
The Development of Design Guidelines for Educational
Programming Environments

Bedour Alshaigy

A thesis submitted in partial fulfilment of the requirements of the award of
Doctor of Philosophy

School of Engineering, Computing and Mathematics
Oxford Brookes University

September 2017

2

Abstract

Introductory programming courses at university are currently experiencing a significant dropout and
failure rate. Whilst several reasons have been attributed to these numbers by researchers, such as
cognitive factors and aptitude, it is still unclear why programming is a natural skill for some students
and a cause of struggle for others. Most of the research in the computer science literature suggests that
methods of teaching programming and students’ learning styles as reasons behind this trend. In
addition to the choice of the first programming language taught.

With the popularity of virtual learning environments and online courses, several instructors are
incorporating these e-learning tools in their lectures in an attempt to increase engagement and
achievement. However, many of these strategies fail as they do not use effective teaching practices or
recognise the learning preferences exhibited by a diverse student population. Therefore this research
proposes that combining multiple teaching methods to accommodate different learners' preferences
will significantly improve performance in programming.

To test the hypothesis, an interactive web based learning tool to teach Python programming language
(PILeT) was developed. The tool’s novel contribution is that it offers a combination of pedagogical
methods to support student’s learning style based on the Felder-Silverman model.

First, PILeT was evaluated by both expert and representative users to detect any usability or interface
design issues that might interfere with students’ learning. Once the problems were detected and fixed,
PILeT was evaluated again to measure the learning outcomes that resulted from its use. The
experimental results show that PILeT has a positive impact on students learning programming.

3

4

Relevant Publications

Quintin Cutts, Peter Donaldson, Elizabeth Cole, Bedour Alshaigy, Mirela Gutica, Arto Hellas,
Edurne Larraza-Mendiluze, Robert McCartney, Elizabeth Patitsas, and Charles Riedesel. 2017.
Searching for Early Developmental Activities Leading to Computational Thinking Skills. In
Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE '17). ACM, New York, NY, USA, 393-393. DOI:
https://doi.org/10.1145/3059009.3081332

Alshaigy, B. 2017. Evaluation of PILeT: Design guidelines, usability and learning outcomes results.
Global Engineering Education Conference (EDUCON), IEEE, 2017.

Dennis Bouvier, Ellie Lovellette, John Matta, Bedour Alshaigy, Brett A. Becker, Michelle Craig,
Jana Jackova, Robert McCartney, Kate Sanders, and Mark Zarb. 2016. Novice Programmers and the
Problem Description Effect. In Proceedings of the 2016 ITiCSE Working Group Reports (ITiCSE
'16). ACM, New York, NY, USA, 103-118. DOI: https://doi.org/10.1145/3024906.3024912

Alshaigy, B., Kamal, S., Mitchell, F., Martin, C. and Aldea, A., 2015, November. Pilet: an interactive
learning tool to teach python. In Proceedings of the Workshop in Primary and Secondary Computing
Education (pp. 76-79). ACM, 2015.

5

Contents

Abstract ... 2

Acknowledgements ... Error! Bookmark not defined.

Chapter One: Introduction .. 9

1.1 Background of Research Problem ... 9

1.2 Thesis Statement and Objectives .. 9

1.3 Motivation and Contribution ... 10

1.4 Thesis structure ... 11

Chapter Two: Literature Review... 13

2.1 Chapter Overview ... 13

2.2 Problem Description ... 13

2.3 Predominant Programming Problems ... 13

2.3.1. Teaching Method .. 15

2.3.2. Learning Styles and Preferences in Students .. 18

2.3.3. Choice of first programming language taught .. 21

2.4 Summary ... 23

Chapter Three: Design Principles of Programming Environments ... 24

3.1 Chapter Overview ... 24

3.2 Classification of Programming Environments for Novice Programmers 24

3.3 Examples Programming Environments for Novices ... 27

3.3.1 Alice ... 27

3.3.2 BlueJ .. 28

3.3.3 Jeliot3 ... 29

3.3.4 Robolab .. 30

3.3.5 RAPTOR .. 31

3.4 Evaluation of Programming Environments for Novices ... 31

3.4.1 Functional Features Evaluation .. 31

3.4.2 Educational Impact Evaluation .. 32

3.5 Programming Environments Use: Teachers and Students .. 22

3.6 Guiding Principles for Educational Programming Environments... 34

3.7 Summary ... 47

Chapter Four: Python Interactive Learning Tool: Architecture, Features and Demo 34

4.1 Chapter Overview ... 34

4.2 System Architecture .. 36

NB: this page omitted from bound and electronic versions

6

4.2.1 YouTube Directive ... 38

4.2.2 Activecode Directive.. 38

4.2.3 Codelens Directive ... 38

4.2.4 Parson’s Programming Puzzles Directive .. 39

4.2.5 Multiple Choice Questions Directive ... 39

4.3 PILeT Features .. 39

4.3.1 Embedded Videos .. 39

4.3.2 Embedded Code Compiler ... 40

4.3.3 Embedded Visualisation .. 41

4.3.4 Parson’s Programming Puzzles .. 42

4.3.5 Automated Assessment and Feedback ... 43

4.3.6 Additional Features .. 44

4.4 PILeT Demo Session .. 44

4.5 Compliance with Design Guidelines ... 45

4.6 Compliance with Felder-Silverman Learning Style Model .. 44

4.7 Summary ... 47

Chapter Five: Usability Evaluation of PILeT ... 48

5.1 Chapter Overview ... 48

5.2 Introduction to Usability Evaluation ... 48

5.3 Usability Evaluation Methods ... 49

5.4 Heuristic Evaluation .. 49

5.4.1 Heuristic Evaluation of PILeT ... 51

5.5 User Testing .. 55

5.5.1 User Testing of PILeT.. 55

5.6 Summary ... 60

Chapter Six: Learning Outcomes Evaluation of PILeT .. 61

6.1 Chapter Overview ... 61

6.2 Learning Outcomes Measurement .. 61

6.3 CS Circles ... 61

6.4 Usability Evaluation .. 62

6.4.1 Participants and Method... 63

6.4.2 Results .. 63

6.5 Learning Outcomes Evaluation ... 66

6.5.1 Participants and Method... 66

6.5.2 Results .. 67

6.6 PILeT 2.0 .. 71

7

6.6.1 Demo Session ... 72

6.6.2 Participants and Method... 73

6.6.3 Results .. 73

6.7 Summary ... 75

Chapter Seven: Conclusion and Future Work ... 77

7.1 Chapter Overview ... 77

7.1 Reflection on the Research Statement and Objectives .. 77

7.2 Threats to Validity .. 79

7.2.1 Internal Validity ... 79

7.2.2 Validity of Learning Styles .. 80

7.3 Recommendations for Future Work .. 80

References ... 83

Appendices .. 97

Appendix 1: Literature on Learning Environments .. 98

Appendix 2: Usability Heuristics .. 100

Appendix 3: Moderator Script .. 110

Appendix 4: Consent Form ... 124

Appendix 5: Task Scenarios ... 125

Appendix 6: Post-test Questionnaire... 129

Appendix 7: Usability Metrics .. 130

Appendix 8: Consent Form ... 134

Appendix 9: Usability Survey ... 135

Appendix 10: System Usability Scale ... 137

Appendix 11: SUS Questionnaire Results for CS Circles .. 138

Appendix 12: SUS Questionnaire Results for PILeT ... 139

Appendix 13: Selection Statements Quiz .. 140

Appendix 14: Loops Quiz ... 141

Appendix 15: Results Part 1 ... 142

Appendix 16: Index of Learning Styles Questionnaire ... 143

Appendix 17: Results Part 2 .. 146

8

9

Chapter One: Introduction

1.1 Background of Research Problem
With the rapid growth of internet technologies and its application, there has been an exploding
demand in the industry for graduates with computing expertise to fill those numerous employment
opportunities. However the number of applicants for CS degrees has plummeted dramatically by
28.7% for undergraduate courses compared to 10 years ago (Universities UK 2015) and by 5% from
2016 to 2017 (Higher Education Student Data 2017). This results in a small number of qualified
graduates and a shortage in the industry for information technology skills. Upon further investigation
those numbers have been attributed to students’ negative attitudes and aversion to programming
courses in general. Although several factors, while not exhaustive, were responsible for the problem,
such as the students’ failure to acquire rudimentary programming skills, understanding the syntax and
semantics of a programming language (Robins et al 2003) and critical cognitive problem solving
skills (T. Beaubouef et al 2001) to name a few, we are far from fully understanding the underlying
reasons behind different progression rates amongst them. Evidence from multinational studies (Lister
et al 2004, McCracken et al 2001) and literature review strongly implicated teaching techniques
adopted whilst teaching programming (J. Allert 2004), students’ learning preferences (Lahtinen et al
2005), in addition to the choice of the first programming language taught (A. McGettrick et al 2005a)
and usability issues found in e-learning tools (Ardito et al 2004). Whilst these reasons were
discovered almost a decade ago, the findings are still relevant today as more and more studies are
reporting the same causes without definitive solutions (Bosse and Gerosa 2017, Gomes et al 2012,
Özmen and Altun 2014)1.

1.2 Thesis Statement and Objectives
With the prevalence of mobile devices and e-learning, many instructors are in favour of using
innovative courseware, massive open online courses and virtual learning environments in teaching.
Some of these approaches have been proven effective in improving student’ retention and engagement
such as using games to teach a concept (Eagle et al 2008) or providing a user friendly environment
with less cryptic error messages and feedback to support the students in programming (Murphy et al
2008). However many of these tools are either too complex to use due to design configurations or do
not take into account the learning differences found in a diverse cohort of students. As a consequence,
students grapple with understanding programming theories and practice, exhibit decreased enthusiasm
towards the subject, and fail exams. Therefore this thesis states that

Combining multiple teaching methods to accommodate different learners' preferences will
significantly improve performance in programming

To test this hypothesis, an interactive web based learning tool to teach Python programming language
(PILeT) was developed. The tool's novel contribution is that it offers a combination of pedagogical
methods to support the student's learning style. Therefore, each programming concept will be
explained using videos, reading material, examples, exercises and puzzles independently, or in
combination with other approaches. Additionally, multiple choice questions are available at the end of
each lesson to assess the students’ understanding of the taught concept. This way, each student can

1 For this reason, throughout the dissertation, seminal papers were used as references dating back to 2005. In
instances where new findings are being reported, the latest research is cited.

