PQ4 – Q3 3.48 (4.81) 4.41 (4.53) 0.405

Total difference 6.98 (6.81) 7.72 (6.76) 0.646

Table 3

Pre- and post-test scores

Scores Control Group Treatment Group

Pre-test 10.58 10.41

Post-test 17.55 18.13

Total difference 6.98 7.72

p-value 0.000 0.000

to efficiently study basic programming concepts independently in these kinds of tutorial
sessions.

The other research problem was the effect of earlier programming experience on
learning results. When the results were analyzed, both groups were divided into two:
students with no earlier programming experience (NPE) and students with some earlier
programming experience (SPE). The pre-test scores with earlier programming experience
taken into account are presented in Table 4.

The figures in the table show that students with some earlier programming experience
got statistically significantly better scores in both groups. The corresponding results from
the post-test are presented in Table 5.

As we can see from the table, statistically significant difference between NPE and
SPE remained in the post-test in the control group. However, the difference vanished in
the treatment group (p-values 0.212 and 0.151). Thus, it seems that ViLLE is especially
useful for novice programmers. Because of the relatively short exposure to the tool, the
result can be seen as significant. Cronbach alpha-values calculated for pre- and post-test
questions (pre-test α = 0.667 and post-test α = 0.831) indicate high reliability. This
study is presented in more detail in (Rajala et al., 2008).

26 E. Kaila et al.

Table 4

The effect of earlier programming experience on pre-test scores

Control Group Treatment Group
Question

NPE (N = 23) SPE (N = 17) p-value NPE (N = 20) SPE (N = 12) p-value

Q1 4.17 (2.33) 6.59 (2.53) 0.003 5.60 (2.11) 7.17 (2.76) 0.107

Q2 1.22 (1.78) 4.71 (4.31) 0.005 1.00 (2.22) 4.00 (4.51) 0.049

Q3 1.00 (2.86) 4.94 (4.62) 0.005 1.65 (3.62) 2.83 (4.34) 0.414

Total 6.39 (4.68) 16.24 (9.63) 0.001 8.25 (5.44) 14.00 (8.48) 0.051

Table 5

The effect of earlier programming experience on post-test scores

Control Group Treatment Group
Question

NPE (N = 23) SPE (N = 17) p-value NPE (N = 20) SPE (N = 12) p-value

PQ1 [Q1] 5.74 (2.78) 7.06 (2.75) 0.144 5.90 (2.86) 6.50 (2.43) 0.533

PQ2 [Q2] 3.39 (3.97) 7.41 (3.81) 0.003 4.70 (4.58) 6.83 (4.22) 0.199

PQ3 5.30 (4.06) 7.59 (2.90) 0.045 5.05 (3.65) 7.25 (3.65) 0.109

PQ4 [Q3] 5.22 (4.83) 7.41 (3.94) 0.122 6.00 (4.71) 7.33 (3.94) 0.418

PQ5 6.09 (4.09) 8.35 (2.96) 0.049 6.05 (4.20) 7.75 (3.82) 0.261

Total (shared) 14.35 (8.27) 21.88 (8.51) 0.008 16.60 (9.29) 20.67 (7.64) 0.212

Total (all) 25.74 (14.44) 37.82 (13.68) 0.011 27.70 (15.49) 35.67 (13.53) 0.151

Difference PQ1 – Q1 1.57 (2.48) 0.47 (2.70) 0.198 0.30 (2.62) − 0.67 (3.11) 0.354

Difference PQ2 – Q2 2.17 (3.07) 2.71 (3.65) 0.620 3.70 (4.38) 2.83 (3.46) 0.564

Difference PQ4 – Q3 4.22 (4.73) 2.47 (4.87) 0.261 4.35 (4.73) 4.50 (4.38) 0.929

Total difference 7.96 (5.80) 5.65 (7.98) 0.295 8.35 (7.98) 6.67 (4.14) 0.439

3.2. The Effect of Engagement on Learning

Naps et al. (2002) presented a taxonomy of learner engagement with a visualization tool.
The taxonomy defines six levels of engagement:

1. No Viewing: There is no visualization tool in use.
2. Viewing: User follows the visualization passively. Despite of its name, all forms of

observation belong to this level. The user can control the flow of the visualization
but is not allowed to actively participate in any way.

3. Responding: User answers questions presented during the visualization.
4. Changing: User changes the visualization, for example by modifying the program

code or algorithm used in the visualization.
5. Constructing: User actively participates in the construction of visualization, for

example by writing program code.
6. Presenting: User presents the visualization and evaluates it together with the audi-

ence.

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 27

The study presented in Subsection 3.1 was extended so that a third group was formed
which used ViLLE in a lower level of the engagement taxonomy. Hence, there were
three groups: no viewing (N = 40), viewing (N = 65) and responding (N = 32).
The questions were removed from the version of ViLLE used by the viewing group. The
purpose of the setup was to confirm the hypothesis of Naps et al. (2002), which states that
visualizations can have an effect on learning only if they are used in engagement level
three or higher.

Statistical differences between the groups in the pre- and post-test were calculated
with one-way ANOVA-test, and are presented in Table 6.

As seen in the table, there were no statistically significant differences between the
groups. Students in the viewing group also improved their results statistically significantly
during the session (the p-value of pre- and post-test difference inside the group < 0.01).

The differences in learning results between the novices and more experienced pro-
grammers inside the groups were examined next. The results are shown in Table 7.

There was a statistically significant difference in all groups between the NPE and SPE.
As discovered in the previous section, the difference in the responding group vanished in
the post-test. However, the difference remained in the viewing group (p-value < 0.001).
Thus we can conclude that for the ViLLE to be useful, it should be used in an engagement
level higher than viewing. To confirm the result, a post-hoc Student-Newman-Keuls test

Table 6

Statistical differences between the groups

No viewing (N = 40) Viewing (N = 65) Responding (N = 32) p-value

Pre-test total 10.58 (8.64) 10.85 (8.89) 10.41 (7.18) 0.968

Post-test total (shared) 17.55 (9.08) 17.94 (9.53) 18.13 (8.81) 0.963

Total difference 6.97 (6.81) 7.09 (6.63) 7.72 (6.76) 0.881

Table 7

The effect of previous programming experience on pre- and post-test score

No viewing Viewing Responding

NPE SPE p-value NPE SPE p-value NPE SPE p-value

(N = 23) (N = 17) (N = 36) (N = 29) (N = 20) (N = 12)

Pre-test total 6.39 16.24 0.001 6.81 15.86 0.000 8.25 14.00 0.051

Post-test
total (shared) 14.35 21.88 0.008 13.72 23.17 0.000 16.60 20.67 0.212

Total
difference 7.96 5.65 0.320 6.92 7.31 0.812 8.35 6.67 0.439

Post-test
total (all) 25.74 37.82 0.011 24.72 39.90 0.000 27.70 35.67 0.151

28 E. Kaila et al.

Table 8

Pre-test scores divided into homogenous subsets

Group N Subset for alpha = 0.05

1 2

No Viewing NPE 23 6.39

Viewing NPE 36 6.81

Responding NPE 20 8.25

Responding SPE 12 14.00

Viewing SPE 29 15.86

No Viewing SPE 17 16.24

Table 9

Post-test scores divided into homogenous subsets

Group N Subset for alpha = 0.05

1 2

Viewing NPE 36 13.72

No viewing NPE 23 14.35

Responding NPE 20 16.60 16.60

Responding SPE 12 20.67

No viewing SPE 17 21.88

Viewing SPE 29 23.17

was used. The analysis forms two homogenous subsets from the pre-test scores so that
the novices and more experience programmers belong to different subsets (Table 8).

When the post-test scores were analyzed similarly, the results show that the novices
in the responding group caught up all the SPE groups (Table 9).

The analysis confirms the previous finding that ViLLE is especially useful for novices
learning programming basics, but only if used in higher levels of engagement. Similar
learning results are not achieved if visualizations are viewed passively.

3.3. The Impact of Prior Experience on Learning

We also wanted to study what kind of effects prior experience on using a visualization
tool has on the learning results. Presumably, students who have familiarized themselves
with the usage of a tool can focus better on the subject taught because the cognitive
load of using the tool is lighter. The study was organized in two instances of a high
school programming course. The only difference between the courses was that in the
latter course students were familiarized with the use of ViLLE and its features. A session
similar to the ones presented in previous sections was arranged, although the questions in
pre- and post-test were partly modified (for example recursion was thought to be concept

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 29

Table 10

Math and CS grades (scale 4...10)

Group Math CS

Control Group 6.75 (1.60) 7.94 (1.09)

Treatment Group 7.67 (2.25) 8.57 (1.62)

Table 11

Pre- and post-test scores

Pre-test total Post-test total (shared) Post-test total (all)

Control Group (N = 17) 7.12 12.59 16.94

Treatment Group (N = 7) 9.43 19.57 26.43

p-value 0.515 0.047 0.046

too complex for high school students). Students who hadn’t used ViLLE before belonged
to control group (N = 17) while students with prior experience on ViLLE formed the
treatment group (N = 7). Though the groups were quite small, results were statistically
significant.

To confirm the equality of the groups, participants’ earlier math and CS grades were
analyzed. The averages and standard deviations are presented in Table 10.

There were no statistically significant differences in grades between the groups. The
absolute differences are less than one point.

Pre- and post-test scores are presented in Table 11.
There was no statistically significant difference between the groups in the pre-test

scores, but there is a difference in the post-test. The statistically significant difference
can be found both in the shared (same questions in pre- and post-test) questions and all
questions. Based on the results we can conclude that prior knowledge of ViLLE clearly
improves learning results. Furthermore the results support our earlier findings that ViLLE
is useful in learning basic programming skills: both groups got statistically significantly
better results from the post-test in comparison to the pre-test. The results are presented in
more detail in (Laakso et al., 2008b).

3.4. Student Feedback

In addition to quantitative tests we wanted to find out what students think about the tool.
The opinions were gathered from students participating in a course called ‘Introduction
to Information Technology’ at the University of Turku. ViLLE was an integral part of the
course as all the assignments were done with it. 114 students answered to the question-
naire consisting of three parts: general questions about the tool, how useful the system is
when learning new programming concepts, and opinions about the features of the tool.

30 E. Kaila et al.

In the first section six statements about system were presented, and students were
asked to evaluate those in a scale of one to seven (1: completely disagree, 7: completely
agree). Based on the answers, the students seem to think that the tool is quite suitable for
teaching programming (average of all answers 5.64), that it is fairly easy to use (avg. 5.49)
and that it helps in understanding the basic programming concepts (avg. 5.41).

In the second section the students were asked to evaluate the usefulness of ViLLE in
different areas related to programming (see Table 12). Based on the answers, the students
found ViLLE as an useful tool for teaching all the basic concepts – arrays were the only
concept which got an average less than five (avg. 4.73). Based on students’ comments,
this is probably because of the usability issues in answering the array questions.

In the third section the students were asked to evaluate the usefulness of different fea-
tures of ViLLE (see Table 13). All features – except the visualization of programs in dif-
ferent languages – got an average of five or higher. The features the students found most
useful were the visualization of variable states and the automatic assessment of exercises
(averages 5.90 and 5.80). The worse average in “visualization in multiple languages” is
probably due to a fact, that the students didn’t use the feature. For that matter, the feature
can be found most useful when the students already know a programming language, and
a different language is taught.

Table 12

Usefulness of ViLLE in understanding programming concepts

How useful did you find ViLLE in understanding the following concepts? (scale 1–7)

Variables and assignments 5.41 (1.37)

Conditional statements 5.52 (1.15)

Loops 5.61 (1.19)

Boolean statements 5.38 (1.23)

Subprogram definitions 5.38 (1.25)

Subprogram calls 5.34 (1.32)

Subprogram parameters 5.24 (1.33)

Arrays 4.73 (1.58)

Table 13

Usefulness of ViLLE’s individual features

How useful did you find the following features in ViLLE (scale 1–7)?

Visualization of programs in different languages 4.93 (1.46)

Visualization of subprograms with call stack 5.35 (1.24)

Visualization of variable states 5.90 (1.17)

Explanation of program code line 5.40 (1.49)

Questions about program execution 5.50 (1.24)

Automatic assessment of exercises 5.80 (1.28)

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 31

Additionally, the students were asked to evaluate the number of ViLLE exercises in
the course and the number of questions in the exercises in the scale of one to seven (1 –
too few, 7 – too many). Based on the answers, the amounts were quite suitable (exercises
avg. 4.48 and questions avg. 4.13).

Moreover, the students had a possibility to give additional comments about the tool.
Most of the feedback was quite positive. However, some criticism and thoughts about
improving the tool were also given. Some of the positive things mentioned were:

– “In my opinion, ViLLE exercises were more effective than lectures.”
– “I found ViLLE really useful: because of the ViLLE exercises, I didn’t practically

need the lecture handouts at all to learn programming.”
– “With ViLLE I was able to pick up programming far better than with lectures.”
– “There were a lot of different exercises and it was easy to do them wherever and

whenever I felt like it.”

The negative comments were mostly related to the functionality of the user interface:

– “ViLLE is great when it functions properly; however, the GUI needs some im-
provement: e.g., handling arrays is illogical and difficult.”

– “It would be handy if you could see the execution history when answering the
questions:”

– “All the essential things won’t fit on the screen simultaneously. Why do you need
to login to ViLLE?”

– “It’s irritating that you can’t scroll the window when the question appears.”

Moreover, some of the students would like to have more conventional teaching, in-
stead or alongside ViLLE exercises:

– “I’d rather attend the traditional computer lab sessions, where there would be some
kind of help available on request.”

– “ViLLE was a good tool for studying; however, more training in small groups
would be highly appreciated.”

– “ViLLE is ok for learning the basics, but personally I learned more during the
lectures.”

All in all, the students seemed to have quite positive image about ViLLE’s usefulness,
though some improvements were also wished for. In conclusion, the students would pre-
fer a course, where ViLLE exercises are integrated with more traditional teaching meth-
ods. The reported problems related to the user interface will be taken into account in the
further development of the tool – e.g., the answering to array questions should nowadays
work more logically than in the version, which the opinions were gathered about.

4. The Future of the Tool

ViLLE is nowadays in use in basic programming courses in most universities in Finland,
and in addition, it will be mobilized at least in Australia during this spring. In future,
we plan to develop the tool further based on the user opinions and experiences, and fur-
ther research the effects of the tool when used in programming teaching. Our goal is to

32 E. Kaila et al.

add more features to support the higher levels of engagement taxonomy. Moreover, exer-
cise templates are developed to enable the randomization of the exercise parameters (i.e.,
variable types and values etc.); this makes redoing the exercises more meaningful. Addi-
tionally, different kinds of exercise types are under development, including code sorting
exercises, where program code lines are randomly shuffled and the students are supposed
to sort them in an order which implements the given task or algorithm.

5. Conclusions

Based on the presented results, experiences and feedback we can conclude the following:

– By using ViLLE the novices can improve their learning results significantly, even
when the tool is used quite briefly. . .

– . . . but only if the tool is used in the higher level of engagement. The mere viewing
of visualization doesn’t seem to have the same effect. This supports the hypothesis
presented by Naps et al. (2002).

– Moreover, to ensure the learning results, the students must be familiarized with the
tool beforehand, hence reducing the cognitive load of learning to use the tool.

– Most of the students think that ViLLE is beneficial when learning the basic pro-
gramming skills. However, some of the students seem to think that the best way to
use such tool is to integrate it with the more conventional forms of teaching.

– ViLLE gives students a chance to learn and practice the very basics of program-
ming independently. These basics can’t normally be covered on the lectures as
thoroughly as required by some students.

– The focus of ViLLE is in program code reading and comprehension skills. How-
ever, Lopez et al. (2008) state that the tracing skills correlate with students perfor-
mance on code writing tasks.

– From a teacher’s point of view, ViLLE’s key feature is the flexibility, and most
importantly the support for almost any imperative programming language.

All in all the experiences seem quite encouraging so far: the results and the students’
feedback both confirm the assumption that ViLLE can be used effectively in teaching the
basic programming skills to novices. As we all know – unless we have already forgotten
– the first steps in programming really are quite difficult. Therefore there seems to be a
demand for such system, both now and in the future.

References

Ala-Mutka, K. (2005). Ohjelmoinnin opetuksen ongelmia ja ratkaisuja. In Tekniikan opetuksen symposium,
20–21.10.2005. Helsinki University of Technology.
http://www.dipoli.tkk.fi/ok/p/reflektori/verkkojulkaisu/index.php?
p=verkkojulkaisu

Hundhausen, C.D., Douglas, S.A. and Stasko, J.D. (2002). A Meta-study of algorithm visualization effective-
ness. Journal of Visual Languages and Computing, 13, 259–290.

Effects, Experiences and Feedback from Studies of a Program Visualization Tool 33

Laakso, M.-J., Myller, N. and Korhonen, A. (2008a). Comparing learning performance of students using algo-
rithm visualizations collaboratively on different engagement levels. Journal of Educational Technology and
Society (to appear).

Laakso, M.-J., Rajala, T., Kaila, E. and Salakoski, T. (2008b). The impact of prior experience in using a visual-
ization tool on learning to program. In Proceedings of CELDA 2008, Freiburg, Germany.

Lopez, M., Whalley, J., Robbins, P. and Lister, R. (2008). Relationships between reading, tracing and writing
skills in introductory programming. In Proceeding of the Fourth International Workshop on Computing
Education Research, September 6–7, 2008, Sydney, Australia, 101–112.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O. and Silvasti, P. (2004). Visual algorithm
simulation exercise system with automatic assessment: TRAKLA2. Informatics in Education, 3(2), 267–
288.

McCracken, M., Almstrum, V., Diaz, D., Gudzial, M., Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting,
I. and Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of programming skills of
first-year CS students. ACM SIGCSE Bulletin, 33(4), 125–140.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L., Mc-
Nally, M., Rodger, S. and Velázquez-Iturbide, J. Á. (2002). Exploring the role of visualization and engage-
ment in computer science education. Working Group Reports from ITiCSE on Innovation and Technology in
Computer Science Education, 35(2), 131–152.

Rajala, T., Laakso, M.-J., Kaila, E. and Salakoski, T. (2008). Effectiveness of program visualization: a case study
with the ViLLE tool. Journal of Information Technology Education: Innovations in Practice, 7, 15–32.

Wiggins, M. (1998). An overview of program visualization tools and systems. In Proceedings of the 36th Annual
Southeast Regional Conference, 194–200.

E. Kaila has written his master’s thesis on program visualization in programming learn-
ing at University of Turku. His research interests include program visualization systems
and IT education.

T. Rajala is a PhD student at University of Turku. He received his master’s degree from
the same university in 2007. His research focuses on visualization of programs and algo-
rithmic problem solving.

M.-J. Laakso is currently working as a researcher at University of Turku. He received
his MSc (computer science) in 2003. His research interest covers program and algorithm
visualization, learning environments, computer aided and automatic assessment in com-
puter science education.

T. Salakoski is a professor of computer science at University of Turku, where he received
his PhD in 1997. His main research focus has been in methodology development using
machine learning and other intelligent techniques. He is leading a multidisciplinary re-
search group studying various task domains, including problems related to human learn-
ing and computing education research.

34 E. Kaila et al.

Program ↪u vizualizavimo priemonė: poveikis mokymui, patirtis ir
student ↪u atsiliepimai

Erkki KAILA, Teemu RAJALA, Mikko-Jussi LAAKSO, Tapio SALAKOSKI

Laikoma, jog pradedančiuosius mokant programavimo pagrind ↪u naudinga taikyti program ↪u
vizualizavimo metod ↪a. Tačiau tėra labai nedaug tyrim ↪u apie šio metodo poveik↪i. Turku universitete
buvo sukurta program ↪u vizualizavimo priemonė, pavadinta ViLLE. Straipsnyje supažindinama su
šios priemonės poveikio tyrimais, pateikiami nauji kokybiniai duomenys: student ↪u, naudojusi ↪u ši ↪a
priemon ↪e, atsiliepimai. Ir mūs ↪u tyrim ↪u rezultatai, ir atsiliepimai rodo, kad programos vizualizavi-
mo priemonė ViLLE gali būti veiksmingai naudojama pradedančiuosius programuotojus mokant
pagrindini ↪u programavimo s ↪avok ↪u.

Paper	2	
Kaila, E., Rajala, T., Laakso, M.J. and Salakoski, T., 2010.

Effects of Course-Long Use of
a Program Visualization Tool.

In Proceedings of the Twelfth Australasian Conference on Computing
Education (ACE 2010) - Volume 103, 97 – 106. Australian Computing

Society, Inc.

Reprinted with permission from respective publisher and authors.

Effects of Course-Long Use of a Program Visualization Tool

Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, Tapio Salakoski
University of Turku and Turku Centre for Computer Science (TUCS)

Informaatioteknologian laitos, 20014 Turun yliopisto, Finland
{ertaka, temira, milaak, sala}@utu.fi

Abstract
We studied the course-long use of a program visualization
tool called ViLLE in high school in Finland. The study
was conducted in three consecutive instances of the first
programming course. In the first two instances of the
course, the students did not utilize ViLLE – except for a
short session – while in the last instance students did
ViLLE exercises throughout the whole course. The
students who used ViLLE got significantly better results
from the course’s final exam. This supports our
hypothesis that program visualization can be an effective
method in teaching programming, and indicates that we
should continue developing program visualization
methods to further enhance learning.
Keywords: Programming education, program
visualization, long-term effects of visualization,
integrating visualization into a course.1

1 Introduction
The difficulties of novice programmers in introductory
courses are discussed in various studies (see McCracken
et al. 2001, Lister et al. 2004, Tenenberg et al. 2005). In
addition to the cognitive difficulties in learning, problems
often arise from lack of resources in teaching. When
courses are quite large, teachers or lecturers cannot pay
enough attention to single students. Moreover, the time
available for introductory courses is usually quite brief,
forcing the teachers to advance to more complicated
topics without a possibility to ensure the level of learning.
Hence, the students often lack even the basic reading and
writing skills after these introductory courses.