10

learn from the teaching technique they are most comfortable with, or use a mixture of several methods
to support their learning (Pollock and Harvey 2011a).

An extensive literature review preceded the development stage to determine essential design
guidelines for building the pedagogical tool. The areas covered:

1. Predominant programming problems.
1.1. Teaching methodology.
1.2. Students’ learning styles.
1.3. Choice of first programming language taught.

2. Evidence of existing relationships between learning styles and teaching practices.
3. Analysis of existing pedagogical software and environments.
4. Students and instructors use of pedagogical tools.

Following this process, a clear set of objectives was devised to aid with the hypothesis. These
objectives are:

1. Identify essential design guidelines for the development of pedagogical tools.
2. Develop the interactive tool (PILeT) based on those guidelines.
3. A heuristic evaluation of PILeT to detect any usability problems associated with the interface

design by expert reviewers.
4. Perform another usability test from the perspective of end users with the aim of evaluating their

overall interaction and experience with the tool.
5. Evaluate the tool pedagogically by measuring the learning outcomes of students.

1.3 Motivation and Contribution
This research is driven by the author’s ambition to contribute to the huge body of research on teaching
introductory programing (Bruce and Bruce 2004, Pears et al 2007, Robins et al 2003) specifically the
pedagogical tools used to support the students learning (Gomez-Albarran 2005). Several of these
studies were concerned with the effectiveness of certain instruments’ features on the learning
outcome, for instance the benefits of code visualisation and execution for conceptual understanding
(Sorva et al 2013), using games or puzzles to increase the levels of engagement amongst learners
(Bayliss 2009, Curtis 2005a), or activities dedicated towards enhancement of problem solving skills.
A group of those studies observed the changes in behavioural traits in students under the tool’s
influence. While the results of these experiments seem promising, they are in danger of being
unreliable. A methodological analysis by Randolph (Randolph and J. 2007) of 352 published studies
revealed that a huge number of experiments did not follow any methodological frameworks which
throw into questions the validity of the results. The researchers discovered that around a third of the
studies did not recruit participants; the few that did were small scale experiments that did conform to
sampling techniques or follow the right guidelines in recruiting volunteers. As for scientific results,
many failed to statistically analyse the data and relied instead on speculations and loose
interpretations of questionnaire responses without supporting evidence. In addition, over half of the
experiments did not sufficiently specify their investigation methods, and a quarter of those did not
enclose the research questions or conduct a literature review before starting a new study.

The second area of concern which motives this thesis is the lack of usability testing, standard design
guidelines for the development of educational software, or evidence of tool evaluation in terms of

11

learning outcomes. As a matter of fact, some educators make the switch to digital tools to follow the
latest educational trends without realising the impact of their decision on their students or themselves.

A collection of significant outcomes from published studies were as follows:

 Most of the research on pedagogical tools measured the effectiveness of a single unique feature,
interactivity for example, on learning programming without taking into account other contributing
factors that hinder comprehension such as cognitive skills.

 Several studies measured the success of a tool by heavily relying on quantitative results such as
final exam marks without considering the students’ reaction and level of satisfaction with the tool.
A portion of those studies were not repeated to verify the accuracy of their results.

 Only a few of the studies in the field of educational technology inspected the teachers’ and
students’ use of pedagogical tools. For instance, what is preventing teachers from adopting these
tools to deliver the course or monitor the students’ progress (Levy et al 2007)? How do students
actually interact with pedagogical software (Stern, Markham, Hanewald, et al 2005)? Is it possible
that they are missing out on the actual learning objectives?

 The failure of several pedagogical tools is attributed to the absence of standardised design
guidelines and principles for developing those tools.

In light of these findings, this research’s original contribution is to improve the teaching and learning
of programming by devising a set of 11 essential design guidelines for the development of educational
programming environments. These guidelines were derived by combining the results of an extensive
literature review on educational software with established design guidelines for websites. In order to
evaluate them, an interactive learning tool was developed which conformed to the guidelines. The tool
was then tested by combining usability tests with measurements of conceptual understanding of
programming knowledge in students.

1.4 Thesis structure
The overall structure of the dissertation takes the form of seven chapters. This first chapter gives a
brief overview of the thesis by starting with an introduction into the background of the research
problem, followed by the thesis statement and objections, thesis motivations and contribution to
knowledge.

Chapter 2 contains an in depth literature review that covers common difficulties exhibited by first
time students, successful programming pedagogies, learning preferences, the influence of the first
programming language taught in addition to students’ and instructors’ use of pedagogical tools. The
chapter includes evidence of an existing relationship between learning styles and teaching methods.

Chapter 3 examines and evaluates popular programming environments used by novices based on
functionality and educational impact. The findings were used to develop a set of design guidelines for
the development of PILeT.

Chapter 4 details the essential design guidelines for developing programming tools. It also includes a
description of PILeT in addition to documentation of the system architecture and interactive features.
The chapter concludes with an outline of how it complies with most of the design guidelines and
learners on the Felder-Silverman Spectrum.

Chapter 5 describes the heuristic evaluation and user based testing of PILeT as conducted by expert
and representative users respectively, this includes the evaluation method and results.

12

Chapter 6 reports the process and results of the learning outcomes evaluation of PILeT.

Finally Chapter 7 concludes with a reflection on the research’s objectives along with threats to
validity and recommendations for future work.

13

Chapter Two: Literature Review

2.1 Chapter Overview
This chapter examines the literature on predominant programming problems commonly exhibited by
first year university students, and examples of successful methods of teaching introductory
programming courses. This is coupled with a number of recent studies, in computer science education,
suggesting an association between students’ learning styles preferences and teaching methodologies.
Finally the chapter concludes with the significance of the first programming language taught at
university on students’ in addition to instructors’ and students’ use of educational tools.

2.2 Problem Description
Introductory programming courses are an integral part of computer science education; they develop
logical and reasoning skills and improve problem solving abilities. Programming is customarily taught
to students in their first academic year in the UK. One of the expected learning outcomes of the course
is for students to create solutions that satisfy a set of requirements in a chosen programming language.
While some students succeed, many others fail at achieving that goal.

The difficulty and complexity of teaching programming is not exclusive to one institute but rather
universally acknowledged amongst educators (Milne and Rowe 2002a). Despite the abundant
literature and recommendations on teaching introductory programming, specifically curricula and
pedagogical consideration comprehensively summarised in the publication by (Pears et al 2007), the
effectiveness of these strategies are debatable. And with the absence of a widely recognised
pedagogical framework, it is challenging to implement these recommendations in a computer science
course.

The difficulties that novice programmers experience while learning have been extensively explored
over the years (Dale 2006, Lahtinen et al 2005, Tan et al 2009). These challenges have contributed to
the high failure and attrition rates for a very long period (Andrew McGettrick et al 2005, Nikula et al
2011). Students’ perceived attitudes towards programming have a negative effect on comprehension
of concepts. There is strong anecdotal evidence, supported by the literature (Lister et al 2004,
McCracken et al 2001, Robins et al 2003), suggesting that the average student lack rudimentary
programming skills by the time of graduation.

For some time, there has been an increasing interest in students’ learning activities and behaviour
when solving programming problems (Carmo et al 2007, Tie and Umar 2010). The most recent
learning analytics data from Stanford Computer Science Department and Graduate School of
Education (Blikstein et al 2014) offered a new insight into the preferences that students exhibit whilst
learning new programming ideas, and the influence of the teaching strategy used at the time. These
findings suggest a strong relationship between students’ learning style and teaching methods.

Combined together, these findings highlight the significance of identifying appropriate pedagogies to
address common challenges faced by a diverse group of students learning programming.

2.3 Predominant Programming Problems
One of the greatest challenges that have been frequently reported by first year computer science
students is learning to program. Programming requires an exhaustive comprehension of abstract
concepts in addition to advanced logical skills in the domain of problem solving (Robins et al 2003,

14

Winslow and E. 1996). This problem is not new; this difficulty has also been acknowledged by
teachers who are struggling to instil those imperative skills to students over the years (J Carter and
Jenkins 2010, A. McGettrick et al 2005b). A commonly recognised issue is novices’ inability to
translate a particular programming problem expressed in English to the corresponding solution in
programming code. This is largely due to students struggling with decomposing a problem into sub-
problems and implementing a solution to each part.

Many of the conclusions on studies exploring programming difficulties provided significant
information on cognitive and comprehension skills in novice students especially in the domain
problem solving (T. Beaubouef et al 2001) and deriving a solution strategy (Cutts et al 2006).
Researchers observed that whilst were able to articulate a problem and suggest solutions verbally;
they were not able to express it in code. This is not different from abstraction (Bouvier et al 2016,
McCracken et al 2001), which is extracting rules and concepts from a problem or example. In
addition, those studies revealed that students lack fundamental problem solving techniques that
requires the identification of basic problem elements, the relationship between them, and the operation
and steps necessary for constructing a solution. They also fail to apply the same problem solving
techniques on similar problems (Shute 1991). While these challenges are not applicable to all learners,
it is not uncommon, especially in a programming course, to end up with two students’ group at the
end of the academic year, the “experts” and the “novices” (Bornat and Dehnadi 2008, Robins 2010,
Winslow and E. 1996).

In an attempt to discover prevalent learning difficulties found in mixed ability student groups, several
studies investigated the role of personal attitudes and individual traits manifested by students on their
programming abilities. Those attitudes include self-efficacy; one’s personal belief in succeeding in a
task and mental models; a description of thoughts and ideas as they are represented in the real world
(Hamilton et al 2008, Ramalingam et al 2004), in addition to other factors such as motivation to learn
and capability of programming (Carbone et al 2009), engagement and interest in the topic (Corney et
al., 2010), encouragement and support by instructors and peers (Brenda Cantwell Wilson and Shrock
2001) and the incompatibility of teaching methodologies with learning styles (Thomas et al 2002a,
Zander, Thomas, Simon, Murphy, McCauley, et al 2009).

A different group of studies shifted their focus towards diagnosing learning difficulties that students
encounter whilst learning to program such as understanding the syntax and semantics of a
programming language and combining them into meaningful programming codes (Robins et al 2003).
Other challenges include:

 The difficulty of particular programming concepts such as: inheritance and polymorphism
(Goldman et al 2008).

 Development of programming misconceptions related to the language construct for example
classes and objects in Java (Kaczmarczyk et al 2010a).

 Code reading and tracing especially found in multiple choice questions in which students predict
the right answer (Lister et al 2004).

 Debugging and error finding whether it is the students’ own code or others (Sue Fitzgerald et al
2008).

 Difficulty of a programming language over another one (Mannila and de Raadt 2006).
 Programming paradigm; Object Oriented first vs. functional programming (Bruce 2004).
 In addition to inadequate lecture notes, textbooks (Lahtinen et al 2005), and curriculum (Pears et

al 2007).

15

Authors Mental
Model

Learning
Styles

Teaching
Methods

Programming
Language

Choice

Program
Comprehension

Programming
Concepts

Cognitive
Skills

(James
Allert 2004) x x x x

(Theresa
Beaubouef
and Mason
2005)

 x x x

(Lahtinen et
al 2005) x x x x x

(A.
McGettrick
et al 2005b)

 x x x

(Milne and
Rowe
2002a)

x x x

(Robins et
al 2003) x x x x x x

(Tan et al
2009) x x x x x

(Zander,
Thomas,
Simon,
Murphy,
Ren, et al
2009)

 x x x

No. Times
Outlined 3 6 6 5 4 4 4

Table 2.1 Common Programming Problems Reported by Students in Literature

 To summarise, Table 2.1 presents a list compromising of the most seminal literature on learning
difficulties found in first year undergraduate students as acknowledged by the CS Education experts,
along with the most common programming problems reported in those publications.

Students’ mental model, program comprehension, programming concepts and cognitive skills were
constantly reported as causes of failure of students in programming courses in their first year.
Interestingly, learning styles and teaching method were repeated the most (6 times) followed by the
choice of the first programming language taught (5 times). What stands out in the table is that the
choice of first programming language, along with programming comprehension and concepts are
specific to the domain of computer science whereas cognitive skills, mental models, learning styles
and teaching methods are associated with pedagogy. This suggests that those challenges should not be
examined independently but as a whole since it combines pedagogy specific issues along with
computer science concepts.

2.3.1 Teaching Method
Not long ago, teaching programming involved lecture notes and textbooks taking place in static
lecture halls or computer labs where content is passively delivered by the tutor and an example to
practice with throughout the duration of the lecture or lab. The problem with this approach is that
students cannot be expected to learn syntactical expressions of programming irrelevant to everyday
occurrences using traditional teaching methodologies. Textbooks are not sufficient without adequate
explanations supported by clear examples. Students can only master programming by rigorous

16

practice and persistence. It was evident that there was a pressing need to revamp the way it was
taught.

In order to improve teaching programming, many lecturers experimented with several teaching
theories and methodologies. An example is adopting an object first paradigm vs. procedural first,
which is still a controversial subject in computer science education circles that is yet to reach a
consensus on the decision as some feel strongly about the benefits of introducing objects first to
students rather than later (Astrachan et al 2005, Bruce 2004). Other teaching strategies stepped away
from those paradigms all together and focused on learners’ engagement by incorporating games;
either by introduce programming concepts and ideas whilst playing the game or writing game
assignments (Cliburn and Miller 2008), however this method is not without its drawbacks, as students
reported spending more time understanding the homework requirement compared to traditional
exercises (Sunt al 2011), or they get invested playing the game itself whilst inadvertently forgetting
the assignment requirements, and in some cases missing out on the learning objectives or failing to
transfer and apply the learning outcomes into real life problems or situations.

The literature on teaching introductory programming is vast (Pears et al 2007). The process of finding
the appropriate teaching methodology and implementing it on a diverse group of learners with
different abilities has potentially grave implications towards either the success or failure of students.
The best teaching practices in introductory programming courses should consider the perspective of
both the lecturer and the learner. Lecturers should address common difficulties experienced by
novices such as the syntax and features of a programming language, problem construction and
solution formulation, and misconceptions surrounding programming concepts as a result of
misunderstanding or failure to build mental models. The teaching methods itemised below targets
several programming problems reported by students and instructors alike. Results of these methods
showed an increase in the success rate of students learning the subject.

2.3.1.1 Syntax free Approach
Adopting a syntax-free approach (Fidge and Teague 2009, Heliotis and Zanibbi 2011) improves
programming competence and develops critical thinking skills (Tasneem 2012). Students define,
examine and suggest possible solutions to similar problems without any consideration to the
programming language. Once the answer is chosen, students start constructing a formal algorithmic
scheme written in pseudo-code then convert it to the equivalent syntax of the programming language.
This technique enhances generic problem solving abilities as it requires a profound understanding of
the question, detecting key terminologies (e.g. goal, conditions) and strategically planning a solution.

2.3.1.2 Examples and Exercises
Examples form an indispensable part of the learning process; they illustrate new ideas and motivate
students into learning. Excellent programming examples should demonstrate the language structure,
style, and apply appropriate algorithms for problem solution (Borstler et al 2010). As such these
examples must follow a consistent pattern that clearly exhibits the guidelines and rules that students
are expected to replicate in their code in order to develop good programming habits. Additionally,
examples must be carefully designed to prevent students from forming their own misinterpretations
and misconceptions of programming concepts, or to lead them to poor learning tendencies (Carbone et
al 2001). Furthermore, examples should correspond with the taught concept specifically without being
too abstract or too complex (Katherine Malan and Halland 2004). Once the student fully understands
the principle, connections could be made with other examples to show how a learned concept could be

17

applied or combined with other concepts in different examples. This will allow the student to
incrementally build his knowledge and improve his problem solving techniques.

Follow up exercises (Parsons and Haden 2006, Shuhidan et al 2011) are just as equally important;
they effectively implement learned constructs and assess the level of comprehension to allow timely
intervention. Assignments should encourage students to think creatively of new solutions to different
situations and test different programming statements. Various question types (e.g. write piece of code,
find bugs in the code) permits students to think of different perspectives of the programing language
as opposed to large code writing tasks that overwhelms students struggling with writing programs
involving more than one concept (Zingaro et al 2012). A number of studies have investigated the
factors that interest students in assignments. Research by Hansen and Eddy (Hansen and Eddy 2007)
found an existing relationship between the level of frustration and engagement in programming tasks,
this means that students enjoy assignments that present some level of difficulty that increases
confidence once solved. Laymen et all (Layman et al 2007) suggest different characteristics that
increases students’ engagement in assignments such as usefulness and niftiness. Cliburn and Miller
(Cliburn and Miller 2008) argue that given a choice, student favour specific assignments over open
ended tasks. Therefore, careful consideration must be given to the learning outcomes that will be
assessed before selecting assignments for students.

2.3.1.3 Puzzles
Using puzzles to teach programming places less emphasis on syntax and concentrates on problem
solving techniques (Curtis 2005b, Ross 2002). Puzzles have been recently employed in introductory
computer programming courses (Cha et al 2007, Kawash 2012) to attract students who are initially
intimidated by programming and to exemplify abstract concepts. These puzzles aim to develop the
fundamental reasoning and logical skills necessary to systematically solve problems and transfer these
vital skills into applicable real life situations. They can also be used as a vehicle to imperceptibly
instil programming principles such as searching and sorting, recursion, and solution design. Results of
an experiment conducted by (Merrick 2010) positively associated puzzles with increased motivation
and participation in beginners. Puzzles in programming can take many forms from word puzzles
(crossword) to game like and logical puzzles (sliding tiles, Tower of Hanoi).

2.3.1.4 Visualisation
Studies into novice programmers learning unveiled that common programming misconceptions are
mainly behind programming problems. These misconceptions include: mistaking objects for classes,
objects as records for storing values, and methods are a form of assignments (Holland et al 1997).
Furthermore, students do not understand object behaviour once methods are invoked; their allocation
in memory, or the sequence of method execution. Visualisation tools are instrumental in
conceptualising these aspects by animating the dynamic interaction between different object elements
and functions within different program states upon execution (Brusilovsky et al 2006). They can also
be utilised to augment different programming concepts at different stages. And yet, studies have
showed that the use of visualisation software is not widespread (Levy and Ben-Ari 2007) despite their
proven effectiveness. Lecturers are hesitant toward adopting these tools because not only do they
require practice in order to use them effectively, they also involve adapting the teaching pedagogy and
curriculum to the tool which is time consuming. There is also the possibility that student might not
rely on these visualisation instruments because of the technical difficulties they face whilst running
the tool.

18

There is growing evidence to support the success of visualisation tools to teach programming with
promising results. The key to their successful utilisation is to provide the necessary training and
support for educators who decide to adopt and integrate this technology in the classrooms, and
encourage the students’ use of these tools by incorporating interactive functions to increase
engagement and motivation when learning.

2.3.1.5 Implication of teaching methodology
Overall, the goal of each of the programming methods listed so far is to foster critical thinking and
reasoning skills in order to improve problem solving and decision making abilities in students.
Additionally these methods have shown to be successful in boosting learners’ confidence and
persistence when faced with frustrating problems and abstract concepts, and increase their motivation
and level of engagement with the content they have learnt.

While those methodologies focus on different teaching theories and use different instruments to
deliver the concepts (syntax free, examples and exercise, puzzles, visualisation), they all aim to
improve students’ performance in programming. And while a pedagogical technique might be
successful in one group of learners, it could result in negative consequences such as loss of interest
and demotivation in others. Combining those pedagogies would reconcile the differences in learning
styles found in a group of leaners. To this end, lecturers must consider those factors when designing
and developing programming courses.

2.3.2 Learning Styles and Preferences in Students
Recently, there has been a major increase in the number of students enrolling in computer science
courses worldwide (Crump 2004), especially international students. In addition to adjustment and
language issues caused by the transition, they also experience a number of challenges because of
social and cultural differences in their learning. This results in a diverse student population with
different learning needs.

Learning styles are identified as “cognitive characteristics, affective and psychological behaviours
that serve as relatively stable indicators of how learners perceive, interact with and respond to the
learning environment” (Keefe 1979).

Students of different age groups, skill and gender absorb and assimilate new information differently.
For example some learners experiment and try things out as a means of learning while others are very
cautious about their decisions and prefer reflective thinking before taking a course of action. Some
favour written explanation to instructions and others respond better to graphical explanations in the
form of pictures, drawings and charts.