Program visualization (or program animation) is a
method of illustrating the program behaviour in different
states of the execution. Program visualization (PV)
systems typically visualize the execution and program
states (such as variable values, expression evaluation or
object and function dependencies) with various graphical
and textual components. Program visualization tools aim
to enhance learning in two distinctive ways: firstly, a
teacher can use such systems in lectures to illustrate the
changes in program states during the execution of
programs, and secondly, students can use tools
independently to rehearse topics they found difficult. The

Copyright © 2010, Australian Computer Society, Inc.
This paper appeared at the Twelfth Australasian
Computing Education Conference (ACE2010), Brisbane,
Australia, January 2010. Conferences in Research and
Practice in Information Technology, Vol. 103. Tony
Clear and John Hamer, Eds. Reproduction for academic,
not-for-profit purposes permitted provided this text is
included.

potential benefit of independent use is the possibility to
focus on more advanced topics in the lectures, and let the
students rehearse the basics on their own. However, this
scenario presents a couple of issues: firstly, how to
encourage the students to use the tool independently, and
secondly, how to pick a tool that can be used to produce
learning results?

1.1 Integrating a visualization tool into a
programming course

In order to gain the possible benefits from PV tools in the
course they should be properly introduced and integrated
into a course. Introduction should be done with enough
care. In our earlier research (Laakso et al. 2008) we found
out that the students who were properly familiarized with
a visualization tool beforehand gained statistically
significantly better learning results than the other
students. Though it is likely that the familiarization will
eventually happen during the course long use, the
additional cognitive load of learning to use the tool itself
may frustrate the students (even more since the students
at the introductory phase usually have a lot of different
systems and tools they need to adapt to). Hence, the
introduction should be more than a mere link at the
course web site and the graphical notation of the tool
should be carefully explained to the students.

It is important to have a plan of what kind of role a
visualization tool will have in a course. The tool can be
used to replace or complement the traditional methods of
teaching, however, some things that need to be
considered are:

What kind of topics will the tool be used for?
Will it be fully integrated into all areas of
teaching or used specifically to teach only some
topics?
What kind of “reward” will be awarded to
students for using the tool? Lehtonen (2005)
notes that getting in a top list of the best
achievements can be enough motivation for
students. Additional or alternative rewards can
be, for example, extra points for the course grade
or replacement of some of the course exercises
with use of the tool. Though the improved
learning should be a reward on itself, it often
does not seem to be enough.
How hard will it be for the teacher to mobilize
the tool, and what kind of advantages (other than
improved learning results) could be gained?
Could the tool be used, for example, for the
automatic assessment of exercises, what kind of
statistics is available and so on?

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

97

In this article we present the results of a course long study
of the program visualization tool called ViLLE. Earlier
results from two-hour controlled studies on the
effectiveness of ViLLE were encouraging. We consider it
is important to also study the effects of the tool while
used throughout programming courses.

2 Related Work
Over the years, various program visualization tools have
been developed, but there are very few studies on the
effectiveness of such tools, and even less on their long-
term effects on learning performance. In general,
algorithm and program visualization tools are studied
with qualitative methods; there are very few studies
where the results are based on quantitative data.

Crescenzi and Nocentini (2007) describe a two-year
experiment of integrating an algorithm visualization (AV)
tool called ALVIE into a programming course. The
course also included a textbook associated with the AV
tool. They report no quantitative results, but student
feedback was mainly positive.

Laakso et al. (2005) report an experiment in
introducing a web-based AV system called TRAKLA2
(Malmi et al. 2004) to students at two universities. They
report that the tool seems to be very useful as the midterm
pass rates raised significantly after the tool was
introduced, and it promoted student activity in the course.
The student feedback was also very positive.

Carlisle et al. (2005) used a flowchart based
visualization tool called RAPTOR in introductory
computing courses and found out that students using the
tool got better results from two questions in the final

exam when compared with the earlier course where the
tool was not utilized. However, they also got worse
results from the third question in the exam

Ben-Bassat Levy et al. (2003) utilized a program
visualization tool Jeliot 2000 (an earlier version of Jeliot3
(Moreno et al. 2004)) in a year-long course. They
conclude that since the control group had so little room
for improvement, the quantitative data only shows
improvement in the animation group (the group that used
the tool).

Stasko (1997) studied the effects of the visualization
tool called Samba, which students used in building their
own visualizations. No quantitative data was presented,
but student feedback indicated that students thought that
they understood algorithms well. Moreover, according to
an informal measure by the writer, in the final exam the
students answered nearly perfectly to questions regarding
the algorithms they had built earlier.

Brown and Sedgewick (1984) describe the use of
Balsa AV tool in an introductory course and in an
algorithm and data structures course. It was found out that
the students understood algorithms in less time compared
with traditional teaching methods.

3 ViLLE
In this section we present the tool and describe some
earlier results from the studies about ViLLE’s
effectiveness.

3.1 Features
ViLLE is a program visualization tool which illustrates
the changes in a program’s states with various graphical

Figure 1: the visualization view in ViLLE

CRPIT Volume 103 - Computing Education 2010

98

and textual components. The tool combines visualizations
with the automatic assessment of program code reading
exercises. Using ViLLE, a teacher can create example
sets and include questions (multiple choice and graphical
array questions in the version were used in this research)
which the students answer during the execution of the
example programs. As we have previously stated (Kaila
et al., 2009a), mere visualizations are not enough to have
a substantial effect on learning. Providing questions
engages students to perform at the active level of
learning.

Some of ViLLE’s key features are:
Possibility to visualize programs with various
programming languages. Several syntaxes are
included and the teacher can define new
syntaxes with the built-in syntax editor.
Flexible controls of animation: students can
execute the program step by step or continuously
in adjustable speed. Stepping backwards is also
possible – a feature that is not commonly
included in such tools.
A built-in question editor which allows the
teacher to attach questions in the chosen points
in the example program. The current version
includes also coding and code shuffling
exercises; however, these were not in use in the
version used in this research.
Flexibility and ease of use both for teachers and
students.

Complete list of ViLLE’s features can be found at
tool’s website, at http://ville.cs.utu.fi.

3.2 Motivation for developing ViLLE
Although other program visualization systems have been
developed (see section 2), they seem to lack some
features we found necessary for such system:

The tool should have support for various
programming languages instead of focusing on
one particular language.
Visualizations should always be combined with
exercises to actively involve students.
The tool should support the creation of new
exercises and visualizations. The process should
be as straightforward as possible to encourage
teachers to develop their own materials.

These features were the basis for the development of
ViLLE.

3.3 Previous Studies
We have previously conducted series of experiments
about the effectiveness of ViLLE in various studies. In
this section we present the most significant results of
those studies.

The effectiveness of ViLLE was studied at University
of Turku, in a course called “Introduction to information
technology”. Seventy two students participated in the
study, randomly divided into two groups: 32 in the
treatment group and 40 in the control group. At the
beginning of the session all students took a pre-test,
which measured their earlier programming knowledge.

After the pre-test the students rehearsed the programming
concepts with a web-based tutorial. In addition, the
treatment group could visualize the examples in a ViLLE
tutorial.. After this, a post-test was arranged to measure
the learning effects. Both groups performed significantly
better at the post-test, but no significant differences
between the groups were found. However, when students’
earlier programming experience was taken into account,
we found out that the difference between novices and
experienced ones in the treatment group narrowed down
and statistically disappeared during the session. Hence,
we concluded that ViLLE is especially useful for novice
programmers. The study is presented in detail in Rajala et
al. (2008).

Following this, the study was extended so that there
were three groups, each in a different engagement level
(see Naps et al. 2002). The aim of the study was to find
out whether we could confirm the hypothesis, which
states that visualization tools can produce learning results
only if used in active levels, i.e. the mere tracking of the
visualizations is not enough. In addition to the earlier
research, a third group was formed. This group (the
viewing group, N=62) could control the animation of
program executions, but had no other ways to actively
take part in them. The responding group (N=32) had a
full version of ViLLE in use, with multiple choice
questions about examples activated. The results showed,
that the difference between experienced and the novice
programmers remained in the viewing group (as well as
in the tutorial-only group, i.e. the no-viewing group). This
confirms the earlier findings that ViLLE is especially
useful for novices, but only if used in engagement level
higher than viewing. The study is presented in detail in
Kaila et al. (2009a).

Another study investigated whether prior experience
in using a tool has an effect on learning results. The study
was conducted in two instances of an introductory
programming course in high school, with a session
similar to the ones mentioned earlier in this section. The
only difference between groups was that the (treatment
group (selected randomly out of the two) was familiarized
with ViLLE before the session was arranged. There were
no statistically significant differences between the groups
in the pre-test. However, in the post-test a statistically
significant difference was found: the treatment group
outperformed the control group in shared questions (i.e.
the questions that were similar in pre- and post-tests) and
in all questions. Based on the results we can conclude that
the earlier experience of the tool has a significant effect
on learning results, a fact that should be taken into
account when arranging such studies. The study is
presented in detail in Laakso et al. (2008).

Next we arranged a study to find out if the learning
effects of ViLLE can be further enhanced by using the
tool in collaboration with other student. The students
were randomly divided into two groups: the students in
treatment group (N=62) used ViLLE in collaboration
with other students, while the students in the control
group (N=50) used it alone. The results confirmed our
previous findings: all students’ succeeded statistically
significantly better in the post-test, thus proving that it is
possible to teach basic programming concepts effectively
with ViLLE, even in such short time (45 minutes). While

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

99

http://ville.cs.utu.fi/

there were no differences between the groups in the pre-
test, a significant result was found in the post-test. This
supports the earlier findings of Laakso et al. (2009), that
collaboration is highly beneficial when using a
visualization tool. The study is presented in detail in
Rajala et al. (2009).

In addition to all quantitative tests proving that ViLLE
is beneficial in learning, we also wanted to find out what
students think about the tool. We gathered students’
opinions at the course “Introduction to information
technology” at our university. The students had used
ViLLE throughout the course, with more than 10,000
exercises taken. 114 students answered the questionnaire,
consisting of questions about the features, usability and
usefulness of the tool. Based on the answers, most of the
students think that ViLLE is beneficial when learning the
basic programming concepts. Some students even thought
that they learned better using ViLLE than with traditional
learning methods (exercises, demonstrations and
lectures). However, some students think that the best way
to use such tool would be to integrate it with more
traditional forms of teaching. The study is presented in
detail in Kaila et al. (2009b).

In this study, in contrast to our earlier studies, we
wanted to examine the effects of a visualization tool
when used throughout a programming course. Since the
long-term effectiveness of program visualization is rarely
studied, and since we have found encouraging results
from two-hour sessions, we find this very relevant topic
of interest.

4 Research
The effectiveness of ViLLE was studied in three
consecutive high school programming courses. In the first
two course students used ViLLE only in a two hour lab
session at the beginning of the course. In the third course
students used ViLLE throughout the course. The idea was
to find out what kind of effects program visualization has
on learning programming when used throughout the
course.

4.1 Method
The experiment was a between subject design with a pre-
test and final exam results (dependant variable). We had
one between-subject factor (independent variable): the
amount of usage of ViLLE.

4.2 Materials
All course material was distributed via the course
learning management system Moodle (Dougiamas &
Taylor 2003). The material included background theory,
code examples, and coding exercises for each topic
taught. Python was used as the teaching language.

In the third week of the courses, a computer lab
session was arranged where students rehearsed
programming concepts with a programming tutorial. In
the tutorial some programming concepts (variables,
selection, loops, and methods) were shortly explained and
students solved included ViLLE exercises. At the
beginning of the course, before the lab session, students
were familiarized with the syntax of Python, variables,
user input and selection statements. The session begun

with students answering a pre-test (see Appendix A),
which included three questions about selection, loops and
methods, and ended with a similar post-test. The results
from these sessions are presented in Laakso et al. (2008).

The final exam was divided into two parts (see
Appendices B and C). The first part included five code
reading exercises which were solved on paper. The
exercises included selection statements, explaining the
meaning of each line in a program, and what the program
does, the number of short questions about syntactical
features in Python, and explaining what certain code
fragments do and writing down their output. When
students returned the first part, they got three more coding
exercises which were solved with computers. The coding
exercises included writing a program that counts the
average of an array, a program that asks a number from
user and counts factorial of the number, and program that
reads a file, and counts the line and word count inside the
file. Each of the five questions in the first part of the
exam was worth 6 points, while three coding exercises in
the second part were worth 10 points each. Thus, the
maximum score in the final exam was 60 points.

4.3 Participants
The participants were students from the high school of
Kupittaa, a school that focuses on teaching information
technology and media. There were two instances of the
course in the fall 2007: in the first course there were 12
students and in the second there were 8 students, totalling
20 students in the non-ViLLE group; however, since
there were two students, who took the course
independently (i.e. they did not participate in lectures or
other teaching, but merely took the final exam), and three
students who dropped out from the course, the total
number in non-ViLLE group becomes 15 (N=15). In the
2008 course the student count was 7 (the ViLLE group),
because one student dropped out. The selection of the
ViLLE group was randomized. The course was the first
programming course in the curriculum for each student.

4.4 Procedure
All lessons in the programming courses were held in a
computer lab. Each topic was first introduced by the
teacher. After the introduction students solved exercises
with the help of code examples and background theory.
The teacher also did live-coding by explaining all his
actions during the coding process to further clarify things.

The courses were identical in the following aspects:
Both were taught by the same teacher.
All materials were identical.
Final exams were identical.

 Hence, the only difference was that in the 2008
course students did visualization exercises with ViLLE
throughout the course. When each programming concept
was introduced, a number of ViLLE-exercises covering
the concept were prepared for the students in the ViLLE
group. The non-ViLLE group had similar program code
examples included in the web material, but they could not
visualize them. Hence, the time used in studying different
programming topics was the same for both groups.

CRPIT Volume 103 - Computing Education 2010

100

The starting level of students was measured with the
pre-test (see section 4.2). Student performance was
measured by comparing the final exam scores between
the ViLLE and non-ViLLE groups.

The results between the groups were analyzed with a
two-tailed t-test. Levene’s test was used to calculate
variances for all statistics to determine if the data holds
equal or non-equal variances.

5 Results
In this section we present the results on the research
question ”is there any difference in learning when ViLLE
is used throughout the course”.

In addition, correlations between previous math and
computer science (CS) knowledge and success in reading
and writing exercises are presented.

5.1 Previous knowledge
Participants’ previous programming knowledge was
determined by reviewing their earlier success in CS and
math studies, and by comparing their scores in the pre-
test of the computer lab session. CS and math grades are
presented in Table 1. The table includes averages (on the
scale of 4 to 10), standard deviations (in parentheses) and
p-values of the t-test between groups.

Non-ViLLE
group (N=9)

ViLLE group p-value

Math 6.56 (1.82) 7.53 (1.35), N=5 0.278
CS 7.83 (1.15) 8.54 (1.10), N=6 0.254

Table 1: Participants' Math and CS grades

In math studies the grades are presented for the three first
advanced math courses, and naturally for only those
students who took these courses (because of this the table
does not include all students). Similarly, CS studies
reported in the table include two first introductory
courses. The courses were the same for all the students.
As seen as the table, no statistically significant
differences were found between the groups.

The results of the pre-test in the computer lab session
were analyzed similarly (see Table 2). The ViLLE group
performed better in the absolute scale (10.83 vs. 7.79 on
the scale of 0 to 30), but no statistically significant
differences were found (p-value 0.430). In both groups
there was on student who could not participate in the pre-
test, but did the final exam (thus the N-values). Based on
the results we can conclude that there were no significant
differences between the groups’ programming knowledge
before taking the course.

Non-ViLLE
group (N=14)

ViLLE group (N=6) p-value

Q1 5.35 (2.53) 6.50 (3.89) 0.529
Q2 1.64 (2.50) 2.16 (3.92) 0.721
Q2 0.79 (0.80) 2.17 (3.87) 0.425
Total 7.79 (4.34) 10.83 (8.38) 0.430

Table 2: Pre-test results

5.2 Final exam scores
Learning effects on the course were measured with final
exam results. The exam consisted of five code reading
(Q1-Q5) and three code writing (QW1 – QW3) exercises
(see section 4.2 for details). Results are presented in
Table 3.

Non-ViLLE
group
(N=15)

ViLLE group
(N=7)

p-value

Q1 3.73 (2.12) 4.43 (2.15) 0.484
Q2 3.13 (1.19) 4.14 (1.46) 0.099
Q3 2.67 (1.59) 4.07 (1.74) 0.075
Q4 4.73 (1.44) 6.00 (0.00) 0.004
Q5 1.27 (1.67) 3.00 (2.16) 0.052
Reading total 15.53 (5.58) 21.64 (6.34) 0.033
QW1 3.20 (2.24) 6.29 (3.73) 0.077
QW2 4.67 (2.92) 8.00 (2.52) 0.017
QW3 2.93 (3.17) 3.86 (4.26) 0.574
Writing total 10.80 (7.03) 18.14 (9.06) 0.050
Exam Total 26.33 (11.84) 39.79 (14.11) 0.030

Table 3: Final exam results

As seen on Table 3, ViLLE group performed statistically
significantly better in Q4 (t (20) = -2,301), in total of
reading questions (t (20) = -2,294), total of writing
questions (t (20) = -2,084) and in combined total score (t
(20) = -2,339); moreover, the difference in QW2 was
almost significant. Since the Q4 was a question about
function calls, ViLLE’s visualization of functions seemed
to be especially helpful.
In absolute scale and by looking the p-values of different
questions, it seems that only in Q1 and QW3 groups
performed somewhat similarly. Q1 was about if-
statement, a topic already presented in the course before
the lab session. That might be one reason why students
got good results from a similar assignment in the pre-test
(see table 2). QW3 was about reading a file, which is not
possible to visualize in ViLLE, and thus the topic was
taught similarly to both groups. In all other questions the
trend was favouring the ViLLE group.

5.3 Correlations between math and CS grades
and total scores

Finally, we wanted to examine correlations between
students’ grades and the scores of reading and writing
sections on the final exam. Math and CS grades had
medium correlation with reading exercises (0.699, p <
0.01 and 0.557, p < 0.05, respectively) and strong
correlation with writing exercises (0.781, p < 0.01 and
0.725, p < 0.01). Since the CS course grades were from
introductory courses, and did not include any
programming, we suggest that the grades actually depict
more about students’ motivation than actual programming
knowledge. The pre-test results (see section 5.1) support
this.The quite low averages indicate that students’
programming skills were rather poor before taking the
course.

Another interesting aspect is the strong correlation
between reading and writing exercise points in the final
exam (0.776, p < 0.001). This seems to be in line with the

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

101

findings by Lopez et al. (2008) which state that there is a
strong correlation between students’ tracing and writing
skills.

6 Discussion
The results show that the group that used ViLLE
throughout the course got statistically significantly better
results from the final exam in total scores, reading total,
writing total, and in question 4 in the reading exercises.
Hence, ViLLE seems to be beneficial in tracing program
code. Since the question 4 was about functions, ViLLE
seems the most helpful when tracing the execution
between the main program and subprograms.
Remarkably, all students in the ViLLE group got full
points from the question. Moreover, there was a trend
favoring the treatment group in absolute scale in all
questions, although in Q1 and QW3 the groups performed
quite similarly. Based on the results, ViLLE also seems to
help in developing program writing skills. Cronbach’s
alpha value 0.866 calculated for the questions in the final
exam indicate high reliability.

It is hard to estimate how other factors influenced the
results. Although the materials in the courses were
identical and the courses were taught by the same teacher,
the teacher might have had more experience in teaching
the course in the spring. Moreover, the group sizes were
quite small, and it is impossible to isolate all the factors
that influence the learning in a six-week course. One
confounding factor might be the randomization of groups;
although the ViLLE group was selected randomly, the
courses were taught in different semesters.

However, since the difference between the non-ViLLE
and ViLLE groups was so substantial in total points, and
all our previous studies indicate that ViLLE has a positive
effect on learning, we can conclude that ViLLE is
beneficial when learning basic programming skills.

It seems that the biggest advantage of ViLLE is the
possibility to offer lots of program code reading exercises
to students. Students get direct feedback on their success
from the tool. This is especially helpful in mass courses
where the teacher does not have enough time to address
each student individually, but also applicable in courses
with fewer students; the teacher can not always help all
students that need guidance, no matter how few there are.
The feedback given by the tool helps students understand
some concepts by themselves and the teacher is freed
from having to repeatedly answer basic questions. Even
if the feedback from a tool is not as good as personal
feedback from the teacher, students still get useful
information on the events occurring in the program.
Moreover, they can retake examples as many times as
they see necessary – thus, the tool can be very helpful in
ensuring that all the concepts taught are sufficiently
rehearsed.

7 Conclusions
We conducted a study on the effects of course-long use of
a program visualization tool in a high school in Finland.
The results indicate that the students who used the tool
throughout the course got significantly better results on
their final exam. The difference was significant in all total
scores, which indicates that program visualization is a

highly beneficial method of teaching basic programming
concepts. This confirms our earlier findings from
controlled two hour sessions. Moreover, we could
confirm our other earlier finding that ViLLE is especially
useful when tracing the execution of function calls. In
future we plan to retake a similar study at the university
level, and study the effects of new features (mainly code
sorting and coding exercises) of ViLLE.

8 References
Ben-Bassat Levy, R., Ben-Ari, M. and Uronen, P.A.

(2003): The Jeliot 2000 program animation system.
Computers & Education, 40(1): 15-21.

Brown, M.H. and Sedgewick, R. (1984): Progress report:
Brown university instructional computing laboratory.
SIGCSE Bull. 16(1): 91-101.

Carlisle, M. C., Wilson, T. A., Humphries, J. W., and
Hadfield, S. M. (2005): RAPTOR: a visual
programming environment for teaching algorithmic
problem solving. Proc. of the 36th SIGCSE Technical
Symposium on Computer Science Education (St. Louis,
Missouri, USA, February 23 - 27, 2005). SIGCSE '05.
ACM, New York, NY, 176-180.

Crescenzi, P. and Nocentini, C. (2007): Fully integrating
algorithm visualization into a cs2 course: a two-year
experience. Proc. of the 12th Annual SIGCSE
Conference on innovation and Technology in Computer
Science Education (Dundee, Scotland, June 25 - 27,
2007). ITiCSE '07. ACM, New York, NY, 296-300.

Dougiamas, M. and Taylor, P. (2003): Moodle: Using
Learning Communities to Create an Open Source
Course Management System. Proc. of World
Conference on Educational Multimedia, Hypermedia
and Telecommunications, Lassner & C. McNaught
(Eds.), Chesapeake, VA: AACE, 171-178.