Generally, a student’s learning profile is based on previous experiences in which the adopted learning
approach worked best for them. This preference could change however as the students’ progress in
their learning or face a new problem in which another learning style would be more suitable to adopt.
The diversity of students’ preferences has led many lecturers to reconsider the design and delivery of
programming courses to reduce experienced difficulties amongst learners, and bridge the knowledge
gap between them.

There are several existing learning theories since it gained popularity in the 1970s. The literature so
far identifies 71 learning styles models (Coffield et al 2004), with VARK (visual, aural, read/write,
kinaesthetic) and Kolb learning style model being the most employed strategies in several scientific
fields namely mathematics and chemistry (Chin and Brown 2000, Pashler et al 2008). Similarly, there

19

has been a growing interest in the value and application of learning theories in computer science
education context (Haden et al 2004). The main aim of those studies was to help the students
recognise their own individual learning style in order to devise teaching strategies to support students
in a mixed ability classes, and improve their academic achievements. Although the validity and
reliability of those theories are still questionable, a considerable amount of research has reinforced the
positive impact of matching teaching strategies with learning styles. In most of those studies, the
Felder-Silverman learning style was model was applied.

2.3.2.1 Felder - Silverman Learning Style Model
The Felder - Silverman learning style model (Felder and Silverman 1988) is a synthesis of several
learning theories which includes Kolb's Learning style Model (Kolb 1984), the Myers-Briggs Type
Indicator (Briggs Myers and Myers 1980) and the Hermann Brain Dominance Instrument (Hermann
1982). This model has been used to design teaching activities in both traditional and technology
enhanced learning.

The Felder - Silverman learning Style Model divides students into four dimensions (Felder and Brent
2005) based on their responses to four questions:

1. What kind of information does the learner prefer processing: sensory (visions, noises, physical
feelings) or intuitive (memories, ideas, views)? Sensing learners are factual, practical and partial
towards traditional well established procedures to problem solutions. Intuitive learners are
drawn to concepts, innovative and creative problem solvers.

2. What kind of sensory information is mostly suitable to the learner: visual or verbal? Visual
learners favour pictures, diagrams, flow charts whereas verbal learners favour written or spoken
instructions and explanations.

3. How does the learner choose to process and understand new information: actively (by physical
engagement in discussions and activities) or reflectively (by way of reflection and self-
examination). Active learners learn by experiencing things out, working with other group
members and on the other hand reflective learners learn by thinking first and prefer to work
individually.

4. How does the learner naturally develop their knowledge: sequentially (gradual development by
processing one piece of information at a time) or globally (looking at the “big picture”)?
Sequential learners learn by incremental acquisition of knowledge in a systematic manner
whereas global learners learn by acquiring knowledge randomly and making huge steps in
learning by understanding how does the material they already know relate to each other until they
see the big picture.

There are several advantages to the Felder – Silverman model; while most of the other learning style
models classify learners based on their abilities, the Felder-Silverman model primarily focuses on the
preferred learning style (Felder 1996). A learning style profile highlights the areas of strength in
students and the potential practices that could hinder their learning. Additionally, although other
models assign learners into either overly restrictive categories or a few groups, the Felder – Silverman
model organise learners into balanced dimensions classified as (active-reflective, sensing-intuitive,
visual-verbal and sequential-global). Consequently, if students exhibit a preference towards a
dimension, then they will easily learn in a teaching environment that supports that dimension or
experience difficulties otherwise.

20

Although other learning style models argue that the content design of the teaching course should be
altered to accommodate diverse learners, Felder argues that it is perfectly adequate to combine a
variety of teaching methods.

2.3.2.2 The Index of Learning Style Questionnaire
The Index of Learning Style Questionnaire (Felder and Soloman 1997) is a validated and reliable
research instrument (J. Allert 2004, Felder and Spurlin 2005) that compromises of 44 multiple choice
questions to determine the learning preference of students based on the four dimensions identified in
the Felder – Silverman model. The test is freely available online, and can easily be administered by
teaching faculty, or used by students independently to help them understand and improve their
learning experience as its simpler to understand and score than other tests such as the Myers-Briggs
test.

The index was first developed to understand learning style differences in engineering students but was
later applied in a broad range of disciplines especially in computer science education research and
learning technologies (Alaoutinen and Smolander 2010, J. Allert 2004, Carmo et al 2007, Thomas et
al 2002b, Tie and Umar 2010, Zualkernan et al 2006).The findings from those studies have
established a relationship between the preferred learning style and positive performance in
programming even though the model is not relatively new. For example, results from an experiment
carried out by Thomas et al in an introductory programming course showed that reflective learners
scored better grades than active learners in their exams, and verbal learners achieved higher grades
than visual learners (Thomas et al., 2002). These results were corroborated by similar experiments
carried out by Allert (James Allert 2004) and Zualkernan et al (Zualkernan et al 2006). However in
the latter experiment, the sequential learners outperformed the global learner in one case study
whereas the global learners outperformed the sequential learners in another case study.

2.3.2.3 Relationship Between Learning Styles and Teaching Method
There are a growing number of studies that confirms the association between learning styles and
pedagogies. Their findings report a significant improvement in students’ programming skills and
comprehension when matched with a teaching methodology that compliments their preference.
However students preferences are subject to change either over time, or due to cognitive development,
or through experiences (Graf et al 2007). This might result in complete rejection of other teaching
methods by students, or cause discomfort in their learning as they lack the mental skills to understand
and benefit from other teaching approaches. Therefore, it is advisable to create a heterogeneous
teaching environment that fulfils different learning requirements and support students’ choice. This
could be achieved by devising teaching strategies that benefit the majority of learners and providing
supplementary material and resources for those disadvantaged by other pedagogies.

For example, in order to appeal to sensing and intuitive leaners, the teaching material should include
factual information complimented with abstract concepts. It also helps to provide specific examples
for sensors and interpretations and theories for intuitive learners. Visual learners could be presented
with animation of code execution, which could benefit visual, sequential and active learners,
accompanied by summaries or descriptions for verbal and intuitive learners.

In order to engage both active and reflective learners in lectures, classroom discussions and problem
solving activities would benefit the former group and frequent breaks for thinking and content
reflection would be useful to the latter group. Finally sequential learners are already at an advantage
as most of any subject material is sequentially ordered and gradually develops during the course

21

allowing students ample time to absorb and process the information. Global learners could be assisted
by providing in advance an overview of the lesson and the learning outcomes to enable them to see
the big picture and make connection with other content.

It might be difficult at first to plan and design teaching strategies to accommodate several students’
needs due to several constraints including the heavy workload and different responsibilities of the
academic staff, however these techniques could be implemented with the aid of educational
technologies to disseminate the content and support students learning.

Recent developments in the field of educational technologies and hypermedia have prompted
researchers to consider learning styles whilst building those tools. Studies investigating the influence
of learning preferences in technology enhanced systems were increased as a result of the popularity of
distance learning, and many adaptive systems were designed to provide courses that cater to different
learners and fit their individual needs. Examples of those educational technologies include CS383
(Carver et al 1999), IDEAL (Shang et al 2001), MAS-PLANG (Peña et al 2002), TANGOW (Paredes
and Rodriguez 2004), and AHA! (Stash et al 2006). Those technologies could be used to enhance the
learning environment for students and increase their performance in programming courses.

2.3.3 Choice of first programming language taught
There are several programming languages taught at university in introductory courses (Ernie
Giangrande 2007). The decision is usually influenced by the language characteristics, the choice of
other universities (de Raadt et al 2002, 2004), industry preferences (Dingle et al 2000) or popularity
as measured by the TIOBE index (TIOBE 2016).

Students’ first experience with programming usually involves writing code in Java or C++, however
there have been several arguments about the suitability of those languages for introductory courses
(Bruce 2004) in addition to research exploring the benefits of each language, or comparing them
objectively in an educational context (Ernie Giangrande 2007, Mannila et al 2006, Mannila and Raadt
2006).

There are a number of possible risks associated with teaching Java and C++ such as syntactical
difficulty and cognitive overload. These problems arise as result of concentrating on the constructs
and features of those languages such as object orientation and polymorphism and digressing from the
main objective of learning programming which is problem solving (Palumbo 1990). As a result of
these concerns, the new trend of teaching Python as a first programming language is gaining
momentum (EDU-SIG 2016), becoming a natural choice for many educators (Agarwal and Agarwal
2006, Leping et al 2009, Radenski 2006) and a favourable option amongst students(Sanders and
Langford 2008, Stephenson 2009).

Python is an interactive programming language that has been developed as a teaching and learning
instrument. The language has several desirable attributes such as expressive syntax and meaningful
semantics akin to natural language that allows students to explore different expressions and functions
and experiment with several problem solutions. It also satisfies the criteria of language features for
programming languages used for teaching (Milbrandt 1995) which are:

• Simple and easy to use by students.
• Structured in its design.
• Powerful computing capacity.
• Simple syntax and meaningful names for keywords.

22

• Dynamic definition of variable types whilst typing.
• Strict format of input and output to foster good programming models and rules.
• Instant error feedback and powerful tools to encourage debugging and testing.
• Produces visually appealing graphical user interface components for small and large scale

projects.
• Facilitates easy transition to different programming paradigms (Goldwasser and Letscher, 2008)

and computer science courses (Agarwal and Agarwal, 2005).

2.3.4 Students’ and instructors’ use of educational tools
Several research projects have been dedicated towards the development of novice programming
environments (Pears et al 2007). The main motivation behind these tools is to facilitate learning for
students, in addition to supporting teachers in their roles (i.e. feedback, assessment and course
management). Nevertheless, there are little to no signs of these tools being adopted by teachers and
learners despite their wide availability. This could be attributed to the fact that most of these tools
were designed to solve specific programming problems experienced by students in a university course
(a notable example includes Greenfoot (Kölling and Michael 2010) designed to help students
understand Object Oriented programming concepts). As such, it is no surprise that they are several
tools developed by different universities that solve the same programming problem and with similar
features. However, due to different universities’ policies, the use of these tools might be exclusive.
Another reason for the limited adaption is the absence of support or lack of contact point after the
tool’s development by researchers, as these tools are mostly prototypes or in beta release, making it
difficult for teachers to customise these tools to meet the individual needs of their students.

Numerous studies have attempted to explain students’ and teachers’ use of these environments and
their pedagogical effect (Knobelsdorf, Isohanni, & Tenenberg, 2012; Levy & Ben-Ari, 2007; Stern,
Markham, & Hanewald, 2005). While the use of these environments is generally met with enthusiasm
by teachers, they are reluctant about implementing them at all times for practical reasons. Setting up
an environment for the first time is often tedious and complicated, and without the right technical
support, it often leads to teachers abandoning these systems altogether because they feel that they
have no control over them. Learning to use these environments is time consuming as well and requires
hours of practice to benefit from the various interactive features they offer, in addition to looking for
good examples, exercises and teaching resources that aligns with the environment’s pedagogical
approach, or suitable for a diverse cohort of learners. There are also a number of authors who dispute
the educational value of these systems (Naps et al., 2003) or report mixed results (Gurka & Citrin,
1996; Hundhausen et al., 2002).

Students on the other hand are more keen on using programming environments and understand their
significance on their learning achievement. However, they rarely use them independently outside of
the lecture mainly because the majority of these systems are used as supplementary tools by teachers
and therefore their use is often voluntary for students. Another reason that explains the inconsistent
use of these tools is the reported difficulty of working with these environments as several of them
were developed by experts and not user oriented. In an observational study investigating the use of
novice pedagogical software carried out by Stern et al. (Stern et al., 2005), it was discovered that
students create their own techniques for using software and these techniques inadvertently differ from
the intended use by the developers. They also struggle with identifying the learning activities or
interacting with advanced features without further assistance. This case is especially accurate when
the instructional designs of the environment are ambiguous and interferes with their learning, or if the
environment’s teaching method is incompatible with their learning style. And while some students

23

manage to use these tools successfully, they find it hard to transition to other IDEs afterwards. This
results in learners losing interest in these tools altogether.

It is evident that there are a number advantages and disadvantages associated with the use of novice
programming environments by both teachers and students. Consequently, it is important to anticipate
any potential difficulties and issues that arise as a result of using these systems by learners, and
consider additional costs on teachers in terms of installation, customisation and course management
(McKimm, Jolie, & Cantillion, 2006). Although digital literacy might not be a problem for current
university students, there should be a support system in place to assist them with the technical and
educational aspects of the tool. Additionally, careful considerations must be taken regarding the
design and features of the tool (i.e. visual and interactive elements) to make learning programming
more engaging for students.

2.4 Summary
This chapter provide a brief description of the problem statement including literature relating to the
difficulties that novice students’ encounter whilst learning programming for the first time. Although
several problems have been identified, both individual and language related, it is reasonable to
conclude that the four main programming problems are teaching methodologies, learning styles, the
choice of the first programming language taught and usability problems associated with e-learning
tools.

These conclusions have a serious implication on the pedagogical design of programming courses and
the usability issues of educational tools. In order to create a better learning environment, the teaching
instrument must appeal to a diverse group of learners, supports several students’ preferences, and is
easy to use by both teachers and learners.

In order to teach several learners on the Felder-Silverman Learning Style spectrum (Active/Reflective,
Sensing/Intuitive, Visual/Verbal, Sequential/Global), lecturers should consolidate the differences
found in a group of learners. As such:

 Syntax free approach to appeal to (Active/Sensing /Sequential) learners.
 Examples and Exercises to be favourable by (Active/Verbal/Global) learners.
 Puzzles to attract (Reflective/Sequential) learners.
 Visualisations to cater to (Sensing/Visual) learners.

The presented methods were specifically chosen because they were proven to address several
difficulties reported by new learners such as problem solving skills in addition to increasing
performance and motivation in students.

The next chapter will explore a number of popular existing educational tools used at universities and
their evaluation. The reported findings will be used to form the design guidelines which in turn were
used to develop the interactive tool.

24

Chapter Three: Novices Programming Environments

3.1 Chapter Overview
This chapter examines the classification of programming environments for novice programmers along
with examples of popular tools used to teach programming to first year students. This is followed by
an evaluation of those environments based on functional and educational features. The findings were
used to develop a set of guiding principles for the design the pedagogical tool central to this research,
PILeT (Chapter 4).

3.2 Classification of Programming Environments for Novice Programmers
In recent years, a large number of programming tools and environments have been developed to make
learning programming more accessible to a large audience of different ability levels. These tools often
teach a comprehensive set of concepts, or offer debugging support and error detection for
programming code. Another motivation for tools’ development was to reduce the workload on
teachers in the form of automated assessments and feedback, and content management and delivery
(Ala-Mutka, 2005; Douce, Livingstone, & Orwell, 2005). These features are especially appreciated by
students who value the importance of instant feedback and formative assessment as it allows them the
freedom of experimenting with code and learning from trial and error.

There are over 50 programming environments dedicated to novice programmers, each with its own set
of educational objectives and solutions. As such, several authors have attempted to organise these
environments by suggesting classification taxonomies (Guzdial, 2003; Powers & Gross, 2005) with
Kelleher and Pausch (Kelleher & Pausch, 2005) offering the most extensive classification for
programming environments and languages for novice programmers (Figure 3.1).

According to Kelleher and Pausch, novices’ environments are divided into two broad categories:
systems that try to teach programming for the sake of programming, called teaching systems, and
systems that assist the use of programming for the sake of another goal, called empowering systems.
As this thesis is focusing on teaching and learning programming, empowering systems have not been
explored further in this research, and thus all of its branches have been excluded from the diagram.

25

Figure 3.1 Classification System for Programming Environments And Language for Novice Programmers

Teaching systems are created to help students learn programming. Therefore, the majority of the
programming environments in this group include simple programming tools that expose learners to
fundamental programming concepts and the mechanics of programming. The other systems are
designed to motivate student into programming either by allowing them to work together side by side
or over a network, social learning, or by providing reasons to program for instance giving students
specific tasks or a set of objectives as a starting point to solve a problem. Since the literature in
Chapter 2 (Section 2.3) heavily implicated programming concepts and code cognition as learning
obstacles, the emphasis will be on systems that aid with the mechanics of programming.

The first group in mechanics of programming, expressing programs, are systems that aim to make it
easier for learners to express programming instructions in a specific programming language as with
lightweight IDEs. The second group, structuring programs, focuses on the organisation and structure

Programming

environments and
languages for novice

programmers

 Empowering systems Teaching systems

 Mechanics of
programming

 Expressing programs

Simplify typing code
(e.g. lightweight IDEs)

 Find alternatives to
typing program

 Structuring programs
(e.g. flowchart tools)

Understanding
programming

execution

Tracking programming

execution
(e.g. line by line code

execution)

Making programming

concrete
(e.g. microworlds)

Models of program
execution
(e.g. visual

programming
environments)

 Social learning Providing reasons to
program

 Solving problems by
positioning objects

 Solve problems using
code

26

of the code (algorithm) instead of the syntax of the code as can be seen in flowchart tools. Finally the
third group, understanding programming execution, aims to help the students understand what
happens in the machine’s memory at run time by visually tracking the execution of the program line
by line and as a whole. Examples include microworlds, line by line code execution and visual
programming environments. Below is a description of different environment types based on those
classifications.

3.2.1 Understanding programming Execution

3.2.1.1 Line by line code execution
For students learning object oriented languages such as Java, it could be useful to experiment writing
code in an interface that allows learners to assign values to variables, initialise objects and implement
methods in the same way as a functional programming language for example Python. DrJava (Allen,
Cartwright, & Stoler, 2002) is a lightweight pedagogic tool that enables students to run programs in
an interactive incremental manner.

3.2.1.2 Microworlds
Microworlds are novice centred worlds that allows users to interact and manipulate the surrounding
virtual environment by a set of programming code instructions. Microworlds usually employ
storytelling techniques or game like adventures to facilitate learning programming. Examples of
microworlds are Karel the Robot (Pattis & E., 1981) that teaches Karel programming language, and
Greenfoot programming environment (Kölling & Michael, 2010) that teaches Java programming
language.

3.2.1.3 Visual programming environments
There are various forms of visual programming tools: some use graphical representations of the
programming code to allow learners to build algorithms by dragging and dropping elements of the
code in the right order. These elements could be represented as pictorial icons such as RoboLab
(Karoulis & Athanasis, 2006) or text code such as JPie (Goldman, 2003). Another group of visual
programming tools either offers static visualisation of programming elements during execution, such
as BlueJ (Kölling, Quig, Patterson, & Rosenberg, 2003), or dynamic visualisation, such as Jeliot3
(Moreno, Myller, Sutinen, & Ben-Ari, 2004), or both, such as jGRASP (James H, Hendrix, &
Umphress, 2010). Each of these systems have their own strengths and weaknesses (Ragonis & Ben-
Ari, 2005).

3.2.2 Structuring Programs

3.2.2.1 Flowchart tools
Flowchart tools enable learners to construct small parts of code graphically by using templates and
manipulating flowcharts. The objective of these tools is to teach learners the flow and direction of
functions rather than fixating on the syntax of the programming language. These tools also allow
student to change the connection and direction between different program elements. Example of these
tools includes RAPTOR (Giordano & Carlisle, 2006).

27

3.2.3 Expressing Programs

3.2.3.3 Lightweight integrated development environments
Expert programmers use sophisticated software development kits (SDKs) and integrated development
environments (IDEs) to compile and execute programs. Some of these IDE’s, such as NetBeans, are
used to teach introductory programming courses, however, these tools were proven to be difficult to
use by novices as they require complicated operations. Lightweight IDEs are simple, easy to use
programming editors used in educational environments with helpful features such syntax highlighting
and autocomplete. An example of a lightweight IDE is IDLE (“25.5. IDLE — Python 3.6.0
documentation,” 2017).

3.3 Examples Programming Environments for Novices
There are several options of educational technologies to choose from. Though many share similar
features and characteristics, each of one these tools offers its own distinct support type (Powers &
Gross, 2005). This section presents a limited selection of some of the widely recognised pedagogical
environments that have been heavily investigated by the computer science education community.
Alice (Cliburn, 2008), BlueJ (Kölling et al., 2003), Jeliot3 (Moreno et al., 2004), RoboLab (Karoulis
& Athanasis, 2006) and RAPTOR (Giordano & Carlisle, 2006) are educational environments that
have been used to teach introductory programming at university level. These tools were specifically
selected to exemplify the group of environments specified in section 2.2. 2

3.3.1 Alice
Alice (Figure 3.2) is a popular microworld system that enables learners to build programs from
scratch by manipulating objects in a 3D environment. Programming in Alice is implemented by
dragging and dropping graphical blocks labelled with objects, methods and other command lines into
a main window (called a main world). Once these blocks are arranged and dropped in the right order,
a textual representation of those blocks unveils. Learners can also change the execution flow of
programs by using control structures such as for and while loops. As the code in each block is fixed,
i.e. uneditable, Alice encourages students to build different programs using essential concepts taught
in introductory programming courses without worrying about producing syntactical errors.