Kaila, E., Laakso, M.-J., Rajala, T. & Salakoski, T.
(2009a): Evaluation of Learner Engagement in
Program Visualization. To appear in 12th IASTED
International Conference on Computers and Advanced
Technology in Education (CATE 2009), November 22
– 24, 2009, St. Thomas, US Virgin Islands.

Kaila, E., Rajala, T., Laakso, M.-J. & Salakoski, T.
(2009): Effects, Experiences and Feedback from
Studies of a Program Visualization Tool. Informatics in
Education, 8(1): 17-34.

Kannusmäki, O., A. Moreno, N. Myller and E. Sutinen.
(2004): What a Novice Wants: Students Using Program
Visualization in Distance Programming Courses. Proc.
of the Third Program Visualization Workshop: 126-
133.

Laakso, M.-J., Rajala, T., Kaila, E. and Salakoski, T.
(2008): The Impact of Prior Experience In Using A
Visualization Tool On Learning To Program.
Proceedings of CELDA 2008, Freiburg, Germany,
129-136.

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X.,
Korhonen, A. and Malmi, L. (2005): Multi-perspective
study of novice learners adopting the visual algorithm
simulation exercise system TRAKLA2. Informatics in
Education, 4(1): 49-68.

CRPIT Volume 103 - Computing Education 2010

102

Laakso, M.-J., Myller, N. and Korhonen, A. (2009):
Comparing learning performance of students using
algorithm visualizations collaboratively on different
engagement levels. Journal of Educational Technology
& Society, 12(2): 267-282.

Lehtonen, T. (2005): Javala – Addictive E-Learning of
the Java Programming Language. Proc. of Kolin
Kolistelut / Koli Calling – Fifth Annual Baltic
Conference on Computer Science Education, Joensuu,
Finland, 41-48.

Lister, R., Adams, S., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, J.E., Sanders,
K., Seppälä, O., Simon, B. and Thomas, L. (2004): A
Multi-National Study of Reading and Tracing Skills in
Novice Programmers. SIGCSE Bulletin, 36(4): 119-
150.

Lopez, M., Whalley, J., Robbins, P. and Lister, R. (2008):
Relationships between reading, tracing and writing
skills in introductory programming. Proc. of the fourth
international workshop on Computing education
research, Sydney, Australia, 101-112.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.,
Seppälä, O., and Silvasti, P. (2004): Visual Algorithm
Simulation Exercise System with Automatic
Assessment: TRAKLA2. Informatics in Education,
3(2): 267-288.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting,
I. and Wilusz, T. (2001): A Multi-National, Multi-
Institutional Study of Assessment of Programming
Skills of First-year CS Students. ACM SIGCSE
Bulletin, 33(4): 125-140.

Moreno, A., Myller, N., Sutinen, E. and Ben-Ari, M.
(2004): Visualizing Programs with Jeliot 3. Proc. of the

Working Conference on Advanced Visual Interfaces
(AVI 2004), Gallipoli (Lecce), Italy. ACM Press, New
York: 373-380.

Naps, T.L., Rößling, G., Almstrum, V., Dann, W.,
Fleischer, R., Hundhausen, C., Korhonen, A., Malmi,
L., McNally, M., Rodger, S. and Velásquez-Iturbide, J.
Á. (2002): Exploring the Role of Visualization and
Engagement in Computer Science Education. Working
Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education, 35(2):
131-152.

Petre, M. (1995): Why Looking Isn’t Always Seeing:
Readership Skills and Graphical Programming.
Communications of the ACM, 38(6): 33-44.

Rajala, T., Laakso, M.-J., Kaila, E. and Salakoski, T.
(2008): Effectiveness of Program Visualization: A
Case Study with the ViLLE Tool. Journal of
Information Technology Education: Innovations in
Practice. 7: IIP 15-32.

Rajala, T., Kaila, E., Laakso, M.-J. & Salakoski, T.
(2009): Effects of Collaboration in Program
Visualization. Technology Enhanced Learning
Conference 2009 (TELearn 2009), Taipei, Taiwan.

Stasko, J.T. (1997). Using student-built algorithm
animations as learning aids. SIGCSE Bull. 29(1): 25-
29.

Tenenberg, J., Fincher, S., Blaha, K., Bouvier, D., Chen,
T.-Y., Chinn, D., Cooper, S., Eckerdal, A., Johnson,
H., McCartney, R. and Monge, A. (2005): Students
designing software: a multi-national, multi-institutional
study. Informatics in Education, 4(1): 143-162.

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

103

Appendix A: Pre-test

The pre-test consisted of three assignments: in each assignment a block of program code was presented, and the
students were asked to either write down the output (assignments 2 and 3) or variable values in different states of
execution (assignment1).

Assignment 1:

Assignment 2:

Assignment 3:

CRPIT Volume 103 - Computing Education 2010

104

Appendix B: Final exam, part 1

Q1: What are the values of variables a, b, c and d after the execution of
this program?

a = 0

b = 5

c = 7

d = 10

if c < d and a < c:

 a = a + b

 b = c - 1

 d = d - a

if d == b or d == c:

 d = d * 2

 c = c / 2

 b = b * a

elif not(a > b and d > c):

 a = a + 2

 b = b + 3

 d = d – c

else:

 a = b

 b = c

 c = d

 d = d * 2

Q2: Add comments to each line of the following program. Finally,
explain what the whole program does.

list = [0,0,0,0,0]

i = 0

while i < len(list):

 try:

 list[i] = input('Give a number: ')

 i = i + 1

 except Exception:

 print 'That is not a number!'

result = list[0]

for j in list:

 if j < result:

 result = j

print result

Q3:
a) What command is used to include functions square() and

pow() from module math?

b) What is the value of variable a after this statement is
executed: a = len(‘exam’) + (2 * len(‘answer’))?

c) What is the output of this program?
list = [‘one’,’five’,’eight’,’seven’,’ten’]
print list[4] + list[1]

d) What is the output of this program?
s = {‘three’ : 3,’five’ : 5, ‘four’ : 4, ‘two’ : 2}
print s[‘four’] 0 s[‘two’]

e) What is the output of this program?
i = 2

while i < 10:

 if i % 2 == 0:

 i = i + 1

 continue

 print i

 i = i + 1

f) What is the output of this program?
i = 2

while i < 10:

if i % 2 == 0:

i = i + 1

break

print i

i = i + 1

Q4:
a) What does this function do?

def first(nmbr1,nmbr2):

if nmbr1 <= nmbr2:

return nmbr1 ** nmbr2

else:

return nmbr2 ** nmbr1

b) What does this function do?
def second(nmbr1,nmbr2,nmbr3):

if nmbr1 < nmbr2 and nmbr1 < nmbr3:

return nmbr1

elif nmbr2 < nmbr1 and nmbr2 < nmbr3:

return nmbr2

else:

return nmbr3

c) When using the functions declared in a) and b), what is the
output of this line?
print second(first(3,2),first(2,2),7)

Q5: Function foo() is declared and called in program. What is the
output of the program?

Function:
def foo(a, b):

result = 0

while a < b:

a = a + 1

print a + b

result = result + a

return result

Program:
first = foo(2,4)

second = foo(5,3)

if first < second:

print foo(first, second)

else:

print foo(second, first)

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

105

Appendix C: Final exam, part 2

Q1: Define function average(), which gets a list as a parameter and calculates and returns the average of the values in
the list. Example of usage:

list = [2,3,3,4,7]

print “The average is:”, average(list)

The output of the example above would be:
The average is 3.8

Q2: Write a program that asks for a number and prints out the factorial of that number. Use exception handling to
ensure that a number is given. Factorial of e.g. number 5 is calculated like this: 5 * 4 * 3 * 2 * 1 = 120. Example run:

Give a number: 6

The factorial of number 6 is 720

Q3: Write a program that reads a file and prints out the number of rows and words in that file. For example, for a file:

This is a file

There is more text here

And even more here

The output would be:

There are 3 rows and 13 words in the file.

Create a file test.txt to test your program. The words can be calculated with split() function, which can be used to
split a string around spaces.

CRPIT Volume 103 - Computing Education 2010

106

Paper	3	
Kaila, E., Rajala, T., Laakso, M.J., Lindén, R.,

Kurvinen, E. and Salakoski, T. 2014.

Utilizing an Exercise-Based Learning Tool Effectively
in Computer Science Courses.

Olympiads in Informatics, 8, 93 – 109. Vilnius University.

Reprinted with permission from respective publisher and authors.

Olympiads in Informatics, 2014, Vol. 8, 93–109
© 2014 Vilnius University, IOI

93

Utilizing an Exercise-Based Learning Tool
Effectively in Computer Science Courses

Erkki KAILA, Teemu RAJALA, Mikko-Jussi LAAKSO,
Rolf LINDÉN, Einari KURVINEN, Tapio SALAKOSKI
University of Turku
e-mail: {ertaka, temira, milaak, rolind, emakur, sala}@utu.fi

Abstract. Educational technology and learning environments are becoming more and more com-
mon in all levels of education. Still, the main focus in research seems to be on which tools to use
rather than how to effectively use them. In this paper, we first discuss the aspects that should be
considered when adapting an exercise-based learning environment into curriculum. Based on our
earlier research on the topic, we present three rules for adapting the tools. Next, a six-year study
on using a learning environment in two courses is presented. Throughout the six course instances,
the adaptation and integration of the tool is gradually altered. The results seem to confirm the
positive effect of changes made in adaptation. When the three rules presented earlier are revisited
in correlation with the results obtained, we can state that following the rules of adaptation lead to
better student performance.

Keywords: learning environments, automatic assessment, course design, tool adaptation.

1. Introduction

According to multinational study by McCracken et al. (2001), programming is one the
most difficult skills to acquire. There are various educational tools developed to aid the
process, but comprehensive research about their pedagogical usage is still quite rare.
Any tool or system, no matter how proficient, can only produce real educational value if
adapted and utilized properly. In this article, we consider various factors that may have
an effect on the efficiency of the tool usage: tool introduction, student engagement, mo-
tivation and reward. Based on our earlier research, most of these factors have a consider-
able effect on learning results. Hence, it seems that in addition to considering which tool
to use, it’s equally important to consider how to use it.

In this article, we present three rules for adapting a learning environment, based on
our earlier experiments. Though named rules, they are actually ideas to consider when
designing course structure and educational technology adaptation. We also present a
comprehensive 6-year study, where a learning environment was used in two courses
throughout six years. In latter instances, new exercise types were introduced to try to
improve motivation. Some other changes in the tool and the usage were also introduced
throughout the years. The holistic idea has been to gradually improve the tool adapta-

E. Kaila et al.94

tion to find out how the learning effects and motivation can be maximized. The student
performance and grades are presented to find out whether the changes had effect in
particular years.

2. Literature Review

There are various learning environments developed over the years. Crescenzi and No-
centini (2007) present a two year experiment of adapting an algorithm visualization tool
into a programming course. The student feedback was mainly positive, but they don’t
report any changes in student performance. Laakso et al. (2005) adapted an algorithm
visualization tool called TRAKLA 2 into two courses at separate universities at Finland.
They found out that the pass rate increased significantly, and the student feedback was
mainly positive. Still, the same group (Laakso et al, 2009) found out later that using
the same tool in collaboration with another student has an even higher positive effect
on learning. Hence, anyone adapting a tool should be encouraged to find out further
whether the positive effects can be enforced.

Educational technology can of course be used in all kinds of courses. De Lange et al.
(2002) surveyed students’ opinions on adaptation of WebCT on accounting course, and
found out that their satisfaction with environment is tightly associated with lecture notes,
forum, on-line assessment and other tools in that environment. Paechter et al. (2010)
suggest that the key factor in affecting students’ motivation is making the learning ob-
jects transparent and providing possibility for self-assessment. Self-assessment should
hence have a major role in any exercise-based learning environment. Students’ attitudes
should have a considerable effect on adaptation: Saunders and Klemming (2003) report-
ed a two-year experiment where they integrated technology into traditional learning en-
vironment, and found out that though the students found the module harder to complete
than others, their performance was actually better. The cognitive load for adapting new
tools (see for example Chandler and Sweller, 1996) is an issue that should be considered
when designing technology enhanced curriculums.

Liaw et al. (2007) also surveyed the attitudes of students and educators towards
e-learning, and found out that the instructors’ attitudes are highly positive. The analysis
on students’ attitudes revealed, that an effective learning environment is influenced by
learner autonomy and teacher help, among other things. Hence, it is important to remem-
ber that educational technology is not something that can be added into curriculum and
then forgotten. Lockyer and Patterson (2008) in fact state, that “the lecturers may have
to play a considerable technical support role in helping students who are new to such
technologies”.

There are other studies that emphasize the instructors’ satisfaction in educational
technology. For example, Zuvic-Butorac et al. (2010) present a huge effort of imple-
menting an e-learning environment of more than 400 courses and 15,000 students in
Croatia. The teachers’ attitudes were surveyed and found out to be highly positive to-
wards the technology. Still, as O’Neill et al. (2004) state in their literature review about
eLearning implementation, if new technology is to be integrated into learning properly,
comprehensive training and support for instructors should be provided.

Utilizing an Exercise-based Learning Tool Effectively in ... 95

3. How to Adapt an Exercise Based Learning Environment

3.1. Selecting a Suitable Environment

The first step in adaptation is selecting a proper environment. There are various issues
that should be considered when selecting the tool. First – and probably the most impor-
tant issue – is that the selected tool should provide adequate benefits for both the teacher
and the student. As discussed earlier, the most obvious benefit for teacher is the time
saved in assessing exercises and assignments. However, to gain any real benefit in time
saving, the environment either needs to come with an existing set of usable exercises
or the time cost of preparing the exercises needs to be tolerable. As stated in Naps et al.
(2001), the lack of time is the most important reason for teachers not using visualization
tools; the same can probably be applied to any learning environment.

From the student’s point of view, the most obvious benefits come from automatic
assessment and immediate feedback. The ability to do the exercises any place and any
time, and still get supportive feedback, is something that is hardly possible with tradi-
tional methods. Improved learning results (Kaila et al., 2009A) are also a significant
benefit both for the student and the teacher. Evaluating the learning effects outside con-
trolled studies might be difficult as there are various factors influencing the learning
outcome. Still, as shown in Kaila et al. (2010), and furthermore in the later sections of
this paper, it is possible to significantly improve the results in CS course if a learning
environment is introduced and used properly.

There are also some technical issues that need to be considered when selecting an
environment. First, there is the initial cost of tool utilization and management. Though
most of the common learning environments can be adapted free-of-charge, there might
be hidden costs, such as upgrading server equipment and training the users. If the tool is
hosted externally, these costs can however be kept in minimum. Moreover, the technical
requirements for using the tool should be evaluated beforehand. Some exercises may
need plugins – such as Java or Flash – installed into browser before working properly.
In some physical environments installing additional components may be difficult or im-
possible.

3.2. Three Rules for Adaptation

In this section, we present three rules that should be taken into account when adapting
a learning environment into a course. The rules are based on our earlier results on the
topic, and are revisited when the results of this research are discussed.

3.2.1. Rule 1: Introduce and Integrate
The first rule is that the tool should be properly introduced and integrated into course. We
have previously studied the effects of cognitive load on students when using a visualiza-
tion tool (Laakso et al., 2008). In the study, the students who went through a compre-
hensive tutorial about using the tool statistically significantly outperformed the control
group. Hence, we suggest, that a separate introductory session should be arranged before
the tool is adapted into actual learning. The introduction should be made from two points

E. Kaila et al.96

of view: technical and pedagogical. The technical introduction contains issues such as
logging in and user interface. The pedagogical introduction should address issues such
as the order and schedule of the exercises taken, using additional materials to assist
learning, and the role of exercises as a part of comprehensive learning experience.

This leads as to the second part of this rule: we suggest that the learning environ-
ment should be properly integrated into the course. This means that the exercises in the
environment should substitute and supplement the existing materials, where relevant. In
practice, this may mean that the course needs to be partially redesigned. In Laakso et
al. (2014) we presented a programming course reform, where half of the lectures were
replaced with interactive tutorials that emphasized active and collaborative learning.
The results were remarkable, as the dropout rate decreased and the grades improved sta-
tistically significantly after the change. Moreover, the students seemed to find the active
approach more motivating and enjoyable.

3.2.2. Rule 2: Engage the Students
Naps et al. (2002) presented a hypothesis of engagement taxonomy, where they divided
the usage of visualization tool into passive (no-viewing and viewing) and active (re-
sponding, changing, modifying and presenting). They suggested that using a visualiza-
tion tool may only produce considerable learning if the tool is used in active levels. We
later confirmed the hypothesis in Kaila et al. (2009B). We suggest that the results gained
from using a visualization tool can be generalized to any types of exercises: if the stu-
dents are engaged into active learning process, the results are better. Moreover, collabo-
ration can be used to deepen the level of engagement. In Rajala et al. (2009) we found
out, that if exercises are done in collaboration with another student, the learning results
can be significantly improved. In Laakso et al. (2014) we presented a programming
course reform (see previous Section), where collaboration was brought to classroom
exercise sessions by introducing a collaborative mode in learning platform.

3.2.3. Rule 3: Make it Mandatory, but Reward the Students
As a third rule, we suggest that the usage of the tool should be made mandatory, but the
students should still be rewarded from doing the exercises in the environment. A typical
approach is to set minimum limits that need to be reached, and reward the students from
exceeding that limit. The reward can be divided into two categories: an internal reward is
something gained within the tool. Typically points are awarded when a student success-
fully completes an exercise or assignment. An external reward is something the students
gain outside the learning environment. For example, the students may be awarded with
grade improvement, bonus points for exam, or other forms of compensation from com-
pleting the exercises in the environment.

In Laakso et al. (2014) we present a case where students were required to complete at
least five out of seven tutorials during the programming course. However, no minimum
score limit was set. The students however completed a remarkable amount, 91% of all
points on average, though reaching this amount meant doing extra work outside tutorial
sessions. The students could pass the course without a final exam by completing at least
90% of all points awarded from all course components (including lectures, tutorials and
course assignments). Still, of all students that reached the 90% level, only a handful
skipped the final exam.

Utilizing an Exercise-based Learning Tool Effectively in ... 97

4. ViLLE

4.1. Background

ViLLE is a learning environment, developed at the University of Turku, Finland. It start-
ed out as a program visualization tool in 2004, and later expanded into comprehensive
collaborative exercise and course management environment. From the beginning, ViLLE
has been developed based on the research done. All major features have been tested with
controlled experiments, and only the useful ones have been included in the published
version. For example, the engagement taxonomy hypothesis (Naps et al., 2002) lead into
developing interactive questions into then-passive visualization tool, and the good expe-
riences on collaborative use (Rajala et al., 2009) encouraged us to develop collaborative
mode that enabled two or more students working at the tasks together.

Since the earlier version was used in the first course presented in this paper, both ver-
sions are introduced separately.

4.2. The Early Version of ViLLE – The Visual Learning Tool

The first version of ViLLE is a program visualization tool (see Fig. 1) that can be used
to display the execution of programs one row at a time. The execution is visualized with
various components: the current and previous rows are highlighted, the variable states
are displayed in their own area, and each subprogram with its local variables is displayed

Fig. 1. ViLLE version 1: the student view displaying visualization exercise.

E. Kaila et al.98

in a single frame in call stack and so on. Moreover, ViLLE displays a verbal explanation
about the currently executed line. The tool supports a variety of imperative program-
ming languages – including for example Java, Python and C++ – and automatically
translates the programs written in Java to other supported languages. Students can view
the execution in parallel view, which displays the executed program in two selectable
languages at the same time.

To enhance active learning, the example programs can be accompanied with multiple
choice questions or graphical array questions. The questions are inserted into desired
steps in program. When a question is encountered the program execution halts until
student gives an answer. ViLLE version 1 was deployed as a Java applet or Java applica-
tion, but it could be connected to a TRAKLA II server (Malmi et al. 2004). In this case
the server tracks student logins and all achieved points in different exercises. A complete
description of the tool can be found in Rajala et al. (2007) and in Kaila et al. (2009A).

4.3. ViLLE Now – a Collaborative Learning Environment

As of 2009, ViLLE was expanded into an exercise-based collaborative learning environ-
ment. New client-server architecture was designed, with a focus on teachers’ collabora-
tion and with a support for various exercise types. In ViLLE version 2 (see Fig. 2), the
teachers can use the built-in editors to create and edit virtual courses and assignments.
Moreover, all content set as public can be browsed, utilized and modified by all other
teachers registered in ViLLE. New exercise types for various topics were created. For
programming, coding exercises, code sorting exercises and simulation exercises were
designed among many others. Moreover, exercise types for mathematics, language

Fig. 2. Coding exercise in current version of ViLLE.

Utilizing an Exercise-based Learning Tool Effectively in ... 99

teaching and various other topics have been developed over the past few years. A com-
prehensive list about ViLLE exercise types can be found in Appendix A.

Since the new version introduced a dedicated ViLLE server, there was no more need
to utilize the TRAKLA II server. ViLLE automatically collects a vast amount of data on
student performance, including for example all achieved scores and time used to com-
plete the exercises. Additional exercise specific data is also collected: for example, in
visualization exercises ViLLE automatically saves all control usage data, including time
stamps, when the student does the exercise. All data gathered can be viewed in ViLLE’s
statistical view by course’s teachers.

The new version also supports collaborative learning where more than one student
can join the same session. Besides exercises, there are various other tasks that can be
used in courses: if accompanied with RFID readers, ViLLE can be used to easily record
course attendances and demonstrations. It also supports study journals and course as-
signments, to name a few. All exercises, whether they are automatically assessed or not,
can be used in electronic exams. It also has an editor for building tutorials that combine
exercises with other materials, and a research project management system for research
collaboration.

The complete description of the tool can be found in Laakso et al. (2014).

5. Methodology

5.1. Overview

The research was carried between years 2007 and 2012. The data was collected from two
separate courses: in the first course – observed in three instances between 2007 and 2009
– the version 1 of ViLLE was used, while in the second course – with three instances
between 2010 and 2012 – the newer version 2 was utilized. The usage of tool varied in
different instances of the course: the tool was adapted more thoroughly year by year. A
gradual increase in the usage was justified by excellent results and feedback gathered
from teachers and students.