2 It should be noted that none of these environments teach Python. An existing tool, How to Think Like A
Computer Scientist: Interactive Edition, has been reported to be used by several learners individually but never
at an institutional level.

28

Figure 3.2 Alice

3.3.2 BlueJ
BlueJ (Figure 3.3) is a Java IDE specially developed to teach an object oriented language to students.
The environment allows learners to write, edit, compile, test and debug their code. BlueJ graphically
represents the relationship between several objects and classes in the form of a UML (Unified
Modelling Language) diagram. This feature allows the students to understand the class hierarchy of
objects (i.e. superclass, subclass) and other objected oriented concepts such as inheritance. Users can
alter the state of classes by typing in the syntax in the editor, or clicking on the objects.

29

Figure 3.3 BlueJ

3.3.3 Jeliot3
Jeliot3 (Figure 3.4) is a program visualisation tool developed to help beginner students learn object
oriented programming and procedural programming. The user interface contains a code editor and a
visualising space that incrementally animates each line of source code during execution. If there are
any compilation errors, the program highlights the line where the error occurred and asks the user for
the correct input. This feature encourages learners to experiment with code and learn from their
mistakes.

30

Figure 3.4 Jeliot3

3.3.4 Robolab
Robolab (Figure 3.5) is a LEGO programming environment that uses assembly language to program
and control robots. In order for the robot to operate, learners first create the program by assembling
programmable bricks and icons that represent functions and instructions in the interface then
download the program to the robot via an infrared transmission. This environment teaches
programming by allowing students to construct their knowledge while modifying and testing their
robots and thus motivating them into learning.

Figure 3.5 RoboLab

31

3.3.5 RAPTOR
RAPTOR (Figure 3.6) is a learning environment that was developed to teach students algorithm
development by drawing flowchart diagrams. Each stage of the program is built by selecting different
flowchart symbols from the interface representing variable assignment, user input, program output,
loops, procedure calls and selections. Additionally, students are allowed to manually add more
information to symbols which are automatically checked for syntactical correctness to prevent any
errors. The programming elements of RAPTOR are similar to C and Pascal languages.

Figure 3.6 RAPTOR

3.4 Evaluation of Novice Environments
In order to evaluate programing environments for novices, a rubric was designed with a set of
standardised criteria to measure two dimensions: the functional features of each tool and the
educational impact on novice learner (Appendix 2). The functional features evaluation rubric was
distilled from the works of Kelleher and Pausch (Kelleher & Pausch, 2005) and Gross and Powers
(Gross & Powers, 2005).

3.4.1 Functional Features Evaluation
The table in Appendix 2 presents a comparison of the different functional features of each
environment from the following aspects: programming style, programming concepts taught, code

32

representation in the tool, code construction, additional support to understand programming concepts,
and syntax error handling.

It can be seen from the table that developers of those tools have tried to incorporate different
approaches to teach programming concepts. They have also included several features to make
programming easier and more accessible to students. And while some novice environments succeeded
at simplifying programming ideas by providing alternatives to typing in code, like Alice and
RAPTOR for example, they can hardly compete against tools that actually teach the mechanics of
writing programs, like BlueJ and Jeliot3. However, these tools reportedly have a steep learning curve,
and make it difficult for students to transition into using IDEs.

Therefore, in order to support students in their learning, it is necessary to create an environment that
focuses both on the syntactical aspects of the programming language and problem solution. This could
be accomplished by developing an integrated environment with a built in IDE for code formulation
and a space for algorithm visualisation. Additionally, the tool should reinforce the taught
programming concepts by offering supplementary material along with examples, exercises and error
feedback to address the gap in their knowledge and improve their programming skills.

3.4.2 Educational Impact Evaluation
Several strategies were used to evaluate the educational impact of novice programming environments.
These techniques were adopted from the works of Hundhause et al. (Hundhausen, Douglas, & Stasko,
2002) in which they used anecdotal, analytical and empirical evidence to assess students’ learning
outcomes after using these tools for a fixed period. Both quantitative and qualitative data were
collected, ranging from overall grades to questionnaires, to support the evaluation. A summary of the
results is listed in Table 3.1.

33

Programming
environment

Educational impact

Alice Using Alice increases the performance and retention of struggling novices whilst
having little or no impact on other groups. Nevertheless, it was reported to
increase the level of confidence and attitude towards programming on all students
(Bishop-Clark et al 2007, Sykes 2007).

BlueJ A link was established between using BlueJ and creating programming
misconceptions in students. Though some of these misunderstanding may be
alleviated with the right intervention methods, they could lead to new problem in
program comprehension (Chudowsky et al 2001).

Jeliot3 Jeliot3 must be used for a prolonged period by students in order to benefit from
the different functions of the tool. Additionally, only struggling students fully
benefited from using the tool animation feature (Maravić Čisar et al 2011).

Robolab Leaners reported difficulties using Robolab as some aspects of the environment
are very difficult to grasp. It also did not have a positive impact on their learning
because it takes a very long time to complete a programming exercise (Fagin
2002).

RAPTOR RAPTOR enhances students’ comprehension of learning algorithms whilst it fails
to teach the students the syntax of programming (Carlisle et al 2005).

Table 3.1 Comparison of Programming Environments for Novices (Educational Impact)

While it is evident that some learners benefit from novice programming environments, those benefit
are limited to a small set of students for various reasons mostly relating to functionality and usability.
Therefore it is important to investigate students’ use of pedagogical tools and teachers’ utilisation of
these systems to teach programming. It is also worth exploring whether a relationship exists between
the system design and learning outcomes.

3.7 Summary
With the prevalence of programming environment for novice learners, several teachers are in favour
of using them in introductory programming courses at university. While some of these tools have
been proven effective in improving student’ retention and engagement, many have failed to address
the difficulties that students experience whilst learning. A systematic evaluation of these tools
concluded that most of these problems were attributed to design and usability issues as opposed to the
quality of the teaching resources or examples. The As a result, a set of design principles for
educational programming environments were developed in the next chapter to help with the design of
PILeT.

The next chapter includes a description of PILeT in addition to documentation of the system
architecture and features.

34

Chapter Four: Design Principles of Programming Environments

4.1 Chapter Overview
This chapter presents the design guidelines for building educational environments. This is followed by
the process of developing PILeT which includes a layout of the system architecture and a description
of the features. The chapter concludes with an outline of how it complies with design guidelines and
learners on the Felder-Silverman Spectrum (Chapter 2).

4.2 Guiding Principles for Educational Programming Environments
Despite the growing popularity of programming environments for novices, there does not exist a set
of standardised design guidelines or guiding principles to help with the development of these systems.
Therefore it is no surprise that while some of these educational environments were found to be useful
in assisting students with learning programming, many fell short of fulfilling basic learning objectives
due to design or usability issues. These environments also ignore the individual differences and needs
existing in large student groups such as comprehension skills, previous knowledge and learning styles
(Ford & Chen, 2001). To this end, a number of guiding principles were created to fill the gap in
existing systems, and inform the design of the programming tool central to this research (PILeT).
These principles were distilled using thematic analysis (Braun and Clarke 2006) of existing literature
on designing learning environments, combined with the evaluation of current programming tools.
Next those principles were reviewed by two design experts for feedback and evaluation. As a result of
this process, 11 design principles were developed.

1. Ease of use:
ISO 9241 (Quesenbery, 2001) defines usability as “The extent to which a product can be used by
specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified
context of use". In order for a product to be deemed usable, it must meet the five characteristics:
effective, efficient, engaging, error tolerant and easy to learn. In the context of programming
environments, the tool should be easy to use by novice learners, and allows them to achieve a
specified goal without getting stuck.

2. Discoverability:
The tool should be designed to allow the students to locate the needed information and functions to
complete a specified task in a short time. This could be achieved by considering the interface elements
in terms of text size, colour, information layout, order and flow in addition to consistency.

3. Interactive functionalities:
Studies on teaching programming found that active learning techniques have been proven more
effective than passive learning activities (Walker, 2004; Wulf, 2005). Therefore the tool should allow
learners to interact with the learning material and exercises in order to increase engagement with the
content and increase motivation in learning. This could be achieved by using attractive animation and
graphics for example. However, those features should be designed carefully as to not distract the
students from meeting the learning outcomes.

4. Customisation:
The tool should support diverse learners with specific learning characteristics. Using hypermedia in
learning environments facilitates adaptive instructions and allows the use of resources to match the
individual needs of each of them (Carver, Howard, & Lane, 1999). This could be achieved by offering

35

customised teaching strategies and exercises to appeal to many students (i.e. using videos and visual
diagrams for visual learners, puzzles for active learners).

5. Error handling:
Generally, novice learners have a difficult time dealing with runtime errors that have complicated
messages. This leads to students’ frustration with programming (Marceau, Fisler, & Krishnamurthi,
2011; Murphy et al., 2008). Therefore the tool should offer a helpful method of handling errors in
students’ code. This encourages students to experiment with different syntax of the programming
language and incrementally build larger programs.

6. Automated assessment and feedback:
Automated assessments and feedback offer a quick and useful way for student to check the
correctness of their solution, gauge their understanding of the taught concepts and fill any gaps in
their knowledge. The tool should offer formative assessment to improve students’ comprehension and
support them learning programming.

7. Visualisation:
In order to alleviate the complexity of programming, the tool should provide visual representation of
code execution at run time and illustrate programming concepts (for example function calls) in order
to help the students comprehend programming constructs and structure.

8. Improving problem solving techniques:
The tool should place more emphasis on the problem domain and less focus on the programming
syntax. This could be achieved by teaching the students strategies for algorithm formulation and
different solution techniques in a stepwise manner.

9. Minimise cognitive overload:
There are several recommendations in the computer science education literature for reducing
cognitive overload for students. For example, using self-paced instructions for teaching, reducing the
amount of text for reading or replacing words with images, incorporating relevant examples to
demonstrate programming concepts and providing hints for solutions to name a few.