5.2. Course Instances

The first course observed (from now on Course 1) was called an Introduction to Infor-
mation Technology. The goal of the course is to teach computer science fundamentals
as well as introductory programming concepts to CS majors at University of Turku. The
course is somewhat typical introductory course in computer science, containing basic
principles of algorithms and data structures, accompanied with programming fundamen-
tals in Python. Three instances of the course were researched: in 2007, ViLLE was intro-
duced to the course. The usage of the tool was not mandatory; instead, a link to exercises
was provided in course web page. In two consecutive instances, 2008 and 2009, ViLLE
was made a mandatory part of the course: if the students did not complete at least 40% of
all ViLLE exercises, they failed the course. All course instances were taught by the same
teacher, and no other significant chances between instances were made.

E. Kaila et al.100

The second course observed (from now on Course 2) is called an Introduction to Pro-
gramming. It is a mandatory course in Bioinformatics program at University of Turku,
and aims at teaching basic programming concepts in Python. The course hence contains
essential topics in imperative programming, such as variables, loops and functions, as
well as some Python specific topics, but does not include object oriented programming.
Three instances of Course 2 were also observed: at 2010 ViLLE was included – as man-
datory component, but with visualization exercises only. In two latter instances various
other exercise types were introduced as well. In the latest instance (2012) ViLLE was
also used to keep track on lecture attendances and demonstration scores, with bonus
awarded for good performance on these components. Moreover, in the last instance,
ViLLE was also used as a platform for course final exam. As was the case with Course
1, all instances were taught by the same teacher, and no other substantial chances were
made in course through these instances.

The usage of ViLLE throughout the course instances is displayed at Table 1.

5.3. Exercises

In Course 1, ViLLE was first introduced as an optional supplement. At two later instanc-
es the usage of the tool was made mandatory. A total of 60 exercises were divided into
seven categories: variables and conditions, strings, loops, sub programs, arrays, recur-
sion and sorting algorithms. Each exercise consisted of visualized program code and 5
to 10 questions. Each exercise was scored in scale of 0 to 10 based on the correctness of
answers. All exercise rounds were open from the beginning of the course, and references
to suitable exercises were made on other course materials.

In Course 2, ViLLE was mandatory in all three instances. At the first instance only
visualization exercises were used – the exercise collection was roughly equivalent to
the collection used in Course 1 with minor modifications. At the two latter instances
other exercise types were introduced. The course was hence divided into eight exercise
rounds, based on the topics in course: the first round was an introduction to ViLLE, and
the latter rounds about variables and data types, strings, selection, loops, functions, lists
and tuples, followed with a round of additional exercises. Each round consisted of five
different types of exercises:

Table 1
Usage of ViLLE at course instances

Year Course ViLLE exercises Mandatory

2007 Course 1 Visualization No
2008 Course 1 Visualization Yes
2009 Course 1 Visualization Yes
2010 Course 2 Visualization Yes
2011 Course 2 Various Yes
2012 Course 2 Various, including other performance

and course exam
Yes

Utilizing an Exercise-based Learning Tool Effectively in ... 101

Visualization exercises ● : these were similar to exercises used in Course 1 and in
the first instance of Course 2. A handful of existing visualization exercises were
selected, of which some were slightly modified to suit the topics better.
Code sorting exercises ● : exercises where code lines were shuffled into random
order, and the student needed to sort them into correct order according to given
task.
Puzzle exercises ● : an exercise, where the student needs to combine for example
variable types and value ranges or string operations and results.
Coding exercises ● : an exercise where the student needs to write a program – or a
missing part of the program – in Python to fulfil given task. The program written
in ViLLE can be instantly translated and executed.
Quizzes ● : ten multiple choice and open questions about the topic at hand.

In Course 2 the exercises were integrated into course curriculum more tightly. Each
round of exercises was opened after the lecture about corresponding topic was given.
The exercises were designed to cover all aspects of the topic at hand as thoroughly as
possible. After opening, all rounds were open until the final exam.

5.4. Method

Since the research contains two different courses, only instances of the same course are
compared. From each course instance, final grades were obtained. The experiment is a
between-subject design with final exam results a dependent variable. ViLLE usage was
the only significant between-subject factor (independent variable), since no other signifi-
cant changes in courses during the observed period were made: the instances were taught
by the same teacher, and there were no substantial changes in other course components
or materials. Since Course 2 used the most recent version of ViLLE, we also had access
to comprehensive exercise data on those instances; hence, statistics about ViLLE usage
in Course 2 are also discussed.

6. Results

6.1. Course 1

All instances of Course 1 were graded on scale of one to five, five being the best. If the
student did not pass the course, no grade was given. The final grade distribution in all
course instances is displayed in Table 2 and visualized in Fig. 3.

As seen on Table 2, the pass rate and the average grade improved at latter instances,
when the exercises were made mandatory. The grade distribution is visualized in Fig. 3.

As seen on Fig. 3, the amount of lesser grades (1, 2 and 3) is clearly smaller at the lat-
ter instances of the course, compared to first year when ViLLE exercises where optional.
To confirm this, a chi test between course grade distributions was used to calculate the
independence between all instances, using the formula

E. Kaila et al.102

where C1 and C2 are the course instances compared. The results are displayed at Table 3.
As seen on Table 3, the grade distribution at first instance is independent, while latter

instances seem to follow the same pattern more tightly.

Table 2
Grade distribution in Course 1 instances

2007 (N=131) 2008 (N=134) 2009 (N=181)

5 34 40 46
4 17 19 27
3 9 20 33
2 21 16 25
1 25 15 23
Fail 25 24 27
Total passed 106 110 154
% of all passed 80.92 % 82.09 % 85.08 %
Grade mean 3.13 3.48 3.31

Fig. 3. Grade distribution at Course 1 visualized.

Table 3
Independence between grade distributions of Course 1 instances

Courses 2007 and 2008 2007 and 2009 2008 and 2009

0.002 <0.0001 0.022

Utilizing an Exercise-based Learning Tool Effectively in ... 103

6.2. Course 2

It is to be noted, that the number of students in all instances of Course 2 was rather small.
Still, certain trends can be observed. Course 2 was also graded in standard scale of 1 to 5.
The final grade distribution of all instances is displayed in Table 4.

The percent of students who passed the course has been extremely high in all instanc-
es. However, it seems that there is a trend to be seen on the average grades: the average is
higher on the latter instances of the course, where varied types of ViLLE exercises were
used. The grade distribution is visualized at Figure 4.

Since all of the instances did use ViLLE exercises, and in all instances the usage was
required, course grade averages were also compared to earlier instances (<2010) of the
course (see Table 5). However, since the teacher was different, and there were other mi-
nor changes in the course at 2010 as well, the data should be observed with caution.

Points gathered from ViLLE exercises in all instances of Course 2 are displayed at
Table 6.

Table 4
Grade distribution in instances of Course 2

2010 (N=23) 2011 (N=16) 2012 (N=25)

5 10 10 16
4 3 1 2
3 4 1 3
2 2 1 1
1 3 1 2
Fail 1 2 1
% of all passed 95.65 % 87.50 % 96 %
Grade mean 3.52 3.75 4.04

Fig. 4. Grade distribution at Course 2 visualized.

E. Kaila et al.104

Though the differences are rather small, it seems that the students completed more
exercises when visualization was accompanied with other exercise types starting from
2011.

7. Discussion

Based on the results presented, it seems that ViLLE exercises have a positive effect on
learning. The average grade in both courses increased – though in Course 2 there are
no significant changes (though this might be because of the low N). The pass rate in
Course 1 also improved. In this section, the results for both courses are first discussed
separately. Then the rules for adaption presented earlier are revisited in context of the
results. Finally, as there are issues when measuring and comparing the performance at
whole course level, some critical points of view are presented.

7.1. Performance at Course 1

Three instances of Course 1 were observed: at the first instance (2007) a link to ViLLE
applet was given to students at course web page, but no points were collected and hence
no minimum score limits set. In consecutive instances (2008 and 2009) ViLLE was made
mandatory at course, as the minimum of 40 % of all points in ViLLE needed to be col-
lected to pass the course. Based on the results, it seems that this had an effect on learn-
ing results. The mean average increased, and the amount of lower grades (1, 2 and 3)
decreased. Also, the passing percent increased from 80.92 % to 82.09 % and 85.08 %,
respectively.

Table 5
Course 2 instances’ mean grades throughout 2006…2012

Year Grade mean

2006…2009 (N=21) 3.14
2010 (N=23) 3.52
2011 (N=16) 3.75
2012 (N=25) 4.04

Table 6
Points gathered in ViLLE in instances of Course 2

Year Total maximum Mean score Std. dev. % of maximum

2010 700 552.36 99.57 78.91 %
2011 660 567.06 128.06 85.92 %
2012 660 588.73 83.39 89.20 %

Utilizing an Exercise-based Learning Tool Effectively in ... 105

It seems, that the visualization exercises combined with active learning in the form
of questions has a positive effect on results. We have previously shown (see e.g. Kaila
et al. 2009A, Laakso 2010), that visualization seems to have a highly positive effect on
learning. It seems that the results gained from controlled two hour experiments can be
generalized to learning at whole course. This also seems to confirm our earlier results on
high school level programming course (Kaila et al., 2010).

7.2. Performance at Course 2

There were also three instances observed in Course 2. In all of them ViLLE was made a
mandatory part of the course, with minimum amount of 50 % of all points to be gathered
to pass the course. The difference between instances was that at two latter instances
(2011 and 2012) new exercise types were presented: only a handful of earlier visualiza-
tion exercises were kept and four new exercise types were presented.

The same trend seems to exist at Course 2 results as well: when compared to earlier
instances with no ViLLE (2009 and earlier) of the course, the grade mean seems to be
higher when ViLLE exercises were used. Moreover, it seems that at the latter instances
(2011 and 2012) of observed courses the distribution of grades seemed to focus more
on the higher level of grades. No statistical differences could be found between groups,
though one possible reason for this might be the low N. The trend in number of exer-
cises completed at latter instances is still interesting: the students seemed to do more of
the exercises when new types were introduced among the visualization. It is likely, that
more heterogeneous set makes doing the exercises more motivating.

7.3. The Rules of Adaptation Revisited

The first rule we presented about adapting learning technology was to introduce and
integrate. The results from Course 1 seem to underline this: when ViLLE was presented
as an external tool with no connection to course otherwise, it did not seem to have a
strong effect on learning. When the tool was made a mandatory part of the course, with
connections drawn to other material, the grade and pass rate got higher. In Course 2 the
introduction and integration was even tighter: there was a special introductory round
in ViLLE where the exercise types were presented. Moreover, the exercise rounds in
ViLLE were tightly integrated into course curriculum. Each round was opened after the
lecture about the topic was given.

The second rule was to engage the students. The engagement taxonomy presented
by Naps et al. (2002) states, that higher the level of engagement, the better the learn-
ing results. In latter instances of Course 2, new exercise types were presented. While
visualization exercises lie in the engagement level of responding, most of the new types
are on the higher levels of engagement. Based on the results, it seems that the students
were more motivated in doing the exercises after the change, and it also seems, that the
learning results were better. Though, as mentioned before, no statistically significant dif-
ferences were found due to low number of students in course.

E. Kaila et al.106

The final rule was to make the tool mandatory, but reward the students on using it.
This rule was adapted on two final instances of Course 1 and in all instances of Course
2. In Course 1 the effect can be clearly seen: the results got better as soon as the tool was
made mandatory. It is possible, that not all students find the visualization exercises mo-
tivating enough to complete them on their own. It is also likely, that at least the weaker
students might not have enough patience to go through the more difficult exercises if
they are not required. In Course 2 bonus points for final exam were rewarded if enough
ViLLE points were gathered. This also seemed to have a motivating effect, as seen on
scores obtained in ViLLE exercises: the 50 % minimum limit was clearly exceeded in all
instances of the course.

7.4. Issues in Course Long Performance Measurement

There are some known issues when measuring the learning effects throughout the course.
First, there are usually several factors that affect the learning results. In both courses,
other variables were kept as steady as possible: the same teacher taught all instances of
both courses and no significant changes in materials or course curriculum were made
between instances. Still, isolating all factors that affect the learning is practically impos-
sible. Also, measuring the actual learning outcome is difficult. The best we can do on
course level is to compare the total grades obtained from course. As long as the com-
ponents affecting the grade – and the components used to measure the grade – are kept
somewhat similar, the mean grade should be reliable enough, – especially if the number
of students in the course is high enough.

References

Chandler, P., Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive
Psychology, 10, 151–170.

Crescenzi, P. and Nocentini, C. (2007). Fully integrating algorithm visualization into a cs2 course: a two-year
experience. In: Proc. of the 12th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education : Dundee, Scotland, June 25–27, 2007. ITiCSE ‘07, ACM, New York, NY, 296–300.

DeLange, P., Suwardy, T., Mavondo, F. (2001). Integrating a virtual learning environment into an introductory
accounting course: determinants of student motivation. Accounting Education, 12(1), 1–14.

Kaila, E., Rajala, T., Laakso, M.-J., Salakoski, T. (2009A). Effects, experiences and feedback from studies of
a program visualization tool. Informatics in Education, 8(1), 17–34.

Kaila, E., Laakso, M.-J., Rajala, T., Salakoski, T. (2009B). Evaluation of learner engagement in program visu-Evaluation of learner engagement in program visu-
alization. In: 12th IASTED International Conference on Computers and Advanced Technology in Educa-
tion (CATE 2009) : November 22–24, 2009, St. Thomas, US Virgin Islands.

Kaila, E., Rajala, T., Laakso, M.-J., Salakoski, T. (2010). Long-term effects of program visualization. In: 12th
Australasian Computing Education Conference (ACE 2010) : January 18–22, 2010, Brisbane, Australia.

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A., Malmi, L. (2005). Multi-perspective study
of novice learners adopting the visual algorithm simulation exercise system TRAKLA2. Informatics in
Education, 4(1), 49–68.

Laakso, M.-J., Rajala, T., Kaila, E. and Salakoski, T. (2008). The impact of prior experience in using a visual-The impact of prior experience in using a visual-
ization tool on learning to program. In: Proceedings of CELDA 2008. Freiburg, Germany, 129–136

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A. and Malmi, L. (2005). Multi-perspective
study of novice learners adopting the visual algorithm simulation exercise system TRAKLA2. Informatics
in Education, 4(1), 49–68.

Utilizing an Exercise-based Learning Tool Effectively in ... 107

Laakso, M.-J. (2010). Promoting Programming Learning. Engagement, Automatic Assessment with Immediate
Feedback in Visualizations. TUCS Dissertations no 131.

Laakso M.-J., Kaila E. and Rajala T. (2014). Ville – collaborative learning environment. Sent to Computers
and Education.

Liaw, S.-S., Huang, H..M. and Chen, G.-D. (2007). Surveying instructor and learner attitudes toward e-learn-
ing environments. Computers & Education, 49(4), 1066–1080.

Lockyer, L., Patterson, J. (2008). Integrating social networking technologies in education: a case study of a
formal learning environment. In: Proceedings of 8th IEEE international conference on advanced learning
technologies. Santander, Spain (2008), 529–533.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., Silvasti, P. (2004). Visual algorithm simula-Visual algorithm simula-
tion exercise system with automatic assessment : TRAKLA2. Informatics in Education, 3(2), 267–288

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L.,
McNally, M., Rodger, S., Velázquez-Iturbide, J. Á. (2002). Exploring the role of visualization and engage-
ment in computer science education. In: Working Group Reports from ITiCSE on Innovation and Technol-
ogy in Computer Science Education, 35(2), 131–152.

O’Neill, K., Singh, G., O’Donoghue, J. (2004). Implementing e-learning programmes for higher education : a
review of the literature. Journal of Information Technology Education, 3, 312–23.

Paechter, M., Maier, B, Macher, D. (2010). Students expectations of, and experiences in e-learning : their rela-
tion to learning achievements and course satisfaction. Computers & Education, 54, 222–229.

Rajala, T., Kaila, E., Laakso, M.-J., Salakoski, T. (2009). Effects of collaboration in program visualization. In:
Technology Enhanced Learning Conference 2009 : TELearn 2009, October 6 to 8, 2009, Academia Sinica,
Taipei, Taiwan.

Rajala, T., Laakso, M.-J., Kaila, E., Salakoski, T. (2007). VILLE – a language-independent program visualiza-VILLE – a language-independent program visualiza-
tion tool. In: Lister, R. and Simon (Eds.) Koli Calling 2007 – Proceedings of the Seventh Baltic Sea Confer-
ence on Computing Education Research, Koli National Park, Finland, November 15–18, 2007. (Confer-
ences in Research and Practice in Information Technology, 88). Koli National Park, Finland, ACS.

Saunders, G., Kelmming, F. (2003). Integrating technology into a traditional learning environment. Active
Learning in Higher Education, 4, 74–86.

Zuvic-Butorac, M., Nebic, Z., Nemcanin, D. (2011). Establishing an institutional framework for an e-iearning
implementation –experiences from the University of Rijeka, Croatia. Journal of Information Technology
Education, 10, 44–56.

Appendix A. ViLLE Exercise Types

Exercises for Computer Science

Visualization exercise: Combines the graphical, step-by-step execution of the example
program with three types of questions: multiple choice questions, open questions and
array questions.

Code sorting exercise: Commonly known as Parson’s puzzle: the students need to ar-
range the shuffled program code lines into correct order so that given task is fulfiled.

Coding exercise: The task is to write a program – or a missing part of the program ac-
cording to given specifications. ViLLE supports a variety of programming languages,
including Java, C++, C# and Python.

Robot exercise: The goal of the exercise is to move number of boxes into specified tar-
get locations. The boxes are moved by writing an algorithm that controls a robot crane.
Idea is to teach loops and methods in Java.

E. Kaila et al.108

Clouds & Boxes: Reverse-visualization type exercise: the students are supposed to sim-
ulate the state of program after each step executed.

Other CS exercises: In addition, there are exercise types for testing binary calculations
and conversions between hexadecimal, decimal and binary.

Exercises for Mathematics

Math exercises for elementary school level: There are several exercise types meant
for teaching elementary level mathematics. In these exercises, the students for example
need to find out the missing number, drag and drop numbers into number line, do long
division, find out values in bar charts, calculate with fractions and so on.

Math exercises for higher levels: There are also exercise types meant for students in
higher levels: for example, solving quadratic and first degree equations, doing differen-
tial coefficient calculations and writing inequality equations and sign charts.

Other Exercises

Quiz: The most basic exercise type: contains multiple choice and open questions with
attachable materials. Quizzes can be utilized in any level and topic.

Survey: Can be used for course opening and closing surveys. Moreover, ViLLE surveys
are typically utilized to implement assignments that are graded by teacher, for example
essays.

Sorting: ViLLE contains exercise types for image puzzles, and for general sorting and
pair matching of textual items.

Language exercises: There are several exercise types meant specifically for language
teaching (such as fill-in, dialog, word ordering, punctuation and case, vocabulary test,
compound exercise and so on). However, most of these can be utilized under other top-
ics as well.

Image tagging: Exercise where the students need to identify areas in given or uploaded
image.

E. Kaila, M.Sc., is working on his PhD about utilizing learning en-
vironments and assignments effectively. He has 25 scientific publica-
tions in peer-reviewed journals and conference proceedings. His re-
search interests include program visualization, learning environments,
automatic assessment and course design utilizing new technologies.
He has been working on development of ViLLE from the beginning
of the project.

Utilizing an Exercise-based Learning Tool Effectively in ... 109

T. Rajala, M. Sci., is a university teacher in Software Engineering at
University of Turku, Finland. In addition to teaching, his work and
research mainly focuses on developing educational software tools and
studying their effectiveness in learning programming and algorithmic
problem solving. Rajala finished his master’s degree at University of
Turku in 2007. He has 25 scientific publications in peer-reviewed jour-
nals and conference proceedings. He has also been working on ViLLE
project since the beginning.

M.-J. Laakso, PhD(tech), is a lecturer and adjunct professor at De-
partment of Information Technology at University of Turku. He has
more than 35 scientific publications in internationals journals and
conference proceedings. His main research interests are educational
technologies, learning environments, automated assessment, visual-
ization, immediate feedback, eAssessment and effect of collaboration
in aforementioned topic. He is heading ViLLE team research group at
University of Turku studying all these aspects and developing ViLLE
– the collaborative education platform.

R. Lindén, M.Sc., is working on his PhD about automated student
profiling and counselling. His research interests involve data mining,
systems analysis and graph theory. He has three publications in peer-
reviewed journals and conference proceedings. Lindén has been work-
ing on ViLLE project since the beginning of 2012.

E. Kurvinen, M.A. (Education), is finishing his M.Sc. in computer
science, and starting his PhD about recognizing learning disabilities
in mathematics. His research interests mainly concern usage of educa-
tional technology in mathematics education in all levels. Kurvinen has
been working on ViLLE project since the beginning of 2012.

T. Salakoski, PhD, is a professor of Computer Science at University of
Turku. He is the Dean of Science and Technology Education at the uni-
versity, and the Head of the Department of Information Technology.
He has more than 200 scientific publications in international journals
and conference proceedings, and has supervised more than 10 PhDs
and numerous MScs. He serves in scientific editorial boards and has
organized and chaired international conferences. He is heading a large
research group studying machine intelligence methods and interdisci-
plinary applications, especially information retrieval and natural lan-
guage processing in the biomedical and health care domain as well as
technologies related to human learning, language, and speech.

Paper	4	
Kaila, E., Rajala, T., Laakso, M.J., Lindén, R.,

Kurvinen, E., Karavirta, V. and Salakoski, T. 2015.

Comparing Student Performance between Traditional
and Technologically Enhanced Programming Course.

In Proceedings of the Seventeenth Australasian Computing Education
Conference (ACE 2015). CRPIT, 160, 147 – 154. Australian Computing

Society, Inc.

Reprinted with permission from respective publisher and authors.