10. Cover core programming concepts taught in introductory programming course:
This includes threshold concepts (Boustedt et al., 2007; McCartney & Sanders, 2005; Zander et al.,
2008) which are considered to be “troublesome” by some students. Although introductory courses are
different at each university, for the purpose of this research, the essential concepts were identified by:

● Consulting the module leaders of introductory programming courses at the university this research

is taking place.
● Reviewing the ACM curricula recommendation for computer science (The Joint Task Force on

Computing Curricula, 2013).
● Literature review on difficult programming concept (Chapter 2).
● Student feedback. A 5 point Likert scale questionnaire was distributed to first year student at the

end of the course asking them to rate each concept based on the level of difficulty. This method
has been validated and used by (Carlson, Chandler, & Sweller, 2003) and (Marcus, Cooper, &
Sweller, 1996).

36

Based on these resources, the core concepts in introductory programming courses are: variables (type
and assignment), selection statements (if statement), repetition (for and while loop), functions
(definition, structure, return value and call) and lists.

11. Dependency:
The tool should allow the student to write custom programs in the same way as they are created in
IDEs. Currently most of the novice environments allow the student to construct code by either
dragging and dropping code segments or blocks, drawing diagrams, or manipulating input values in
existing code. To reduce the risk of dependency, the tool should behave in the same way as
programming IDEs and present the student with standard compiler messages at execution time.

Table 4.1 presents a mapping of the identified design requirements against existing pedagogical tools
(Chapter 3). It can be inferred from the table that none of the novice programming environments meet
all of the eleven guiding principles. Whilst none of the tools support customisation and automated
assessment and feedback (requirements 4 and 6), Jeliot3 and RAPTOR appears to meet most of the
requirements followed by BlueJ. However, other than BlueJ, they do not cover all of the essential
programming concepts taught in introductory programing courses. Therefore, there presents a need
for an educational tool that conforms to all of the guidelines.

Programming
environment

1 2 3 4 5 6 7 8 9 10 11

Alice X x x

BlueJ x x x x x

Jeliot3 x x x x x x

Robolab x x

RAPTOR X x x x x x

Table 4.1 Design Principles Met By Existing Programming Environments

4.3 PILeT
PILeT (Python Interactive Learning Tool) is a web based application that combines multiple teaching
methods to accommodate various learning needs found in a diverse group of students As such, each
programming concept is explained using videos, reading material, examples, exercises and puzzles
adequately on their own, or in combination with other approaches. This way, student can learn from
the teaching technique they are most comfortable with, or use a mixture of several approaches to
support their learning (Pollock and Harvey 2011b). The selected methods were carefully chosen as
they have been proven to improve comprehension of programming concepts and increase motivation
in student (Chapter 2).

4.3.1 System Architecture
PILeT was built using Runestone Interactive Tools (Runestone 2012). Runestone is a free open source
authoring tool for creating interactive computer science textbooks online such as Fundamentals of
Web Programming (Miller 2015) and CS Principles: Big Ideas in Programming (Guzidial 2016). The
advantage of using Runestone over writing a web based application in HTML from scratch is that the

37

user can use and customise pre-existing directives, which are explicit blocks of markup language, for
building different components of the application. This method enables the creation of the interactive
textbooks in a short period. The user can also build their own directives to create new features for
their website.

PILeT architecture consists of two main layers: the content development layer and PILeT server
(Figure 4.1). The content development layer is responsible for creating all of the learning material
content including text, images, videos, code visualisation, tracing, exercises and external links. The
output from this layer is then passed to PILeT server.

Figure 4.1 PILeT Architecture

PILeT is based on Sphinx (Brandl 2008) which originally was designed as an automatic tool for
generating documentation for Python source code. Currently it is used in various applications for
instance documenting software projects in different programming languages and creating e-books.
Sphinx works by converting reStructuredText, its lightweight markup language (Goodger 2002), into
different formats such as .epub and HTML websites. Sphinx uses Python docutils package to process
the documentation.

The PILET server is an Amazon EC2 instance (Amazon Elastic Compute Cloud virtual server). The
server’s main responsibility is to deliver the content to the student via the web browser. Other
responsibilities include:

 Data storage and collection for PILeT content.
 Storing log in details for students.
 Recording activities generated by the students.
 Saving assignment marks.
 The server also includes an interface for the course leader to grade the solutions submitted by

the students and leave feedback.

In order to write textual paragraphs in reStructuredText files, normal text is used which could be
separated by spaces, punctuations and line breaks for new paragraphs just as writing a document.
Special inline markup is used to format the text such as *example text* to produce example text and
example text to produce example text. However to add videos, images and other interactive
features into PILeT, several directives were used to create the final look and feel of PILeT.

38

Directives are usually written in blocks of code and embedded within a reStructuredText document.
Directives include special commands that enable Sphinx to convert the code in the block into a
specified output. Each directive include a name, arguments (required and optional), and content. The
directives used in PILeT are described below and include YouTube, activecode, codelens, Parson’s
programming puzzles, and multiple choice questions.

4.3.1.1 YouTube Directive
The YouTube directive is used to embed videos into PILeT using reStructuredText. The videos are
uploaded on YouTube first, and then the video id is used to locate and stream the video on the page.
The name of the directive is (youtube) followed by a unique identifier which is the video id on
YouTube. height, width and align are required arguments to position the video within the page.

In order to execute the directive in Sphinx, a class is created in Python which inherits from
docutils.parsers.rst.Directive (Elza et al 2012). Sphinx compiles the reStructuredText into HTML.
Finally, the YouTube video is embedded on PILeT as a thumbnail image that plays once clicked
(Figure 4.2).

4.3.1.2 Activecode Directive
Activecode directive is used to allow the execution of Python code within the PILeT webpage instead
of using an external IDE such as IDLE. The activecode box could be left blank for users to construct
their own code or it could include a worked example that could be edited and compiled again.

The name of the directive is (activecode) followed by a unique identifier which links the submitted
code to the grading page in PILeT. The next line contains a sample code which could be modified and
executed. Sphinx compiles the reStructuredText into HTML (the generated code is too long to be
included). Figure 4.3 shows an implementation of activecode in PILeT.

The activecode directive depends on Skulpt (Graham 2010) and CodeMirror (Haverbeke 2011), both
which are open source projects. Skulpt is a built-in implementation of Python code in the browser
window. When the code is executed, Skulpt renders the source code into JavaScript then runs it in the
JavaScript virtual machine on PILeT page. The advantage of this method is that it allows the
execution of code in PILeT offline.

CodeMirror is a rich and customisable text editor which uses JavaScript in its implementation. It is
used for modifying code in the browser and contains several useful features such as code auto
completion, syntax highlighting and auto indentation. The last two features help new users to get
familiar with Python code structure and syntax.

4.3.1.3 Codelens Directive
The codelens directive is used to visualise a step by step execution of the Python code. It also displays
the different values of variables throughout the various stages of the program.

The name of the directive is (codelens) followed by a unique identifier to differentiate it from other
codelens directives. Showoutput is an optional argument to show the output from a print statement on
the webpage. The lines that follow contain the Python code that will be visually traced. The difference
between activecode directive and codelens is that the source code in codelens cannot be modified and
must be syntactically correct for it to be executed.

39

The codelens directive is based on Philip Guo Python Tutor (Guo 2013). It works by running the
source code through a Python interpreter. Next a series of stack frames are produced which match
with each line of the code as it is stepped through. The stack is then converted into a JavaScript
Object Notation format which is saved in a PILeT page and then delivered to codelens upon execution
(Figure 4.4).

4.3.1.4 Parson’s Programming Puzzles Directive
Parson’s programming puzzles (Parsons and Haden 2006) is an interactive tool that allows users to
drag and drop fragments of code in the right order into the solution area.

The name of the directive is (parsonprob) followed by a unique identifier to differentiate it from other
Parson directives. The following line is a question text which is separated from the rest of the source
code with single dashes. The equal sign is used to encapsulate each line of code in a block. Once it is
implemented, the code blocks are randomly mixed in order.

Parson’s programming puzzles directives is created using Hot Potatoes authoring tool (Potatoes
2001). The tool is used to create various online exercise including drag and drop problems in
JavaScript. Figure 4.5 shows an implementation of Parson’s Programming Puzzles in PILeT.

4.3.1.5 Multiple Choice Questions Directive
The multiple choice questions directive is used to create questions either with one correct answer
(radio buttons) or multiple answers (checkboxes). It also allows the addition of feedback with both
wrong and right answers.

The name of the directive is (mchoicemf) followed by a unique identifier which links the submitted
answer to a grading page in PILeT. To create checkboxes (mchoicema) is used. answer_a and correct
are required arguments where the value after correct is listed as one of the answers. feedback_a,
feedback_b, feedback_c and feedback_d are optional arguments which correspond to each selected
answer. The line that follows the question text. In case there is more than one correct answer
(checkboxes) the values after correct are separated by commas. Figure 4.6 shows an implementation
of multiple choice questions in PILeT.

4.3.2 PILeT Features
A number of interactive features were developed and embedded in PILeT. These features are in line
with the created design principles and appeal to learners on the Felder-Silverman spectrum (Chapter
2).

4.3.2.1 Embedded Videos
Whilst it is difficult to find good substitutes to traditional textbooks, many leaners will rely on other
modes of learning than read textual material. This could be attributed to many reasons such as
comprehension problems or reading difficulties (Paul Carter and Paul 2009, David J Malan 2007).
PILeT embedded videos provide a suitable alternative to explain Python concepts, gradually work
through programming examples, or even support textual material. And while videos might be a
favourable option even for textual learners for their ease of use, it is unfeasible to convert an entire
course book content into video, additionally, the attention span for videos is rapidly shrinking
(Koohang and Harman 2007).

40

Figure4. 2 YouTube Video in PILeT

Videos in PILeT are short, ranging from seven to 10 minutes. The videos are embedded at the
beginning of each chapter and cover fundamental principles corresponding with the programming
concept taught in that chapter (Figure 4.2). Sometimes, there are additional videos for other examples
and exercises. The videos are similar to tutorials; they start with an introduction by the instructors
who explains the objective of the lesson followed by a live demonstration of the code in a Python
IDE. Learners have the option to pause the videos and attempt to do the exercises on their own before
the final answer is revealed, or type in the source code line by line along with the video
demonstration. Overall, video instructions are beneficial to different learners as it allows them to
progress at the pace that is most appropriate to them.