Comparing student performance between traditional and
technologically enhanced programming course

Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso,
Rolf Lindén, Einari Kurvinen, Ville Karavirta, Tapio Salakoski

Department of Information Technology &
University of Turku Graduation School (UTUGS)

University of Turku
20014 Turun yliopisto, Finland

{ertaka, temira, milaak, rolind, emarkur, visaka, sala} @utu.fi

Abstract
Educational technology can potentially be used to engage
students deeper into learning process, and hence improve
the motivation and the learning results. In this paper, we
present a study, where an introductory programming
course was renewed by using a collaborative learning tool
called ViLLE holistically throughout the course. The
redesign was done in three main areas: first, half of the
lectures were replaced with tutorial sessions, where
students completed automatically assessed tasks in
collaboration with other students. Second, remaining
lectures were accompanied with a group of exercises
designed to emphasize the topics introduced. We also
collected feedback via short survey after each lecture to
find out which topics or issues needed to be addressed
again later. Third, the exam was changed into electronic
version with automatically assessed programming tasks
and questions. When the results of the redesigned course
were compared to earlier, traditional instance of the
course, we found out, that the pass rates increased
significantly, while the average grade remained the same.
The results are even more remarkable since the exam in
the technologically enhanced course was more
complicated than in the earlier instance. Hence, we can
conclude that engaging students into active and
collaborative learning process has highly positive effect
on pass rates, although individual factors cannot be
isolated with this many changes in the course design.
Keywords: Programming courses, Introductory
programming, Educational technology, Learning
environments, Technology adaptation, Student
performance1

1 Introduction
The educators and researchers in computer science are
constantly trying to come up with better means for
teaching programming. There have been several studies
conducted (see e.g. McCracken et al., 2001, Lahtinen et
al., 2005) about the state of programming learning, and in

1 Copyright (c) 2015, Australian Computer Society, Inc.
This paper appeared at the Seventeenth Australasian
Computing Education Conference (ACE2015), Sydney,
Australia. Conferences in Research and Practice in
Information Technology, Vol. 160. Reproduction for
academic, not-for profit purposes permitted provided this
text is included.

general they seem to come up with worrisome results: the
students seem to lack motivation, and the high dropout
rates and poor results seem to indicate that there is a lot to
do to improve the teaching. Still, limited teacher
resources as well as the limited time reserved in
curriculum make the course improvement challenging.

In education, active learning is generally considered as
a valid method for engaging students and for improving
motivation and results (Freeman et al., 2014). According
to constructivist learning theories (see e.g. Papert, 1980,
Moons et al., 2013), the knowledge can be constructed by
actively participating in the learning process. In
programming education this generally means that writing
programs and taking other suitable assignments is highly
useful in programming educatioin. However, the
teachers’ workload for assessing several programming
assignment in crowded courses can be too heavy.

Educational technology can be used to move the
workload away from the course personnel. Automatic
assessment and immediate feedback (see e.g. Laakso,
2010) can be effectively used to utilize actively engaging
tasks, such as programming assignments. Instead of
providing feedback from a few programming assignments
in a traditional course, it is possible to offer dozens of
automatically assessed tasks by utilizing a novel
approach. This means, that the students can be engaged
into active learning effectively throughout the course,
which presumably means better learning results.

In this paper, we present a redesign of a typical
programming course. The change took place between
instances of 2011 and 2012. In the redesign the focus was
on changing the focus from passive listening into active
participation by utilizing educational technology and
collaboration. The factors concerning the redesign are
discussed as well as the methodology used. Then the
performance of two instances of the courses, one right
before the redesign and one after, is discussed in the
scope of pass rates and course averages.

2 Related Work
As stated in a multinational, multi-institutional study by
McCracken et al. (2001), novice programmers lack both
motivation and sufficient skills for basic programming
after introductory courses. According to Tan et al (2009),
the lack of understanding the basic concepts reduces
novice programmers’ interests for further exploration and
self-experimentation in programming. They also state,

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

147

that novices prefer examples and “drill-practice method”,
while conventional lectures lead to decreased interest in
subject. Lahtinen et al. (2005) surveyed more than 500
students about their difficulties in learning, and found out,
that the novice programmers found example programs as
most helpful material, and working on exercises most
helpful study method for learning to program.

Caspersen and Bennedsen (2007) present a proposition
of designing an introductory programming course based
on cognitive science and educational psychology. They
argue that the cognitive load theory and cognitive skill
acquisition play an important part in emphasizing a
pattern-based approach to learning. The authors present
guidelines in instructional design that they have
successfully utilized to redesign the course. Hall et al.
(2013) utilized tutorial based learning in the CS course
for three weeks, and concluded, that both, tutorials and
lectures, should be combined in the course.

Crescenzi and Nocentini (2007) present a two year
experiment of utilizing educational technology – namely
an algorithm visualization tool – in a programming
course. The feedback from students was mainly positive.
Still, as reported by Saunders & Kelmming (2003), when
technology is integrated into programming course, the
students may actually find the module harder, though the
performance is improved. According to Rajaravivarma
(2005), a games-based approach can be used to
emphasize problem solving and logical thinking. In
general, engaging students into active learning seems to
have a positive effect on motivation and performance.

Utilizing educational technology in a programming
course might solve several problems concerning student
performance and motivation. There are various learning
environments that can be utilized in courses. First, there
are the course management systems, such as Moodle (see
e.g. Cole et al. 2008) or Blackboard (Bradford et al.
2007). Still, these are traditionally used to manage
courses and materials, and in lesser extent to engage
students with exercises. Typical examples of exercise-
based tools are various visualization tools developed over
the recent years. With these tools the users can illustrate
the execution of algorithms (see e.g.Grissom et al. 2003,
Hundhausen et al. 2007, Malmi et al. 2004) or programs
(see e.g. Kannusmäki et al. 2004, Kölling et al. 2003,
Oechsle et al. 2002). The visualization is often
accompanied with tasks to perform as well.

3 ViLLE
ViLLE is a collaborative learning environment, with
focus on exercise-based learning. It supports a variety of
exercise types designed for computer science,
mathematics, languages and for other topics. All
exercises and courses created in ViLLE can be shared
with all other teachers registered to system. For CS
education, ViLLE supports a variety of programming
languages, including for example Java, Python, C++ and
C#.

ViLLE supports collaboration in two ways: first, it
enables students to work together with one computer,
solving the exercises in collaboration. This method

Figure 1: Robot exercise in ViLLE

CRPIT Volume 160 - Computing Education 2015

148

utilizes the best practices of pair programming (see e.g.
McDowell et al., 2002, Beck & Andres, 2004.), but can
be utilized with other types of exercises as well. Second,
all resources (courses, exercises and tutorials) created in
ViLLE can be shared with other teachers easily. This
means, that it can be used for distributing best practices
with other educators.

The exercise types found most suitable for the course
redesign are

- Coding exercise: an exercise where a student is
supposed to write a program or a missing part of
the program code in given programming
language. The solution is tested against model
solution provided by the teacher, and the test
cases can be randomly parameterized.

- Robot exercise: a special version of coding
exercise, where a student needs to write a
program that controls a robot crane. The goal is
to move a number of boxes into their target
positions (Figure 1).

- Visualization exercise: an exercise where the
program code is executed one step at a time, and
the execution is visualized with various
components – including variable values, object
states and call stack. The execution is
accompanied with multiple choice questions,
open questions and graphical array questions.

- Simulation exercise: an exercise where student
needs to simulate the state of the program one
step at a time by creating variables and objects,
changing their values and references and
handling the methods in the call stack.

- Code sorting: also known as Parson’s puzzles
(Parsons et al. 2006). A student needs to
organize the shuffled program code lines into the
correct order according to given task. The
solution can be visualized after the sorting, if
there are no errors in the program.

- General sorting: an exercise where a student
needs to sort or connect objects as required. For
example, connecting result values with
expressions, or value ranges with object types.

- Quiz: contains multiple choice questions and
open questions.

We have previously researched the usage of ViLLE in
various studies with promising results. As shown in Kaila
et al. (2009), ViLLE can be used effectively to enhance
learning in various different setups and with different
methods. The effect achieved on controlled setups was
transferred into course-long usage in Kaila et al. (2010)
and Kaila et al. (2014), where we demonstrated, that
student performance can be significantly improved if
ViLLE is integrated holistically into the course.

The complete description of the environment as well
as more use cases can be found in the ViLLE system
paper (Laakso et al, 2014), and at ViLLE home page
(http://ville.cs.utu.fi).

4 Course redesign
Introduction to algorithms and programming is a
compulsory programming course for first year CS majors

at University of Turku. The course contains fundamental
programming concepts – such as variables, conditional
statements, repetition, methods and arrays – in Java. In
addition to CS majors, several other students from the
faculty take the course as mandatory part of their minor
studies. For most students, the course is the first actual
programming course, though some very basic concepts of
programming in Python are covered in an introductory
course before that. Course lasts for eight weeks, and 5
ECTS are awarded for passing it. The course
methodology was thoroughly redesigned between
instances of 2011 and 2012 (from now on C2011 and
C2012). In this section, the differences between instances
are presented.

4.1 Facilitating active learning with tutorials
The first, and probably the most important, step was to

introduce a concept of more active learning by using
tutorials. In the 2011 instance of the course, there were
two 2-hour lectures each week. In C2012, one of the
lectures each week was replaced with a tutorial-based
active learning session. The tutorials were created in
ViLLE, and consisted of different types of assignments
combined with related learning material such as text,
tables and images. Hence, each week consisted of a two-
hour lecture about the topic in hand and a two-hour
tutorial session, where the topics presented at the lecture
were rehearsed. In total, seven tutorials were prepared:

1. Course introduction, advancing from Python to
Java

2. Variables, Strings and conditional statements
3. Loops
4. Methods
5. Arrays
6. Using existing classes and modules
7. Summary about all topics

The tutorial sessions were organized in a lecture hall,
where students brought their own computers. The
tutorials were taken in collaborative mode, where two
students worked on the same computer. Both students
were awarded points from each solution. The controller –
i.e. the student using mouse and keyboard – was switched
every fifteen minutes to ensure active participation of
both students. Active discussion was encouraged, and at
least four members of course personnel were present in
each session to assist the students with their possible
problems.

Each tutorial consisted of nine to thirteen ViLLE
assignments accompanied with learning material, adapted
from the lecture slides. Roughly half of the assignments
were coding exercises, while the other part consisted of
visualization, code sorting, simulation and quizzes. An
example of tutorial view is displayed in Figure 2.

Each tutorial was open for one week, but the
collaborative mode was disabled after the two-hour
session. Minimum of 50 % of maximum points as well as
participation in at least five of the seven tutorial sessions
were made mandatory to pass the course.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

149

4.2 Underlining the importance of lectures with
ViLLE exercises and surveys

Around three to four simple ViLLE exercises were
prepared to accompany each week’s lecture. The
exercises consisted of a quiz about the topics covered in
lecture, a simple simulation or coding exercise, and a
survey. The same three questions were included in each
survey:

1. What did you learn from this week’s lecture?
2. What things remain unclear after this week’s
lecture?
3. How would you develop this week’s lecture?

The data was analyzed each week before the next lecture,
and the results were facilitated instantly: for example, the
issues listed as unclear were summarized at the beginning
of the next lecture. Also, several small technical problems
were fixed based on student feedback.

Each of the exercises were scored with maximum of 5
to 10 points (surveys giving automatically full five points
if answered), and the students were required to gain at
least 50 % of total maximum points to participate in the
final exam. In addition, ViLLE was used to automatically
record the student attendances in lectures by using RFID
readers in lecture halls and RFID tags given to each
student. Though the participation in lectures was not
mandatory, some bonus points were awarded if a student
participated in all of them.

4.3 Redefining testing with electronic exam
In C2011 the final exam of the course was answered
traditionally with pen and paper. Typically the exam
consisted of three questions: two programming tasks
(done in paper), and a theoretical question, such as an
essay. In C2012 the exam was transformed into electronic
form by using ViLLE. There are several benefits in using
the electronic exam in a programming course:

1. An electronic exam can be automatically
assessed, meaning less work for the teacher and
quicker access to results for the students.
2. Programming exercises can be done by
actually typing, testing and debugging the
programs instead of writing them on paper.
3. More heterogeneous exercise types can be
used, including for example simulation,
visualization and code sorting exercises.
4. Even if manually assessed questions are to be
used, they are easier to type and edit with a
computer; also, the answers are easier to read
and assess compared to those answered in pen
and paper.

To make sure that the new instance of the course was
comparable – or at least not easier – than the old one, the
new electronic version of the exam was created as more
challenging. A typical version of the exam in C2012

Figure 2: Tutorial view in ViLLE

CRPIT Volume 160 - Computing Education 2015

150

consists of seven programming tasks – one being a robot
task, a quiz measuring theoretical knowledge, and a
sorting or simulation exercise. The comparison of exams
is displayed in Table 1.

C2011: Exam with pen and
paper

C2012: Electronic exam

Manually assessed by teacher
and course assistant(s)

Fully automatically assessed

Two programming tasks Seven programming tasks
One theoretical question One quiz of 10 MCQ / open

questions and one code
sorting or simulation exercise

Duration: four hours Duration: three hours

Table 1: Comparison of exams in C2011 and C2012

The exams in C2012 were evaluated in the same scale
than in C2011: minimum of 50 % of points was required
to pass – i.e. to get grade 1. After that the subsequent
grades of 2…5 were awarded in linear scale. The exam
instances were evaluated by four individual researchers
and/or teachers not affiliated with this paper, and they all
agreed that the new instance is at least as difficult as the
earlier instance, and very likely even more challenging.

The electronic exam was organized in one lecture hall
and two computer labs at the same time. In the lecture
hall the students used their own laptops, while the
department computers were utilized in the computer labs.
All internet traffic went through a firewall, and the only
sites allowed during the exam were ViLLE and Java API.
There were practically no technical difficulties during the
exam, probably because the students had been
familiarized with the setup during the tutorial sessions.

4.4 Other components in the course
Other changes in the course were somewhat minor. For
example, C2012 contained the same number of
demonstrations than C2011. In demonstrations, the
students present their solutions to the programming tasks
they are given a week before. In both instances at least 50
% of demonstration score needed to be achieved to attend
the final exam. Only technical change in latter instance
was that ViLLE was used to record the demonstration
points by using aforementioned RFID readers and tags.

Also, the lectures were given in the same traditional
form in both instances. However, as there was only half
the number of lectures in C2012 – as half of the lecture
times were used for tutorials – and the same topics
needed to be covered, the lecture content needed to be
compacted. Lecture content and slides were modified
slightly after C2012 for the following years, based on the
student feedback collected via surveys.

5 Course performance
Course performance was studied in one instance (C2011)
of the traditional course as well as one instance (C2012)
of the redesigned course. The instances are displayed in
Table 2.

C2011 C2012

Course time October to
December, 2011

October to
December, 2012

Methodology Traditional Renewed
N 210 193

Table 2: Course instance properties

As seen on the table, the number of students starting the
course was similar in both instances. However, as is
typical for any programming course, not all of the
students made it to the exam. The requirements to qualify
for the exam are listed in Table 3.

C2011 C2012
50 % of demonstration points 50 % of demonstration points

50 % of tutorial points
50 % of ViLLE exercise points
Participation in minimum of 5
tutorial sessions

Table 3: Requirements to qualify for course exam

The number of students who completed the required parts
of the course to qualify for the exam and participated in at
least one of the exams are displayed in Table 4.

C2011 C2012
N 210 193
Students
participating in
exam

149 167

% of all students in
exam

70.95 % 86.53 %

Table 4: Percentage of students qualified to final exam

Notably there were more students qualified to take the
final exam in the latter instance though there were more
requirements to qualify.

In both courses, there were three possibilities to take
an exam. A student could take the exam more than once,
regardless of whether (s)he had passed the earlier exams.
Combined final results in both instances are displayed in
Table 5.

Grade C2011 C2011
proportion

C2012 C2012
proportion

5 45 30 % 70 42 %
4 21 14 % 19 11 %
3 20 13 % 23 14 %
2 12 8 % 19 11 %
1 14 9 % 25 15 %
Fail 37 25 % 11 7 %
Total 149 100 % 167 100 %

Table 5: Grade distribution in course instances

The distribution is visualized in Figure 3.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

151

Figure 3: Grade distribution in course instances
visualized

As seen in the table and the figure, the most significant
difference in distribution among instances seems to be at
the highest and the lowest grades. This is also the
explanation for the grade average remaining the same; it
is likely, that the active learning methods helped a lot of
“worst” students to pass the course in the new instance.

The combined results for both instances are displayed
at Table 6.

C2011 C2012
Total N 210 193
Qualify to take
exam

70.95 % 86.53 %

% passed exam (of
qualified)

75.17 % 93.41 %

% passed course 53.33 % 80.82 %
Grade mean (of
passed)

3.63 3.57

Grade std. dev. 1.53 1.41

Table 6 Course performance results

As seen on the table, all pass rates in C2012 were
significantly higher than in the earlier instance. Still, the
grade average remained almost the same between
instances.

To confirm the difference, the grade distribution was
analysed against a null hypothesis “the distribution of
grades is the same across two groups”. With significance
level of 0.05, we were able to reject the null hypothesis
with both, Mann-Whitney U Test (p=0.004) and
Kolmogorov-Smirnov test (p=0.011).

6 Discussion
Based on the student performance on the course, it seems
that the redesign was quite successful. There was a
significant raise in the pass rate as well as in the number
of students who qualified to- and passed the final exam,
respectively. Curiously, the grade average remained
almost the same between the instances. It hence seems
that though more students qualified for exam and passed
the course, the increase in pass rate was not achieved at
the cost of the performance in the final exam.
Remarkably, the final exam in C2012 was likely more
complex than the one on C2011: instead of two
programming assignments, there were now seven. The
assignments were at the same difficulty level, in fact,
some of the programming tasks from C2011 were used in
the exam at C2012.

What reasons may have affected the increased
performance? First, the main reason is probably the
introduction of active learning methods. As seen before in
various studies (see e.g. Laakso, 2010) learning is more
efficient when students are actively engaged into the
process instead of passively following a lecture. The
tutorial sessions seemed to work even better than what we
have hoped for: the student feedback collected each week
was mainly positive – only concerns being some technical
aspects, such as network errors. The students also
discussed the topic very actively during the sessions. This
seems to be in line with our earlier observations (see
Rajala et al. 2009, Rajala et al. 2010): we have previously
shown that visualization has a more significant effect on
learning when used in collaboration with another student,
and that when students engage into using visualizations in
collaboration, almost all discussion concerns the topic at
hand.

Still, even after the redesign, half of the lectures were
kept in the curriculum. The concept behind the redesign
was to connect the theory and the practice by offering one
lecture and one tutorial session each week. Whether
transforming all lectures into active learning sessions
would have had similar – or even better – effect remains
unknown in the scope of this research. Still, it is
definitely a concept worth testing in the future. To
underline the significance of certain topics at lectures, a
few ViLLE exercises were introduced after each lecture.
The quiz about the introduced topics, as well as a simple
coding or simulation task, was meant for summarizing the
lecture. The survey about the concepts learned and
improvement suggestions were also meant for students’
self-reflection: it is likely, that analysing and structuring
the concepts right after the lecture can have a positive
effect on learning.

Automatic assessment was a key factor in course
redesign. Without the obvious benefits of automatically
assessing programming assignments, the usage of
exercises to this extent would have been virtually
impossible. Though tutorials were primarily solved in the
dedicated tutorial sessions, most of the students needed to
complete some of the assignments outside the class room.
Automatically assessed programming assignments also
provided students a chance to redo tasks later for practice.
Also, using ViLLE to try out simple Java programs is
easier than starting an IDE or using compiler in command
line.

Another important factor in the redesign was
immediate feedback provided in ViLLE. When doing the
assignments the students got feedback right after clicking
the submit button. This also meant that when doing
programming tasks at tutorials or weekly exercises, they
could compare their results against the model solution
results right after submitting, and keep on modifying their
program until the results matched. As previously shown
in Laakso (2010), automatic assessment and immediate
feedback are the key factors when using educational
technology effectively. In the earlier instance the only
feedback students received from their programs was
during the demonstrations. A student got to present
his/her solution probably once or twice during the whole
course; when compared to more than hundred
automatically assessed tasks done in the latter instance,

0%

10%

20%

30%

40%

50%

5 4 3 2 1 Fail

C2011

C2012

CRPIT Volume 160 - Computing Education 2015

152

with unlimited number of submissions, this difference can
probably be seen as the most significant reason for the
performance differences.

Immediate feedback was not provided in the course
exam. Still, the students could see the compiler and
runtime errors to bring the programming process closer to
actual programming, testing and debugging. The students
also had access to Java API. Moreover, the students got a
subtle visual feedback if the answer was 100 percent
correct: the background colour of the coding area
changed to light green. Actually, this feature was left
originally in exam mode as a mistake, and as such the
students were not notified of it beforehand. Still, at least
some of the students reported it as a nice feature in the
final exam, since it helped them to confirm that their
solution was correct. All programming assignments were
randomly parameterized, and the test cases always
checked for null and empty values and overflows,
meaning that regardless of the visual feedback, the
students could not test random solutions for full score.
Moreover, as only automatic assessment was utilized, the
students did not score any points on submissions that
could not be compiled.

The student feedback on the novel features was highly
positive. According to weekly surveys, the students
seemed to value the tutorial based learning over all other
forms of teaching. Moreover, a short survey was
conducted after the course exam: according to results, the
students faced no technical problems, thought that ViLLE
as an exam platform was easy to use, and would
recommend ViLLE usage to other students. When asked
whether they would rather take the exam in paper, only 5
% of the students answered yes.

To conclude, the effect of the redesign seems to be
highly positive. Still, there are various factors not
considered in the scope of this paper. Most importantly,
we can’t isolate the effects of individual changes in the
new design. Although the change should be observed as
holistic, it would be interesting to try to isolate the factors
that have the best effect on learning. Also, the student
feedback is not comprehensively analysed in this
research, as the focus is on performance effects after the
redesign. These, to name a few, are definitely factors we
will observe closer in the future studies. In the future, we
also plan to utilize tutorial-based learning in other CS
courses, starting from the introductory course to computer
science and algorithms. The method is also going to be
tested at other universities, including for example RMIT
at Melbourne, Australia.

7 References
Beck, K. & Andres, C. (2004). Extreme Programming

Explained: Embrace Change (2nd Edition). Addison-
Wesley Professional

Bradford, P., Porciello, M., Balkon, N. & Backus, D.
(2006) The Blackboard Learning System: the be all and
end all in educational instruction? Journal of
Educational Technology Systems, 35, 3, 301-314.

Caspersen, M & Bennedsen, J. (2007). Instructional
design of a programming course: a learning theoretic
approach. In Proceedings of the third international

workshop on Computing education research (ICER
'07). ACM, New York, NY, USA, 111-122

Cole, J. & Foster, H. (2008). Using Moodle: Teaching
with the Popular Open Source Course Management
System (2nd ed.). Sebastopol: O’Reilly Media Inc.

Crescenzi, P. and Nocentini, C. (2007). Fully integrating
algorithm visualization into a cs2 course: a two-year
experience. Proc. of the 12th Annual SIGCSE
Conference on innovation and Technology in Computer
Science Education (Dundee, Scotland, June 25 - 27,
2007). ITiCSE '07. ACM, New York, NY, 296-300.

Freeman, S., Eddy, S., McDonough, M, Smith, M.,
Okoroafor, N., Jordt, H. & Wenderoth, M. (2014)
Active learning increases student performance in
science, engineering, and mathematics. PNAS 2014;
published ahead of print May 12, 2014.

Grissom, S., McNally, M. and Naps, T. 2003. Algorithm
Visualization in CS Education: Comparing Levels of
Student Engagement. In Proceedings of the ACM
Symposium on Software Visualization, San Diego,
California, 87-94.

Hall, S., Fouh, E., Breakiron, D., Elshehaly, M., &
Shaffer, C.A. (2013). Evaluating Online Tutorials for
Data Structures and Algorithms Courses. In
Proceedings of the 2013 ASEE Annual Conference &
Exposition, Atlanta, GA, June 2013

Hundhausen, C.D. and Brown, J.L. 2007. What You See
Is What You Code: A 'Live' Algorithm Development
and Visualization Environment for Novice Learners.
Journal of Visual Languages and Computing, 18, 1, 22-
47.

Kaila, E., Rajala, T., Laakso, M.-J. & Salakoski, T.
(2009). Effects, Experiences and Feedback from
Studies of a Program Visualization Tool. Informatics in
Education, 8, 1, 17-34.

Kaila, E., Rajala, T., Laakso, M.-J. & Salakoski, T.
(2010). Long-term Effects of Program Visualization. In
12th Australasian Computing Education Conference
(ACE 2010), January 18- 22, 2010, Brisbane, Australia.

Kaila, E., Rajala, T., Laakso, M.-J., Lindén, R., Kurvinen,
E. & Salakoski, T. (2014). Utilizing an Exercise-based
Learning Tool Effectively in Computer Science
Courses. Olympiads in Informatics 8.

Kannusmäki, O., Moreno, A., Myller, N. and Sutinen, E.
2004. What a Novice Wants: Students Using Program
Visualization in Distance Programming Course. In
Proceedings of the Third Program Visualization
Workshop (PVW'04), Warwick, UK

Kölling, M., Quig, B., Patterson, A. and Rosenberg, J.
2003. The BlueJ system and its pedagogy. Journal of
Computer Science Education, Special issue on
Learning and Teaching Object Technology, 13, 4.

Laakso, M.J, Kaila, E. & Rajala, T. (2014) ViLLE:
designing and adapting a collaborative exercise-based
learning environment. Sent to Computers & Education

Laakso, M.-J. (2010). Promoting Programming Learning.
Engagement, Automatic Assessment with Immediate
Feedback in Visualizations. TUCS Dissertations no
131.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

153

Lahtinen, E., Ala-Mutka, K. & and Järvinen, H.-M..
(2005). A study of the difficulties of novice
programmers. In Proceedings of the 10th annual
SIGCSE conference on Innovation and technology in
computer science education (ITiCSE '05). ACM, New
York, NY, USA, 14-18

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.,
Seppälä, O. and Silvasti, P. 2004. Visual Algorithm
Simulation Exercise System with Automatic
Assessment: TRAKLA2. Informatics in Education, 3,
2, 267-288.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting,
I. and Wilusz, T. (2001). A Multi-National, Multi-
Institutional Study of Assessment of Programming
Skills of First-year CS Students. ACM SIGCSE
Bulletin, 33, 4, 125-140.

McDowell, C., Werner, L., Bullock, H., & Fernald, J.
(2002). The effects of pair-programming on
performance in an introductory programming course.
In Proceedings of the 33rd SIGCSE technical
symposium on Computer science education (SIGCSE
'02). ACM, New York, NY, USA, 38-42.

Moons, J. & De Backer, C. (2013). The design and pilot
evaluation of an interactive learning environment for
introductory programming influenced by cognitive load
theory and constructivism. Computers & Education 60,
368-384.

Oechsle, R. and Schmitt, T. 2001. JAVAVIS: Automatic
Program Visualization with Object and Sequence
Diagrams Using the Java Debug Interface (JDI).
Revised Lectures on Software Visualization,
International Seminar, May 20-25, 76-190.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York, NY, USA: Basic Books,
Inc.

Parsons, D. & Haden, P. (2006). Parson's programming
puzzles: a fun and effective learning tool for first
programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education -
Volume 52 (ACE '06), Denise Tolhurst and Samuel
Mann (Eds.), Vol. 52. Australian Computer Society,
Inc., Darlinghurst, Australia, Australia, 157-163

Rajala, T., Kaila, E., Laakso, M.-J. & Salakoski, T.
(2009). Effects of Collaboration in Program
Visualization. Appeared in the Technology Enhanced
Learning Conference 2009 (TELearn 2009), October 6
to 8, 2009, Academia Sinica, Taipei, Taiwan.

Rajala, T., Salakoski, T., Kaila, E. & Laakso, M-J.
(2010). How Does Collaboration Affect Algorithm
Learning? A Case Study Using TRAKLA2 Algorithm
Visualization Tool. In Proceedings of 2010
International Conference on Education Technology
and Computer (ICETC 2010), Jun 2010. [A4]

Rajaravivarma, R. (2005) A Games-Based Approach for
Teaching the Introductory Programming Course.
Inroads – The SIGCSE Bulletin. 37, 4, 98-102.

Saunders, G. & Kelmming, F. (2003) Integrating
technology into a traditional learning environment.
Active Learning in Higher Education 4: 74–86.

Tan, P.-H., Ting, C.-Y & Ling, S.-W. (2009). Learning
Difficulties in Programming Courses: Undergraduates'
Perspective and Perception. International Conference
on Computer Technology and Development (ICCTD
’09).

CRPIT Volume 160 - Computing Education 2015

154

Paper	5	
Kaila, E., Kurvinen, E., Lokkila, E. and Laakso, M.J. 2016.

Redesigning an Object-Oriented
Programming Course.

ACM Transactions on Computing Education (TOCE), 16 (4),
Article no. 18. ACM New York, NY, USA.

Reprinted with permission from respective publisher and authors.

18

Redesigning an Object-Oriented Programming Course

ERKKI KAILA, EINARI KURVINEN, ERNO LOKKILA, and MIKKO-JUSSI LAAKSO,
University of Turku

Educational technology offers several potential benefits for programming education. Still, to facilitate the
technology properly, integration into a course must be carefully designed. In this article, we present a redesign
of an object-oriented university-level programming course. In the redesign, a collaborative education tool was
utilized to enhance active learning, facilitate communication between students and teachers, and remodel
the evaluation procedure by utilizing automatically assessed tasks. The redesign was based on the best
practices found in our own earlier research and that of the research community, with a focus on facilitating
active learning methods and student collaboration. The redesign was evaluated by comparing two instances
of the redesigned course against two instances using the old methodology. The drop-out rate decreased
statistically significantly in the redesigned course instances. Moreover, there was a trend toward higher
grade averages in the redesigned instances. Based on the results, we can conclude that the utilization of
educational technology has a highly positive effect on student performance. Still, making major changes to
course methodology does not come without certain difficulties. Hence, we also present our experiences and
suggestions for the course redesign to help other educators and researchers perform similar design changes.

Categories and Subject Descriptors: K.3.1 [Computers and Education]: Computer and Information Sci-
ence Education

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Object-oriented programming, course redesign, programming education,
course methodology

ACM Reference Format:
Erkki Kaila, Einari Kurvinen, Erno Lokkila, and Mikko-Jussi Laakso. 2016. Redesigning an object-oriented
programming course. ACM Trans. Comput. Educ. 16, 4, Article 18 (August 2016), 21 pages.
DOI: http://dx.doi.org/10.1145/2906362

1. INTRODUCTION

During recent years, an imminent need to redesign teaching methods in information
technology education has become obvious. Students find the topics difficult and seem to
have problems with the abstract concepts [Dunican 2002]. The problems are evident in
programming courses, where the drop-out rates typically are high. Though most of the
research done on learning programming is about introductory programming, the same
difficulties are often present when advancing to topics such as object-oriented pro-
gramming (OOP). The underlying reason is often the nature of learning programming:
Students need to actively engage in programming to learn how to program.

Traditional programming courses are often taught via lectures and assignments. The
assignments in a traditional setting are done in a computer lab or with similar tools
and assessed by the teaching staff. Utilizing educational technology makes it possible

Authors’ address: Department of Information Technology, University of Turku, 20014-Turun yliopisto,
Finland; emails: {ertaka, emakur, eolokk, milaak}@utu.fi.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1946-6226/2016/08-ART18 $15.00
DOI: http://dx.doi.org/10.1145/2906362

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

http://dx.doi.org/10.1145/2906362
http://dx.doi.org/10.1145/2906362

18:2 E. Kaila et al.

to increase the level of active learning: By facilitating features such as automatic
assessment and immediate feedback, the number of active tasks in the course can
be increased significantly. This enables an active approach to programming, where
students learn by writing programs and completing other assignments instead of sitting
passively in lectures.

In this article, we describe a comprehensive redesign of an OOP course. The ap-
proach chosen in the redesign was to facilitate active learning by changing half of the
lectures into active learning sessions. We also decided to encourage student collabo-
ration because various earlier studies have proved that it has a highly positive effect
on learning. A third aspect in the redesign was to enhance teacher–student communi-
cation by utilizing weekly surveys to collect students’ perceptions on the lectures and
active learning sessions. Finally, we decided that the exam methodology needed to be
adjusted as well: A traditional pen and paper approach was deemed unsatisfactory in
a course with a lot of programming tasks. Hence, an automatically assessed electronic
exam was utilized.

All elements in the redesign are based on the best practices of existing computing
education research conducted by ourselves or by the research community. We start by
evaluating these practices, followed by a detailed description of the redesign. Then,
student performance in the old instances of the course is compared with that in the
redesigned instances. Next, the results are analyzed, accompanied by our experiences
on implementing the redesign. Finally, we present suggestions for other educators who
are planning to adapt similar features in their courses.

2. RELATED WORK

Neither learning nor teaching programming is considered an easy task. Various re-
searchers [Ben-Ari 2001; Jenkins 2002; Pattis 1993; Bennedsen and Caspersen 2004;
McCracken et al. 2001] raise concerns about whether university-level introductory
courses to programming achieve the expected results. Students may, for example, be-
lieve that after assigning the value from one variable to another, the first variable no
longer holds a value or that variables may hold more than one value [Ben-Ari 2001].
Moreover, Gomes and Mendes [2014] state that students lack intrinsic motivation due
to natural difficulties associated with programming. There obviously is room for im-
provement in the current landscape of computer science education.

The difficulty in programming lies partly in the fact that programming is not merely
a single skill, but a composition of several processes. Jenkins [2002] recognizes that
the required skills do not form a simple set, but rather a hierarchy from which several
separate skills are utilized simultaneously. These skills have been classified in various
ways, for example, by Bloom’s taxonomy [Bloom 1954]. Hence, teaching programming
as a single skill is futile. However, good results can be achieved using a combination of
different teaching methods [McCracken et al. 2001; Carsten 2003; Giraffa et al. 2014].

Lectures, reading, and other passive forms of learning are not useful in conveying
the skills or the thought processes required for programming [Jenkins 2002]. According
to the constructivist theory of learning, teaching should let students build on their
old experiences and knowledge [Wertsch 1985]. Thus, active methods of learning are
preferred. According to Freeman et al. [2014], active learning can be thought of as
any activity wherein the student actively partakes in the process of forming a solution
to a given problem. This sharply contrasts with traditional behavioristic lecturing,
where lecturers recite facts and students are expected to learn these facts. A concrete
example of utilizing active learning is the concept of a flipped classroom, where lectures
are served as video clips, and the time spent traditionally on lectures is dedicated to
active assignment sessions [Amresh et al. 2013; Sarawagi 2013].

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:3

Instead of lectures, educators are encouraged to embrace new teaching methods
[Grissom 2013]. New technology provides new affordances for teaching, and one such
affordance is the ability to give students feedback immediately after their answer. This
ability to automatically assess student’s answers is a key benefit gained from utilizing
educational technology [Laakso 2010]. Immediate feedback has also been found to
improve learning results in students [Epstein et al. 2001]. Immediate feedback can,
in the best case, provide students with a cognitive conflict between what they thought
was correct and what actually is. Such a conflict forces the student to reassess her
beliefs, possibly seek out new information, and finally assimilate all newly gathered
and re-evaluated information with her old knowledge to resolve the conflict [Wertch
1985].

Recently, there has been an increasing interest in collaborative learning. This is re-
flected partly in an increasing number of articles on collaborative learning in computer
science. Collaboration has been found to be highly beneficial in supporting the learning
process of students [Rajala 2009; Wang 2009; Raitman et al. 2005; Hwang et al. 2012].
This is expected, in light of the constructivist learning theories. When working together
with other students, the participants will inevitably form new knowledge from their
interaction based on their old knowledge. Damon [1984] argues that different opinions
and assumptions force students to argue and reassess their beliefs. He also describes
four aspects in peer collaboration that promote learning. First, students are able to
talk to each other on the same level and thus understand each other. Second, they
can talk directly to one another without feeling threatened. Third, students are more
likely to accept feedback from their peers, which may cause them to reassess their
beliefs. Finally, the communication between students is more equal than that between
students and their instructor. As a result, students are more willing to challenge ideas
from their peers than their instructor [Damon 1984]. Collaboration does not only bene-
fit student learning: Even teachers have been found to benefit from teacher-to-teacher
collaboration in their work [Johnson 2003].

Beck and Chizhik [2014] utilized cooperative learning and instructional methods in
a CS1 level programming course. They divided students into small groups, giving each
group member a specific task in the group. Students then worked in these groups on
exercises designed to be solved cooperatively. After the group session, the lecturer held
a debriefing session for the whole class. This debriefing was designed to work in tandem
with group processing to promote student learning and understanding of the material.
The cooperative learning students outperformed traditional lecture students, although
the improvement was partly instructor dependent.

Pair programming has been found effective for student performance in programming
courses (see for example Salleh et al. [2011] and McDowell et al. [2002]). Moreover,
Nagappan et al. [2003] found that pair programming can also improve student ex-
perience of the course because pair programmers were more self-sufficient and more
likely to complete the class than were students working alone. In our research group’s
previous study, Rajala et al. [2011] provided strong evidence that students benefit from
working in collaboration. We analyzed the screen captures and conversations of 112
computer science students’ two-hour lab work. The control group consisted of 50 stu-
dents working alone and the treatment group of 62 students working in pairs. We found
that students working collaboratively spent more time on demanding tasks and were
more engaged than their individually working peers.

Collaborative learning has also been studied in lower and upper division computer
science. Several studies have been made on the effect of collaborative learning on
student performance and feedback received from students. The results show a marked
positive difference from the control group [Lee et al. 2013; Simon et al. 2010]. Students
in general seem to prefer collaborative learning methods over individual learning.

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

18:4 E. Kaila et al.

Renaud and Cutts [2013] were able to improve student decision-making in security
issues using peer instruction. In peer instruction, students answer multiple-choice
questions individually but then are allowed to change their answers after a group
discussion. The group discussion enables students to reflect on what they answered
and solve potential cognitive conflicts. Hundhausen et al. [2013] were able to improve
students’ critical thinking and code-analysis skills using an active learning approach
to code review, one inspired by the same process used in the industry. In a pedagogical
code review session, the students present code they have written to an experienced
instructor as well as to other students who then offer suggestions on how to improve
the code. The aim in a pedagogical code review session is to merge the views of the
novice student and an expert programmer.

However, as Grissom [2013] points out, it is not merely enough that educators know
about alternatives to passive lecturing; they should also adopt and utilize these new
methods in their teaching to realize any potential gains in learning. This is also empha-
sized in a case study made by Goode and Margolis [2011], in which they study a school
reform. They point out that instilling change in any educational system is challenging;
however, their reform succeeded in, for instance, increasing student perceptions of the
usefulness of computer science and motivating students to stick with difficult problems
instead of giving up.

Vihavainen et al. [2014] present a systematic review of redesign approaches and
their quantitative effect on student performance in CS1 courses. They discuss several
methods of intervention (including, e.g., collaboration, content change, and peer sup-
port) and discuss their effect on pass rates reported in different case studies by other
authors. The authors conclude that teaching interventions can improve pass rates by
as much as one third, which can be seen as a remarkable result. Moreover, they state
that while no statistical differences between intervention methods can be found, the
courses with relatable content combined with cooperative elements were most effective.

3. VILLE: COLLABORATIVE EDUCATION TOOL

This article describes the refactoring of an OOP course. The refactoring was based
on ViLLE, a collaborative education tool developed at the Department of Information
Technology, University of Turku. ViLLE is a web-based collaborative education tool that
supports a variety of different exercise types. Most of the exercises are automatically
assessed and give immediate feedback when submitted. Additionally, to support active
learning, ViLLE does not limit the number of submissions. ViLLE is currently used
by more than 2,000 teachers and 25,000 students around the world. A comprehensive
description of the tool can be found in Laakso et al. [2016]. The ViLLE exercise types
selected for refactoring were:

—Coding exercise: Automatically assesses the student’s solution against the model’s
solution written by the teacher. The exercise provides authentic compiler and run-
time exceptions, enabling students to fix potential problems before resubmitting.

—Quiz exercise: Provides multiple-choice and open questions. Quizzes are particularly
useful for lecture summaries and for testing code tracing and theoretical skills in the
exams.

—Visualization: A program visualization exercise in which graphical tracing of code
execution is accompanied by different types of questions.

—Program simulation: An exercise type in which students need to simulate pro-
gram execution one code line at a time by creating and manipulating variables and
methods.

—Sorting exercise: ViLLE supports Parsons puzzles [Parsons and Haden 2006], where
shuffled code lines need to be ordered according to given tasks. Additionally, other

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:5

types of sorting tasks (such as connecting the variable definition and value) can be
created.

—Survey: ViLLE also supports surveys with optional embedding of pictures, audio, and
video.

ViLLE can also be used to record student attendance using RFID readers. This
functionality can be extended to demonstrations, where students can use ViLLE to
record assignments they have completed. This allows the course staff and students to
see all obtained scores in real time.

4. REFACTORING THE COURSE

The basic course of OOP is a typical OOP course taught in the University of Turku. The
course is mandatory for all computer science majors (and for some other students in the
faculty, including mathematics, physics, and chemistry majors), and students typically
take it in their first year. Before the course, all students attend the Basic Course for
Algorithms and Programming, which is a typical CS1 course containing the basics Java
programming. In the second course, the fundamental concepts of OOP, including (but
not limited to) writing classes, inheritance, and polymorphism, are taught. Java is still
used as the programming language, but the focus of the course is more on general
concepts instead of features typical for any particular language.

In this section, we describe the changes made in the course between 2011–12 (the old
course) and 2013–14 (the new course). The topics covered by the course as well as the
learning goals and the credits awarded remained the same. The goal of the refactoring
was to lower drop-out rates by facilitating active learning, student collaboration, and
communication between the students and the teachers. By refactoring, we try to find
the answers to two research questions:

1. Does the refactoring lead to lower drop-out rate in the course, and
2. Does the refactoring lead to higher course grades?

The corresponding null hypotheses are that refactoring has no effect on the drop-out
rates, and, if it does, grade average will drop accordingly. Before the steps taken in the
refactoring are described, the old instance is briefly summarized.

4.1. Old Version of the Course

The old version of the course (from now on C1) was taught until the spring of 2013. In
this article, we use the instances of 2011 and 2012 for comparison. The old version of the
course consisted of lectures, demonstrations, a course project, and an exam. The course
lasted for eight weeks, but the final week was reserved for the final exam. The final
project could be submitted after the final exam. Each week of the course consisted of four
hours of lectures (2 × 2 hours). Additionally, there were four weekly demonstrations,
starting from the third week. In these two-hour sessions, the students provided their
answers to programming tasks given earlier. At least 50% of demonstrations needed to
be completed to attend the exam.

The old course structure is displayed in Table I.
As seen in Table I, the course follows the typical structure of most programming

courses.

4.2. Step 1: Enhancing Active Learning

In refactoring, the first step was to facilitate active learning. As proved by various
educational researchers, learning performance can be enhanced when students perform
tasks actively instead of passively listening to lectures. The first step in the redesign
was implemented by changing half of the lectures into tutorials. The tutorials, created

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

18:6 E. Kaila et al.

Table I. Summary of the Old Instance of the Course

Component Amount Description
Lectures 7 × 2 × 2 h = 28 h Traditional lectures in a lecture hall
Demonstrations 4 × 2 h = 8 h Programming assignment presentation in front of

class; done in smaller groups (typically 20–30
students)

Final project 1 Programming project (typically a simple game or
similar)

Final exam 1 with two
possibilities to
retake the exam

Two to three programming tasks or essays,
completed using pen and paper

Fig. 1. Example of a tutorial in ViLLE.

in ViLLE, are a combination of study material (such as text, images, tables, and videos)
and ViLLE exercises. An example of a tutorial is displayed in Figure 1. The lecture
of each week was replaced with a tutorial session, where the students brought their
computers with them. The session was organized in a lecture hall and was supervised
by course personnel aided by older students mentoring the participants when needed.
The attendance to tutorial sessions was made mandatory (though one absence was
allowed). The attendances were recorded by delivering an RFID tag to each of the
students in the course and by utilizing RFID readers that were directly connected to
ViLLE server. This enabled an up-to-date view of the attendance for both teachers and
students.

Each tutorial was designed to underline the topics discussed in that week’s lecture.
Hence, the lecture and tutorial formed a holistic module each week, where the theory
was first offered and then the topic could be rehearsed with relevant exercises. For

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:7

each tutorial, different kinds of exercises were prepared. While most of the exercises
were about writing and executing program code, some quizzes and sorting exercises
were also used to keep the task more varied and interesting. The tutorials were opened
when the session started and kept open until the next tutorial. In this way, students
were able to finish the tutorial after the session if necessary.

Moreover, a small set of additional ViLLE exercises were prepared for each week.
These exercises opened during the lecture and were meant to be used as a reminder
about the topics covered in the lecture. These additional exercises were designed to
be easier than tutorial exercises. ViLLE was also used to collect lecture and tutorial
attendance. Lecture attendance was not made mandatory, but a small bonus (less than
0.17% of the grade) was offered to students who attended all lectures.

4.3. Step 2: Encouraging Collaboration

The second step was to facilitate student collaboration. As seen in Rajala et al. [2009,
2011], learning performance can be significantly improved if students do the exercises
in collaboration with other students. With this in mind, the tutorials were built to
support collaboration. In the tutorial sessions, students paired with other students to
work together using one computer. Discussion during the sessions was encouraged, and
the controller (i.e., the student who used the mouse and keyboard) was switched every
15 minutes. Points collected from the tutorial exercises were awarded to both students.

The demonstration sessions were retained in the redesigned model as well because
they offered more complex programming tasks as well as problems that do not have
straightforward solutions. Still, the demonstration sessions were modified to facili-
tate collaboration and discussion. In the old course, the session started with students
writing down the assignments they completed, and the demonstrator then picked the
students to present their solutions. In the new model, the students still started the
session by registering completed assignments, although now using ViLLE. The demon-
strator then used ViLLE to divide the students randomly into groups (an algorithm was
used to ensure that each group had access to the answers to each assignment). Next,
the students had approximately 20 minutes to discuss and compare their solutions
before the presenters were chosen. The presenters then displayed and discussed their
solutions to the programming tasks, with additional discussion encouraged. Moreover,
an extra assignment was provided after the previous ones were presented. The remain-
ing time in the session (usually around 15–30 minutes) was spent in groups solving
this additional task

4.4. Step 3: Facilitating Student–Teacher Communication

The third step was to facilitate communication between the course staff and students.
This was thought to be especially important since several new features were presented
in the course. Hence, two surveys were conducted each week. The first one was used to
collect opinions about the lecture and the second one about the tutorials. The lecture
survey contained the same three questions each week:

—What did you learn in this week’s lecture?
—Which things remain unclear after this week’s lecture?
—How would you improve the lecture?

Similarly, after each tutorial the students answered the same three questions:

—What did you learn in this tutorial?
—Which things remain unclear after the tutorial?
—How would you improve the tutorial?

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

18:8 E. Kaila et al.

The feedback was analyzed after each week, and the topics that seemed to remain
unclear were readdressed in the next lecture. Also, the tutorials were modified between
instances, and the final tutorial (containing a summary of all topics in the course) was
built based on the issues that students reported on the surveys.

Also, after each of the demonstration sessions, a short survey was conducted. In
this survey, students could simply give feedback on the demonstrations. Again, the
answers were analyzed and the consecutive demonstrations were modified based on
this feedback. In practice, this meant, for example, giving more detailed instructions
on assignments if some previous ones were seen as too vague. Finally, after the course
exam, a survey about it was conducted. This was deemed important since this was the
first time an electronic exam was used.

For additional assistance between lectures and tutorials, a group of more experienced
(typically second- or third-year) students were nominated as mentors. A special men-
toring session was arranged once a week. In this session, students participating in the
course could ask for assistance with tutorials, demonstrations, or the weekly assign-
ments. At least two mentors were present to assist students in these sessions. These
mentors were also present at the tutorial sessions to assist students with problems.

4.5. Remodeling Evaluation Methodology

Since the students spent the entire course writing a great number of programs either
with an IDE or especially in ViLLE, a normal paper exam was deemed unsatisfactory.
Instead, an electronic exam was implemented using ViLLE. In this way, students could
actually write, compile, and test their code and see the results as well as any compiler
error messages on screen. The main purpose for this was to create an environment
where writing code in an exam was as close to an authentic situation as possible. In
addition to programming assignments, some other tasks, such as quizzes and sorting
exercises, were also included.

The typical exam programming task contained a task description and (in some cases)
a predefined set of code. Students were asked to write the required code using the code
editor in ViLLE. The code could be submitted (i.e., compiled and executed) as many
times as wanted. The exam score was based on the final submission. An example of the
exam task (translated into English) is displayed in Figure 2.

The electronic exam was fully automatically assessed. Unlike in the tutorial exer-
cises, students couldn’t see the feedback (except for the program output and possible
compiler and run-time errors) or the score when submitting their answers. In addi-
tion to providing students with the possibility for resubmitting their answers as many
times as they wanted within the time limit, automatic assessment meant that the exam
results could be published immediately after the exam.

To confirm the comparability to earlier instances of the course, the exam was designed
to be more challenging. C1 exams typically consisted of two or three questions, one or
two of which were programming tasks. In the redesigned C2, the exam consisted of
seven to eight programming tasks with one or two additional questions. To ensure
that the C2 exam was at least as difficult as the C1, the exam was audited by three
nonaffiliated university-level teachers and researchers who all agreed that the new
exam was at least as challenging as the old one.

4.6. Conclusion: Redesigned Course

The list of topics taught remained the same after the redesign, but the method was
changed significantly. The course structure is displayed in Table II.

The comparison of old (C1) and new (C2) course methodologies is displayed in
Table III.

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:9

Fig. 2. Example of a task from the final exam, translated into English.

Table II. Summary of the Redesigned Course

Component Amount Description
Lectures 7 × 2 = 14 h Traditional lectures in a lecture hall
Tutorials 7 × 2 = 14 h Tutorial sessions done in collaboration in lecture

hall
Demonstrations 4 × 2 = 8 h Programming assignment presentation in front of

class; done in smaller groups (typically 20–30
students). Enhanced with collaborative work at the
beginning and the end.

Additional ViLLE
exercises

7 Simple tasks opened during the lecture to underline
lecture topics

Final project 1 Programming project (typically a simple game or
similar)

Final exam 1 (but with 3
options to take it)

7 to 8 programming tasks with one or two
additional tasks, done electronically in ViLLE.

As seen in Table III, active learning, collaboration, and communication are enhanced
heavily in the new version of the course. In Section 4.7, we present the earlier studies
on which the redesign was based, followed in Section 5 by the results on student
performance in old and new instances. In Section 6, the effects and our experiences are
discussed.

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

18:10 E. Kaila et al.

Table III. Comparison of Old (C1) and New (C2) Course Methodologies

Component C1 C2
Lectures 4h each week 2h each week
Tutorials - 2h each week
Demonstrations 4 × 2h 4 × 2h, collaboration
Additional exercises None Approx. 3 each week
Final Project 1 1
Final exam Pen and paper Electronic
Feedback collected None 2–3 short surveys a week + one after the exam
Mentoring None 2h each week

Table IV. Course Instances

Instance Methodology N
2011 C1 186
2012 C1 201
2013 C2 191
2014 C2 158

4.7. Earlier Studies on Methodology

The redesign was based on the best practices of the e-learning research community as
well as on our own previous research. We had previously shown in two-hour controlled
tests [Rajala et al. 2008; Kaila et al. 2009] that educational technology can be highly
beneficial for learning but only if used with higher levels of engagement. This seems
to be in line with the engagement taxonomy represented by Naps et al. [2001]. The
positive effects of engagement and immediate feedback were concluded in Kaila et al.
[2009]. We also showed in Rajala et al. [2009, 2011] that collaboration can have a
significant effect on learning and that the students doing exercises in collaboration
seem to be highly engaged in the task at hand. As in Laakso et al. [2008], we found
that the cognitive load of learning to use a new tool has a significant negative effect
on learning. With this in mind, the redesign was based on a single comprehensive
learning environment. Some of our first studies on technology-enhanced programming
and computer science courses were published in Kaila et al. [2014, 2015].

5. RESULTS

To compare the learning performance between C1 and C2, the grades and pass rates of
all four instances were acquired from the university offices. The instances are displayed
in Table IV.

The total number of students in instances of the old methodology (C1) was 387, and
in instances of redesigned methodology (C2) 349. Most of the students were computer
science majors, but some mathematics and physics majors also took the course as
part of their minor studies. The number of students attending the course varies from
year to year due to changes in the number of accepted students in the IT and other
departments. Also, the smaller number of students taking the course in 2014 is likely
due to a higher pass rate in 2013 (and hence smaller numbers of students retaking the
course the following year). The course is typically taken as part of first-year studies
and is the second programming course in the curriculum.

The course was graded on scale of 1–5, with 5 being the best grade and 1 the lowest
passing grade. Some bonus points were awarded for attendance and for completing the
majority of tutorials and ViLLE exercises, but these bonus points were only awarded
if the student passed the exam by collecting at least 50% of the maximum points. A
similar method was used in the old instances of the course with the demonstrations.

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:11

Table V. Grades from All Course Instances, with 5 Being the Best Grade

Fail 1 2 3 4 5
2011 (C1) 58.06% 8.06% 4.84% 8.06% 9.68% 11.29%
2012 (C1) 49.25% 7.46% 9.45% 7.46% 9.45% 16.92%
2013 (C2) 23.04% 14.66% 8.90% 7.33% 11.52% 34.55%
2014 (C2) 25.95% 5.70% 8.23% 5.70% 10.76% 43.67%

Fig. 3. Pass rates of all instances.

Moreover, it was possible to pass the course without taking the exam by collecting
at least 90% of all possible points in the course. However, almost all students who
collected this number of points also took the exam. The grades from all course instances
are displayed in Table V.

As seen Table V, the number of failed students is significantly higher in the older
instances. The pass rates for all instances are shown graphically in Figure 3.

As seen in Figure 3, the pass rate was significantly higher in both instances of the
course using the new methodology. This also applies to the total average of C2 (75.64%)
compared with the average of C1 (46.51%).

For the statistical analysis of pass rates between the treatment and control groups,
we used the Test of Equal or Given Proportions, implemented in R. For this, we merged
the two instances for both C1 and C2. This gave us 78 + 102 = 180 passes in C1, versus
147 + 117 = 264 passes in the C2, with 186 + 201 = 387 and 191+158 = 349 total
participants, respectively. The test showed that the pass rates have a clear, statistically
significant difference (p-value < 0.001).

The grade averages of all instances of the course are shown in Figure 4. Only students
who passed the course are included in the average.

As seen in Figure 4, there seems to be a trend toward higher grade averages in
individual instances of C2. The statistical differences between course instance grades
were calculated with the Chi-square test. The results are displayed in Table VI.

Notably, all differences are statistically significant (p < 0.05), although the difference
between instances of C1 is only barely significant. Moreover, the difference between
instances of C2 is much smaller than the difference between instances of different
methodologies.

6. DISCUSSION

It seems that redesigning the course methodology had a highly positive effect on pass
rates and grade averages. Hence, we can reject the null hypotheses and answer the
research questions positively. Facilitating active learning methods seems to be highly

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

18:12 E. Kaila et al.

Fig. 4. Grade averages of all instances.

Table VI. Statistical Differences of Grade Distributions Between Course Instances

2012 (C1) 2013 (C2) 2014 (C2)
2011 (C1) 0.049 2.8084 × 10−27 4.611 × 10−33

2012 (C1) 4.109 × 10−18 2.767 × 10−22

2013 (C2) 0.004

beneficial over passive lectures. Notably, there was also a significant difference between
the grade averages of course instances facilitating the new methodology. It is possible
that this is due to some changes made to the course materials (such as increasing or
decreasing the number of tasks in the tutorials or modifying the lecture slides) based
on student feedback and our own experiences. However, there was also a slight drop
in pass rates between instances of C2, although the difference was not statistically
significant.

6.1. Enhancing Active Learning with Tutorials

The tutorials were carefully designed to supplement and train the topics taught in the
lectures. Still, it was somewhat difficult to come up with an appropriate number of
exercises and to determine a proper difficulty level for them. The goal was to make
the tutorials challenging enough for even the more experienced students, but still easy
enough so that the less experienced students could complete them within the given
one-week time frame. As this is close to impossible, a more practical goal was set to
the time spent by students on tutorials: If the best students took at least half the
session (approximately 50 minutes) to complete the tutorial, and the worst ones could
still complete the tutorial within a week, the difficulty could be seen as appropriate. In
fact, most of the tutorials fell into this category. The tutorials were slightly modified
between 2013 and 2014 if they seemed too difficult or too easy.

Student feedback on the tutorials was also analyzed after each tutorial session.
This was then used to fine-tune the difficulty level of consecutive tutorials. Typically,
the feedback was quite heterogeneous about difficulty: Some students reported the
tutorial as too difficult and some too easy. Still, most feedback on the tutorials was
positive. The feedback from tutorials could be roughly divided into seven categories.
Some students thought that the tutorial exercises were too hard or that there were

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:13

too many exercises: “[I would like to have] easier exercises, as always. Also, bring back
‘puzzle exercises’; they are a nice change to writing.” On the other hand, some students
though that the exercises were too easy or that there should have been more of them:
“Tutorial was short, it took only an hour to finish the exercises. Exercises were pretty
straightforward.”

Most students had a very positive attitude toward learning via tutorials: “A lot of
work (there is still a lot to do—which is not usual for me) but I’m sure I’ll learn a lot
and it’s worth the effort.” And then there were students who did not see the benefits
of having to work hard: “There are too many tutorial exercises. We made it barely half
way through with my partner.” Still, nobody seemed to argue against tutorials as a
method in the feedback. Students though that the tutorials fit well with the lectures:
“Tutorials are an amazing invention; you couldn’t learn these things otherwise. Lectures
are sometimes really boring and you don’t really learn from them, that’s why it’s really
great that we have an opportunity to work together and learn.”

From a technical perspective, the tutorials worked quite well. The sessions were
organized in a 250-seat lecture hall where the major concern was network connectivity.
The hall’s wireless router wasn’t powerful enough to handle enough simultaneous
connections. Luckily, the lecture hall was equipped with enough LAN ports to provide
a connection for all student pairs, and the only thing needed was to supply the LAN
cables. This also meant that network traffic from the hall was routed through a single
switch and firewall, so blocking all sites besides ViLLE and the Java API in exam
situation was effortless. Some of the students’ laptops did not contain LAN connectors,
but since there were only a few cases like this, they were allowed to use the wireless
network.

Student collaboration on tutorials seemed to work very well. The discussion in the
lecture hall was continuous, and, for the most part, students seemed to discuss the topic
at hand. We previously analyzed discussion in student collaboration [Rajala et al. 2011]
during controlled tests. In the analysis, it seemed that almost all of the discussion was
about the topic. The students also seemed to ask for assistance quite actively when
needed. While approximately 150 students attended the tutorial, we quickly found
out that four mentors (some from course staff and some older students) were enough
to provide assistance. A minor issue we realized after the first session was that the
mentors could not reach those sitting in the middle of the rows. To solve this issue,
students were seated in every other row in consequent tutorials.

6.2. Demonstrations and Lecture Attendance

In the demonstration sessions, collaboration seemed to work equally well. Again, there
was a lot of discussion among the groups before the students presented their solu-
tions. In the feedback, students wished that the groups would remain the same when
completing the additional assignment after the presentations because “forming new
groups is too much of a hassle.” One issue the students pointed out in the first two
sessions was that “the tasks are sometimes too vague.” This was addressed in two later
sessions by trying to write the assignments as clearly as possible. Another issue was on
demonstration number three, where one of the tasks was to write a comparison method
for a class modeling a player’s hand in a game of poker. Though completing this task
awarded the students half of the points available from that session, many students
reported the task as being too laborious. Still, most feedback from the demonstrations
was highly positive.

The students had a chance to attend mentoring sessions if the tutorial or the demon-
stration tasks seemed too difficult. Approximately 30–40 students were present in each
of the sessions. The mentors reported that a significant part of students attending the
sessions actually had no specific questions about the tasks, but instead utilized the

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

18:14 E. Kaila et al.

Fig. 5. The average number of lectures that students attended in instances of C2.

session to work collaboratively on the tasks—a practice that was highly encouraged
by course personnel. The mentoring offered during the tutorial sessions probably de-
creased the number of students needing additional tutoring as well.

The feedback collected from the lectures proved to be extremely useful. After each
lecture, the feedback was briefly reviewed, and the issues that were raised were ad-
dressed at the beginning of the next lecture. Typical issues collected from the feedback
were either general, like “more examples should be shown,” or highly specific, such as
“the difference between interfaces and abstract classes should be underlined.” Again,
most feedback was positive, and the students seemed to be especially happy about the
fact that the problems reported were actually addressed in the next lecture. Students
participated in the lectures quite actively, as seen in Figure 5.

Figure 5 shows the average of all students in attendance, as well as the average
of students who attended at least once. The latter likely depicts the average of stu-
dents who passed the course more accurately. Notably, the lecture average was a little
lower in the 2014 instance, as was the pass rate. Still, finding an actual correlation
between two variables would require analyzing more instances. The overall high level
of participation in both instances is probably partially due to bonus points that could
be collected on lecture attendance. Still, the bonus at maximum was less than 0.17%
of the course final grade, so a procedure like this can definitely be recommended.

6.3. Electronic Exam

The exam was also well perceived. There were practically no technical issues, but then
again, the students had used ViLLE extensively in the course before the exam, so
they were familiar with its features by exam time. Since all students did not own a
laptop (and the department couldn’t provide enough spare ones), two computer labs
were also reserved for taking the exam. The most beneficial feature in an electronic
exam compared with a traditional pen-and-paper approach is the possibility to test
and refine the program code as many times as needed. The submission numbers for all
exam exercises are displayed in Figure 6.

All exercises except for 1 and 3 were coding exercises. As seen in Figure 6, there is a
lot of variation in submission numbers. For noncoding exercise types, the average was
close to once, but for all coding exercises, the students submitted (i.e., translated and
executed) their code at least three times on average. For the most difficult questions,

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:15

Fig. 6. Average number of submission made to exam questions in instances of C2 (combined).

Fig. 7. Average scores for each question in exams of C2. Maximum points are displayed in parentheses.

the average number was more than 10. The average exam scores for individual tasks
are displayed in Figure 7.

The students also answered a survey after the exam. There were 11 questions an-
swered using a Likert scale of 1–5 (1 = completely disagree, 5 = completely agree).
There were three exam instances each year. The results obtained after the first exam

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

18:16 E. Kaila et al.

Table VII. Students’ Perceptions After the First Exam on Both Instances of C2

2013 2014
(N = 104) (N = 83)

There was enough time to finish the exam 4.52 (0.75) 4.58 (0.70)
It was easy to do the exam 4.00 (1.01) 3.92 (0.95)
ViLLE was easy to use 4.40 (0.65) 4.29 (0.85)
I would rather do the exam on paper than in ViLLE 1.37 (0.89) 1.23 (0.65)
ViLLE suits well for this courses exam 4.80 (0.45) 4.66 (0.65)
I would do this test as an online-exam at home, if it was possible 3.74 (1.12) 3.65 (1.10)
I would recommend ViLLE to other students 4.52 (0.61) 4.35 (0.82)
From a technical point of view, ViLLE is an excellent solution 4.18 (0.73) 3.95 (0.90)
Which grade would you give to ViLLE as an exam system (1-5) 4.27 (0.59) 4.11 (0.75)
I got enough training to ViLLE before the exam 4.78 (0.50) 4.51 (0.83)
Evaluate the difficulty level of the exam (1 = easy, 3 = suitable, 5 = hard) 2.97 (0.84) 2.88 (0.85)

instance are displayed in Table VII. Averages and standard deviations (in parentheses)
are displayed.

As seen in Table VII, students had very little technical issues, thought that ViLLE
was easy to use, and had sufficient training to use the system before the exam. Most
importantly, students seemed to think that the exam on a programming course should
be taken in an electronic form instead of with pen and paper.

6.4. Results in Relation to Related Work

How do the results relate to previous studies in the field of computer science educa-
tion research? In Vihavainen et al. [2014], the authors quantitatively analyze several
approaches for teaching introductory programming courses. Of analyzed methods, at
least collaboration, content change, group work, and (peer) support were also applied
in our redesign. Moreover, these authors conclude that, on average, the redesign can
improve the pass rate by one third, which seems to be in line with our results (the
combined pass rate of C2 courses was 75.64% in comparison to 46.51% in C1). The
authors also found that pair-programming as an only intervention method seems to
have a worse effect, which underlines the importance of holistic redesign.

Collaborative learning has been found useful in various earlier studies. The positive
effect of adapting collaboration into tutorials and demonstrations in our redesign seems
to confirm the findings of Lee et al. [2013], Simon et al. [2010], and Hundhausen
et al. [2013], to name a few. Although the redesign described in this article cannot be
categorized as flipped learning (see, e.g., Sarawagi [2013]), some similarities (such as
emphasizing active learning) can be found. Although electronic exams in programming
courses have not been studied widely, Barros et al. [2003] and Navrat and Tavrozek
[2014] have had similarly encouraging experiences when they replaced a traditional
pen-and-paper approach with a more authentic approach. Finally, the results obtained
seem to confirm the results of our research group studying introductory programming
courses (see, e.g., Rajala et al. [2009, 2011]).

The experiences of Haatainen et al. [2013] for providing additional support to stu-
dents in the CS1 course seem to support the inclusion of mentoring in our course
redesign. They found that the additional support received positive feedback from both
students and student mentors, but found no significant difference in learning results.
This seems to indicate that mentoring is an important addition in redesign, but might
not have an effect on student performance if not accompanied with other methods.
However, the positive effect might lead to better motivation, which Nikula et al. [2011]
found to be crucial in programming courses: They state that the lack of motivation leads
to high drop-out rates. The decrease in drop-out rates was the single most important

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:17

outcome of our redesign. Keijonen et al. [2013] present an approach called extreme ap-
prenticeship, which emphasizes active learning combined with personal advising. The
authors found that (similarly to our experiences) applying this approach led to higher
student performance in the introductory programming course. Moreover, the authors
state that the method leads to a carry-on effect, with more credits gained during the
13-month period after the course. In the future, we are curious to find out whether the
positive effect reported in this research will carry on similarly.

7. SUGGESTIONS ON COURSE REDESIGN

Finally, we would like to readdress the factors considered in the redesign process
based on the results and experiences presented in the previous sections. Although the
changes made in the course method seemed to be highly effective in increasing student
performance (and were generally well perceived by the students), we found some issues
that need to be addressed when making changes in the methodology.

First, enhancing active learning with tutorials and other ViLLE exercises seemed
to have a positive effect on course outcome. This was somewhat expected, as various
other studies have already proved that active learning methods are more effective than
passive listening in lectures. For example, the whole concept of flipped classrooms (al-
though not utilized in our setup) relies on this fact. All in all, we faced only a few issues
when implementing the tutorial sessions, partly because we were quite well prepared.
Still, the factors that should be considered by other educators are the technical imple-
mentation (electricity, LAN or WLAN connectivity, access to participants for guidance)
and the proper difficulty level for the tutorials. Unfortunately, there is no strict advice
on the difficulty level because the only way to properly evaluate difficulty is to test the
tutorials with a large, heterogeneous group of students.

Second, enhancing collaboration seemed to work as we intended. As we found in
Rajala et al. [2011], when students work collaboratively, the discussion is almost com-
pletely about the topic in hand. Naturally, some students were not happy about the idea
of needing to communicate with anyone, but mostly the collaboration was quite well
received. Still, we must suggest that fellow educators actively monitor the switching
of the controller role once every 15 minutes during the sessions. Quite a few students
were very keen to be the ones using the mouse and the keyboard, while some seemed
to be quite happy in the passive role. Collaboration was also utilized in our demonstra-
tion sessions: We found out that the tasks prepared for this need to be very carefully
planned beforehand because too difficult or too easy tasks can frustrate students and
will bring no additional value.

Facilitating communication was very well perceived by the students. Our suggestion
is to keep the weekly surveys brief (we came up with three simple questions per
survey) and to offer a small reward for filling them in (in our case, a couple of ViLLE
points). Still, the most important suggestion we can make is that the results collected
via survey need to be analyzed and utilized during the course. The students are likely
to be more motivated to report issues using surveys if they think that this has an
actual effect. Even more importantly, the surveys are extremely useful for making
small adjustments in the course method and materials during the course. Hence, our
suggestion is to reserve some man-hours for such adjustments (although we do realize
that most lecturers have their hands full with teaching and course administration
during the course).

The remodeling of the evaluation was one of the most important factors we consid-
ered. In our opinion, answering exam questions using pen and paper is not a proper
way to measure programming skill. When refactoring an exam, there are three sug-
gestions we feel we should make. First, use a proper tool: The students should be able
to compile and execute their programs with proper feedback and error messages, and

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

18:18 E. Kaila et al.

the possibility of technical errors needs to be minimized. Also, if possible, a tool that
supports automatic assessment makes life a lot easier for teachers. Second, the diffi-
culty level of the exam needs to be properly evaluated by nonaffiliated teachers and/or
researchers. When the exam methodology is changed, it is possible (or even likely) that
the difficulty level may not remain the same. Fortunately, there is a lot of good-quality
research done on how to design exams for programming courses (e.g., Sheard et al.
[2011, 2015]). Finally, it is a good idea to prepare for cheating: If the exam is taken
with a computer, it is important to block unwanted sites and communication as effec-
tively as possible, preferably by whitelisting only those sites necessary for the exam.
Also, supervision in the classroom where the exam is organized should be provided, as
in any exam.

The refactoring can of course be a huge mountain to climb for educators who tra-
ditionally have their hands full already. We do not necessarily suggest undertaking
complete refactoring at once because the individual steps can be utilized separately as
well. In our experience, the redesign was worth the effort: The course’s total pass rate
increased significantly, and the number of drop-outs during the course decreased like-
wise. Student perception was also enthusiastic: Students thought that the methods of
active learning were useful, and the feedback they gave was properly addressed. Also,
most of the work needed for refactoring the course was done before the first class. Later
classes are a lot easier to organize. Still, it is wise to prepare for adjustments after the
first class because it is likely that there will be a need for some.

8. STUDY’S LIMITATIONS

There are naturally some limitations in the study, mainly due to the nature of the
holistic redesign. First, there are the external concerns: The data from the earlier
instances of C1 are not conclusive; for example, lecture attendance was not recorded,
and detailed statistics or feedback about the exam was not available. Hence, the
corresponding statistics from C2 in this article cannot be compared to earlier instances
but are merely provided to illustrate students’ active participation in and general
contentment with the redesigned course. Similarly, the effect of the previous course in
the curriculum cannot be measured validly. The CS1 course which most students take
before this course was also redesigned during 2013 and 2014 (see Kaila et al. [2015]).
However, the contents of the courses are very different, and, especially in the 2013
instance of the redesigned course, there were numerous (48 to be precise) students
who had taken the earlier instances of CS1. Still, it is possible that the redesign of the
previous course has an effect on the results, although it is difficult to measure. Finally,
the statistics from the consecutive programming courses in the curriculum are not
detailed enough to observe the effect of redesign on them.

There are also internal concerns. The first limitation is the number of factors in the
redesign: Since the changes were made in varied aspects of the course, the effect of
individual changes cannot be isolated. Hence, it is difficult to say whether some mod-
ifications are more useful than others or whether some had no effect at all. Also, the
evaluation method differed. Although external experts evaluated the exam at least as
difficult as the exam in the old course, there are still differences between an electronic
exam and a pen-and-paper one. Still, it is very unlikely that passing the electronic ver-
sion would be easier because the evaluation was stricter (e.g., no points were awarded
if the code did not compile), and there were a lot more exercises to complete.

Finally, one could question the novelty value of the methodology used in the redesign.
As seen in Sections 2 and 6.4, for example, most of the interventions used for redesign
have been tried and studied before. However, the same argument could be applied
to a lot of research in the field of computer science education. The novelty of this
study comes from the implementation of the tool used as well as the complete design,

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:19

application, and (most importantly) validation of the methodology in an OOP course.
After all, teaching interventions that are proved effective are what most educators
should be looking for—hence, validating research should never be underrated.

9. CONCLUSION AND FUTURE WORK

We redesigned a programming course based on the best practices obtained from our
own research and that of the research community. The redesign was done in four areas:
by enhancing active learning, collaboration, and student communication and by refac-
toring the evaluation procedure. All in all, the course redesign proved to be successful.
The pass rate increased by more than 20% in both instances of the redesigned course.
While the increase in grade average was smaller, the overall trend was still positive,
especially since the exam was likely more challenging. The feedback collected from the
students was also mainly positive.

From a researcher’s point of view, some critique on the setup should be given. The
changes made to the course were holistic since almost all elements in the teaching
method were somehow addressed. While the change on the whole appears to be very
effective, it is impossible to isolate the effects of individual factors because when course-
long performance is measured, various variables affect it. Still, as the content of the
course remained the same and the number of participants was fairly high, we feel
confident about the significance of the results.

In future, we plan to investigate the possibilities of tutorial-based learning in other
types of courses, starting with an introductory database course and a course for algo-
rithms and data structures. We are also planning to continue fine-tuning the methodol-
ogy and materials used in this course. Some comprehensive surveys will be conducted
over the course instances (and over different courses) to collect holistic data on student
perceptions. When this is joined with performance data (as well as data collected auto-
matically by ViLLE), it will be possible to come up with more general suggestions on
redesigning course methodology.

REFERENCES

Ashish Amresh, Adam R. Carberry, and John Femiani. 2013. Evaluating the effectiveness of flipped class-
rooms for teaching CS1. In Proceedings of the Frontiers in Education Conference, IEEE. 733–735.

João Paulo Barros, Luı́s Estevens, Rui Dias, Rui Pais, and Elisabete Soeiro. 2003. Using lab exams to
ensure programming practice in an introductory programming course. In Proceedings of the 8th Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE’03), David Finkel
(Ed.). ACM, New York. 16–20. DOI: http://dx.doi.org/10.1145/961511.961519

Leland Beck and Alexander Chizhik. 2013. Cooperative learning instructional methods for CS1: Design,
implementation, and evaluation. ACM Transactions on Computing Education (TOCE) 13, 3, 10.

Mordechai Ben-Ari. 2001. Constructivism in computer science education. Journal of Computers in Mathe-
matics and Science Teaching 20.1, 45–73.

Jens Bennedsen and Michael E. Caspersen. 2004. Teaching object-oriented programming-Towards teaching
a systematic programming process. In Proceedings of the 8th Workshop on Pedagogies and Tools for
the Teaching and Learning of Object Oriented Concepts. Affiliated with 18th European Conference on
Object-Oriented Programming (ECOOP 2004).

Benjamin S. Bloom. 1956. Taxonomy of Educational Objectives. Vol. 1: Cognitive Domain. New York: McKay.
William Damon. 1984. Peer education: The untapped potential. Journal of Applied Developmental Psychology

5, 4, 331–343.
Enda Dunican. 2002. Making the analogy: Alternative delivery techniques for first year programming

courses. In Proceedings of the 14th Annual Workshop of the Psychology of Programming Interest Group
(PPIG 2002), J. Kuljis, L. Baldwin, and R. Scoble (Eds.). Brunel University, London, June 18–21, 2002.
89–99.

Michael L. Epstein, Beth B. Epstein, and Gary M. Brosvic. 2001. Immediate feedback during academic
testing. Psychological Reports 88, 3, 889–894.

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

18:20 E. Kaila et al.

Scott Freeman, Sarah L. Eddy, Miles McDonough, Michelle K. Smith, Nnadozie Okoroafor, Hannah Jordt,
and Mary Pat Wenderoth. 2014. Active learning increases student performance in science, engineering,
and mathematics. In Proceedings of the National Academy of Sciences. 8410–8415.

Lucia M. M. Giraffa, Marcia Cristina Moraes, and Lorna Uden. 2014. Teaching object-oriented program-
ming in first-year undergraduate courses supported by virtual classrooms. In Proceedings of the 2nd
International Workshop on Learning Technology for Education in Cloud. Springer Netherlands, 15–26.

Anabela Gomes and Antonio Mendes. 2014. A teacher’s view about introductory programming teaching and
learning: Difficulties, strategies and motivations. In Proceedings of the Frontiers in Education Conference
(FIE 2014). IEEE, 1–8.

Joanna Goode and Jane Margolis. 2011. Exploring computer science: A case study of school reform. ACM
Transactions on Computing Education (TOCE) 11, 2, 12.

Scott Grissom. 2013. Introduction to special issue on alternatives to lecture in the computer science class-
room. ACM Transactions on Computing Education (TOCE) 13.3, 9.

Simo Haatainen, Antti-Jussi Lakanen, Ville Isomottonen, and Vesa Lappalainen. 2013. A practice for pro-
viding additional support in CS1. In Learning and Teaching in Computing and Engineering (LaTiCE
2013). IEEE. 178–183.

Christopher D. Hundhausen, Anukrati Agrawal, and Pawan Agarwal. 2013. Talking about code: Integrating
pedagogical code reviews into early computing courses. ACM Transactions on Computing Education
(TOCE) 13.3, 14.

Wu-Yuin Hwang, Rustam Shadiev, Chin-Yu Wang, and Zhi-Hua Huang. 2012. A pilot study of cooperative
programming learning behavior and its relationship with students’ learning performance. Computers &
Education 58, 4 (2012), 1267–1281.

Tony Jenkins. 2002. On the difficulty of learning to program. In Proceedings of the 3rd Annual Conference of
the LTSN Centre for Information and Computer Sciences. 4.

Bruce Johnson. 2003. Teacher collaboration: Good for some, not so good for others. Educational Studies 29,
4, 337–350.

Erkki Kaila, Mikko-Jussi Laakso, Teemu Rajala, and Tapio Salakoski. 2009. Evaluation of learner en-
gagement in program visualization. In Proceedings of the 12th IASTED International Conference on
Computers and Advanced Technology in Education (CATE 2009), November 22–24. St. Thomas, US
Virgin Islands.

Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, Rolf Lindén, Einari Kurvinen, and Tapio Salakoski. 2014.
Utilizing an exercise-based learning tool effectively in computer science courses. Olympiads in Infor-
matics, 8.

Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, Rolf Lindén, Einari Kurvinen, Ville Karavirta, and Tapio
Salakoski. 2015. Comparing student performance between traditional and technologically enhanced pro-
gramming course. In Proceedings of the 17th Australasian Computing Education Conference (ACE2015).
Sydney, Australia.

Hansi Keijonen, Jaakko Kurhila, and Arto Vihavainen. 2013. Carry-on effect in extreme apprenticeship. In
Proceedings of the Frontiers in Education Conference (FIE 2013). IEEE. 1150–1155.

Mikko-Jussi Laakso, Teemu Rajala, Erkki Kaila, and Tapio Salakoski. 2008. The impact of prior experience
in using a visualization tool on learning to program. In Proceedings of CELDA 2008. Freiburg, Germany,
129–136.

Mikko-Jussi Laakso. 2010. Promoting programming learning. Engagement, Automatic Assessment with Im-
mediate Feedback in Visualizations. TUCS Dissertations no. 131.

Mikko-Jussi Laakso, Erkki Kaila, and Teemu Rajala. 2016. ViLLE: Designing and utilizing a collaborative
education tool. Submitted for publication to British Journal of Educational Technology.

Cynthia Bailey Lee, Saturnino Garcia, and Leo Porter. 2013. Can peer instruction be effective in upper-
division computer science courses? ACM Transactions on Computing Education (TOCE) 13, 3, 12.

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David Kolikant,
Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. 2001. A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students. ACM SIGCSE Bulletin 33, 4 (2001),
125–180.

Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The effects of pair-
programming on performance in an introductory programming course. ACM SIGCSE Bulletin 34, 1,
38–42. ACM, 2

Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang, Carol Miller, and Suzanne
Balik. 2003. Improving the CS1 experience with pair programming. In Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE’03). ACM. New York. 359–362. DOI:
http://dx.doi.org/10.1145/611892.612006

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Redesigning an Object-Oriented Programming Course 18:21

Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris Hundhausen, Ari
Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and J. Ángel Velázquez-Iturbide. 2002. Exploring
the role of visualization and engagement in computer science education. Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education 35, 2, 131–152.

Pavol Navrat and Jozef Tvarozek. 2014. Online programming exercises for summative assessment in uni-
versity courses. In Proceedings of the 15th International Conference on Computer Systems and Tech-
nologies (CompSysTech’14), Boris Rachev and Angel Smrikarov (Eds.). ACM. New York. 341–348. DOI:
http://dx.doi.org/10.1145/2659532.2659628

Uolevi Nikula, Orlena Gotel, and Jussi Kasurinen. 2011. A motivation guided holistic rehabilitation of the
first programming course. Transactions in Computing Education 11, 4, Article 24 (November 2011). DOI:
http://dx.doi.org/10.1145/2048931.2048935

Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: A fun and effective learning tool for
first programming courses. In Proceedings of the 8th Australasian Conference on Computing Education
(Volume 52). Australian Computer Society, Inc. 157–163.

Richard E. Pattis. 1993. The “procedures early” approach in CS 1: A heresy. ACM SIGCSE Bulletin 25.1
(1993), 122–126.

Ruth Raitman, Naomi Augar, and Wanlei Zhou. 2005. Employing wikis for online collaboration in the E-
learning environment: Case study. In Proceedings of the 3rd International Conference on Information
Technology and Applications (ICITA’05). Sydney, Australia.

Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. 2008. Effectiveness of program visu-
alization: A case study with the ViLLE tool. Journal of Information Technology Education: Innovations
in Practice, IIP, 7, 15–32.

Teemu Rajala, Erkki Kaila, Mikko-Jussi Laakso, and Tapio Salakoski. 2009. Effects of collaboration in
program visualization. In Proceedings of the Technology Enhanced Learning Conference 2009 (TELearn
2009). October 6–8. Academia Sinica, Taipei, Taiwan.

Teemu Rajala, Erkki Kaila, Johannes Holvitie, Riku Haavisto, Mikko-Jussi Laakso, and Tapio Salakoski.
2011. Comparing the collaborative and independent viewing of program visualizations. In Proceedings
of the Frontiers in Education 2011 Conference. October 12–15. Rapid City, South Dakota.

Karen Renaud and Quintin Cutts. 2013. Teaching human-centered security using nontraditional techniques.
ACM Transactions on Computing Education (TOCE) 13.3 (2013), 11.

Norsaremah Salleh, Emilia Mendes, and John Grundy. 2011. Empirical studies of pair programming for
CS/SE teaching in higher education: A systematic literature review. IEEE Transactions on Software
Engineering 37.4 (2011), 509–525.

Namita Sarawagi. 2013. Flipping an introductory programming course: Yes you can. Journal of Computing
Sciences in Colleges 28.6 (2013), 186–188.

Carsten Schulte, Johannes Magenheim, Jörg Niere, and Wilhelm Schäfer. 2003. Thinking in objects and
their collaboration: Introducing object-oriented technology. Computer Science Education 13, 4, 269–288.

Judy Sheard, Simon, Angela Carbone, Donald Chinn, Mikko-Jussi Laakso, Tony Clear, Michael de Raadt,
Daryl D’Souza, James Harland, Raymond Lister, Anne Philpott, and Geoff Warburton. 2011. Exploring
programming assessment instruments: A classification scheme for examination questions. In Proceed-
ings of the 7th International Workshop on Computing Education Research. ACM. 33–38.

Judy Sheard, Simon, Daryl D’Souza, Mike Lopez, Andrew Luxton-Reilly, Iwan Handoyo Putro, Phil Robbins,
Donna Teague, and Jacqueline Whalley. 2015. How (not) to write an introductory programming exam. In
Proceedings of the 17th Australasian Computing Education Conference (ACE2015). Sydney, Australia.

Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo, and Quintin Cutts. 2010. Experience report:
Peer instruction in introductory computing. In Proceedings of the 41st ACM Technical Symposium on
Computer Science Education. ACM. 341–345.

Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic review of approaches for
teaching introductory programming and their influence on success. In Proceedings of the 10th Annual
Conference on International Computing Education Research (ICER’14). ACM. New York. 19–26. DOI:
http://dx.doi.org/10.1145/2632320.2632349

James V. Wertsch. 1985. Vygotsky and the Social Formation of Mind. Harvard University Press.
Qiyun Wang. 2009. Design and evaluation of a collaborative learning environment. Computers & Education

53, 4, 1138–1146.

Received May 2015; revised February 2016; accepted March 2016

ACM Transactions on Computing Education, Vol. 16, No. 4, Article 18, Publication date: August 2016.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance
203. Inna Pereverzeva, Formal Development of Resilient Distributed Systems
204. Mikhail Barash, Defining Contexts in Context-Free Grammars
205. Sepinoud Azimi, Computational Models for and from Biology: Simple Gene

Assembly and Reaction Systems
206. Petter Sandvik, Formal Modelling for Digital Media Distribution

207. Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

208. Simon Holmbacka, Energy Aware Software for Many-Core Systems
209. Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional

Subshifts of Finite Type
210. Mika Murtojärvi, Efficient Algorithms for Coastal Geographic Problems
211. Sami Mäkelä, Cohesion Metrics for Improving Software Quality
212. Eyal Eshet, Examining Human-Centered Design Practice in the Mobile Apps Era
213. Jetro Vesti, Rich Words and Balanced Words
214. Jarkko Peltomäki, Privileged Words and Sturmian Words
215. Fahimeh Farahnakian, Energy and Performance Management of Virtual

Machines: Provisioning, Placement and Consolidation
216. Diana-Elena Gratie, Refinement of Biomodels Using Petri Nets
217. Harri Merisaari, Algorithmic Analysis Techniques for Molecular Imaging
218. Stefan Grönroos, Efficient and Low-Cost Software Defined Radio on Commodity
 Hardware
219. Noora Nieminen, Garbling Schemes and Applications
220. Ville Taajamaa, O-CDIO: Engineering Education Framework with Embedded
 Design Thinking Methods
221. Johannes Holvitie, Technical Debt in Software Development – Examining
 Premises and Overcoming Implementation for Efficient Management
222. Tewodros Deneke, Proactive Management of Video Transcoding Services
223. Kashif Javed, Model-Driven Development and Verification of Fault Tolerant
 Systems
224. Pekka Naula, Sparse Predictive Modeling – A Cost-Effective Perspective
225. Antti Hakkala, On Security and Privacy for Networked Information Society –
 Observations and Solutions for Security Engineering and Trust Building in
 Advanced Societal Processes
226. Anne-Maarit Majanoja, Selective Outsourcing in Global IT Services – Operational
 Level Challenges and Opportunities
227. Samuel Rönnqvist, Knowledge-Lean Text Mining
228. Mohammad-Hashem Hahgbayan, Energy-Efficient and Reliable Computing in

Dark Silicon Era
229. Charmi Panchal, Qualitative Methods for Modeling Biochemical Systems and

Datasets: The Logicome and the Reaction Systems Approaches
230. Erkki Kaila, Utilizing Educational Technology in Computer Science and

Programming Courses: Theory and Practice

Turku
Centre for
Computer
Science

University of Turku
Faculty of Science and Engineering
 • Department of Future Technologies
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3677-8
ISSN 1239-1883

http://www. tucs.fi

tucs@abo.fi

Erkki K
aila

U
tilizing Educational Technology in C

om
puter S

cience and Program
m

ing C
ourses

	1 Introduction
	1.1 Research Questions
	1.2 Methodology
	1.3 The Structure of this Thesis

	2 About Educational Technology and Programming: Related Studies and Tools
	2.1 Programming Learning: Why and how is it Difficult?
	2.2 Program Visualization
	2.3 Other Educational Tools
	2.4 Methods and Methodologies for Programming Education

	3 Designing and implementing ViLLE
	3.1 ViLLE 1 – Visual Learning Tool
	3.1.1 Background
	3.1.2 Features

	3.2 ViLLE 2 – Collaborative Education Tool
	3.2.1 Background
	3.2.2 Features
	3.2.2.1 Student View
	3.2.2.2 Teacher View
	3.2.2.3 Collaboration
	3.2.2.4 Active Learning with ViLLE
	3.2.2.5 Gamification and Continuous Assessment

	3.3 Summary

	4 Utilizing ViLLE in Programming Education
	4.1 Laying the Foundation: Controlled Tests
	4.1.1 Study 1: Effectiveness of ViLLE
	4.1.2 Study 2: Role of Engagement
	4.1.3 Study 3: Effect of Cognitive Load
	4.1.4 Summary of Controlled Tests

	4.2 Utilizing the Program Visualization Tool
	4.2.1 Case 1: High school programming course
	4.2.2 Case 2: Introductory Computer Science Course in University Level

	4.3 Utilizing the Collaborative Education Tool
	4.3.1 Case 3: Introductory Programming Course for Bioinformatics Majors
	4.3.2 Case 4: Introductory Programming Course for CS Majors
	4.3.3 Case 5: Object-Oriented Course at University Level

	4.4 Summary

	5 A Research-Based Model for Utilizing Educational Technology in CS Education
	5.1 Results Revisited
	5.2 The Model
	5.3 Applying the Model: Requirements and Limitations

	6 Conclusion and Future Work
	References