4.3.2.2 Embedded Code Compiler
Programming is one of the computer science disciplines in which practice is imperative to a learners’
success. Novice students are constantly encouraged to experiment with their code and learn from their
mistakes. However, many students lose interest in the subject when they encounter programming
problems or runtime errors.

PILeT contains an embedded code compiler called activecode. It enables students to execute worked
examples, modify them, or try out their own code on the web browser without switching between the
webpage and an external IDE. Another advantage of activecode over other IDEs is that it presents the
learner with user friendly error messages along with a description of the error and suggestions for
fixing it.

Activecode consists of the following (Figure 4.3):

 Code editor with line numbers: the area containing the code.
 Execution window: displays the result of the execution.
 Run button: execute the code in the editor.

41

 Save button: once the student is logged into PILeT, they can save any changes they made to
their code. Additionally, a copy of the source code is submitted to the instructor for grading
and feedback.

 Load button: to recall the saved code.

Figure 4. 3 Activecode in PILeT

4.3.2.3. Embedded Visualisation
Code visualisation is a method to graphically represent the interaction between different elements of
the program, for example variables and functions, in the memory while the program is running. It also
shows a step by step execution of the source code. This method allows the learners to build metal
models of their programs and understand the logic behind the execution process. Other benefits
include reading and tracing complex code, error debugging, and understanding the flow (selection
statements) and iterative development (loops) of programs (Naps et al 2002).

Codelens (Guo 2013) is an embedded interactive code visualizer that animates the execution of
Python code line by line. It also tracks the different values of variables as they change during the
program run. The student have full control over the speed of the code execution; the can move
forward one step, backward or jump to the last line of the program. Teaching Python using codelens
enhances comprehension of program algorithms and data structures.

Codelens consists of the following (Figure 4.4):

 Code window: the area containing the code along with two coloured arrows. The green arrow
points at the line that has just been executed and the red arrow at the line to be executed.

 Result window: displays a graphical animation of variable values and interactions between
them and other program elements.

 First button: jump to the first line of the source code.
 Back button: move backwards one line.
 Forward button: move forward one line.
 Last button: jump to the last line of the source code.

42

Figure 4.4 Codelens in PILeT

4.3.2.4 Parson’s Programming Puzzles
Parson’s programming Puzzles (Parsons and Haden 2006) are simple interactive exercises that require
students to build working programs by rearranging random code blocks into the right order via drag
and drop. This kind of exercise encourages students to actively interact with the source code without
the fear of producing syntactical errors as no typing is taking place. Using Parson’s puzzles to teach
programming minimises the cognitive load on learners and increases motivation. The puzzles have
different difficulty levels which could be increased by adding distractors or extra unrequired code
blocks. Not only does the student have to identify them, but they also must adhere to Python
indentation rules when dragging the right blocks into place.

The left section of Parson’s Programming Puzzles contains code blocks that must be dragged in the
right order to the right section (Figure 4.5). Once the code assembly is completed, the student can
check the correctness of their solution by pressing the check me button. If they want to start again
they press the reset button.

43

Figure 4.5 Parson's Programming Puzzles in PILeT

4.3.2.5 Automated Assessment and Feedback
PILeT contains several embedded exercises in the form of multiple choice questions and checkboxes.
These questions are used to examine learners’ comprehension of learnt concepts as a whole and as
means to supplement the teaching material. For example, for students learning about selection
statements in Python, the multiple choice questions are mostly focussed on the syntax, or keywords,
that are used to construct the if statement, along with the direction of the flow of execution. For some
students, learning through examples is considered a better alternative to learning passively through
textual explanations as they provide a quick hands on way of gaining knowledge and retain learnt
content.

Automated assessments in PILeT are also used to identify and correct misconceptions and previous
ideas that some learners may have about certain programming constructs and provide instant feedback
(Kaczmarczyk et al 2010b). This is achieved by checking the learners’ submissions against classical
misconceived answers and correcting it by delivering a clarified, detailed response (Hristova et al
2003).

Figure 4.6 shows an implementation of an automated assessment in PILeT. The student has selected
(E) “False” as an answer which is different from (False). The detailed feedback explains why the
solution is incorrect along with the right answer.

44

Figure 4.6 Automated Assessment in PILeT

4.3.2. 6 Additional Features
PILeT also includes additional features that cannot be characterised as interactive. For example,
textual content is available in the interactive tool for the same reason they are available in textbooks;
to explain programming concepts, present some examples, and provide exercises and the model
solutions associated with them. However the interactive tool allows more freedom to improve the
quality of the text by combining it with other media forms to enhance the learning experience.

While traditional textbooks solely rely on textual paragraphs to explain ideas and rules, PILeT
combines the text with embedded PowerPoint slides that are used for revising concepts. As such, the
slides could be used as a suitable alternative to videos and textual explanation to learn about Python.
Additionally, images, tables and GIFs (graphics interchange format) are used throughout PILeT to
illustrate concepts. Hyperlinks to other content are used for additional reading material.3

4.4 Compliance with Felder-Silverman Learning Style Model
Figure 4.7 shows how PILeT support the diverse learners on the Felder-Silverman spectrum (Chapter
2).

 The traditional material in the form of text and slides appeal to
(Reflective/Intuitive/Sequential/Verbal) learners.

 Examples and Exercises, both activecode and automated assessments, are favourable by
(Active/Verbal/Global/Sensing) learners.

 Parson’s Programming Puzzles and Proglets attract (Reflective/Sequential/Intuitive) learners.
 Videos, code visualisation and images cater to (Sensing/Reflective/Visual) learners.

3 PILeT Demo Session can be found in Appendix 3.

45

Figure 4.7 PILeT Supporting Felder-Silverman Learners

4.5 Compliance with Design Guidelines
A lot of consideration has gone into the design of PILeT. Both the interactive and non-interactive
features that were included have been proven to improve comprehension of programming concepts,
increase motivation in learners and improve problem solving skills. However, most of these features
exist in isolation and the student is left with no option but to toggle between them which is distracting
and inconvenient. PILeT has successfully combined all of these features in one interactive website,
but in order to avoid any usability or design issues that might hinder the use of PILeT, a set of design
guidelines were created. PILeT features comply with all of the design guidelines except for guidelines
(1, 2 and 4)4.

1. Ease of use
PILeT interactive features are very easy use as they require as few clicks as possible to reduce
frustration. Additionally some of these features are already familiar to students (e.g. playing videos
and slides, answering multiple choice questions). PILeT also contains a user manual at the beginning
to guide the students through using the website. PILeT was evaluated for ease of use in (Chapter 5).

2. Discoverability
PILeT contains an intuitive interface which enables students to navigate through different pages
without previous experience to locate content. Moreover, all of the pages are consistent throughout
the website and follow the same structure and layout. PILeT was evaluated to identify any issues with
the interface design (Chapter 5).

4 The guidelines are evaluated in Chapter 5 and 6 respectively.

46

3. Interactive functionalities
Activecode, codelens, Parson’s Programming Puzzles and automated assessments are embedded
interactive features that aim to increase engagement with programming without interfering with the
learning process.

4. Customisation
The second version of PILeT supports customisation of teaching programming based on the students’
learning style preference as identified in the Felder-Silverman model. If the student is not comfortable
with the presented teaching method, they have the option to switch to more suitable alternative. This
guideline is evaluated in (Chapter 6).

5. Error handling
Activecode compiler messages are user friendly; it locates the error line, explains the type of error,
and presents the user with helpful suggestion for fixing the error.

6. Automated assessment and feedback
PILeT provides swift assessment in the form of multiple choice questions. Additionally, instructors
receive a notification once students submit their source code via PILeT which enables them to check
the correctness of students’ solution, and provide extensive written feedback on their code. For some
students, these questions serve as a way of self-regulating their own learning without having to read
again all of the material (Bjork et al 2013).

7. Visualisation
Videos, GIFs, and codelens are different methods in which PILeT explains Python concepts visually.
They also produce graphical representation of the programs’ different execution states and final
output.

8. Improving problem solving techniques
Asking students to write lengthy programs whilst still new to programming concepts has negative
impact on their problem solving abilities (Sweller 1988). In PILeT, learners are taught problem
solving strategies by using exercises that require students to write small programs or proglets
(Edmondson 2009). These little programs allow students to mainly focus on algorithm strategies
without worrying about the quality of the source code at first. In addition, Parson’s Programming
Puzzles in PILeT are used by students to solve programming problems in a stepwise manner.

9. Minimise cognitive overload
PILeT reduced cognitive overload by employing several worked examples in each chapter. These
examples provide an opportunity for students to study the syntax and structure of Python. Teaching
using worked examples is a good alternative to lengthy explanations (Brusilovsky 2001). Using
images and tables in PILeT reduces cognitive overload in students as well as it minimises the amount
of text they have to read.

47

10. Cover core programming concepts taught in introductory programming courses
PILeT consists of five chapters, they are:

 Variables and expressions.
 Selection statements (if statement).
 Loops (for loop, while loop)
 Functions.
 Lists.

Whilst these chapters do not teach programming in Python in its entirety, they cover all of the main
Python concepts that are taught in introductory programming courses and recommended in the ACM
curricula for computer science (The Joint Task Force on Computing Curricula 2013). They are also
characterised as threshold concepts (Eckerdal et al 2006, Khalife 2006, Sorva 2010), as soon as they
are mastered, students will be able to make connections with further programming ideas and progress
positively in their learning.

11. Dependency
Embedding Activecode in PILeT allows students to write, modify and compile code in the same
window as the programming question. They also execute code in the exact same way as external IDEs
and produce error messages when syntax errors are detected.

4.6 Summary
Several learning environments fail to teach student programming due to usability issues associated
with the overall design. As such, this chapter presented 11 design guidelines for the development of
educational programming environments. These guidelines were based on thematic analysis of existing
literature on designing learning environments, and with the evaluation of current programming tools.
Results of the evaluation showed a need for a tool that fills the existing needs.

Therefore, a web based interactive learning tool to teach Python programming language (PILeT) to
novice learners was developed. A description of the system architecture and features was included
along with a demo in (Appendix 3). Finally the chapter concluded with a layout on how it complied
with students on the Felder-Silverman model and most of the design guidelines except for three of
them (ease of use, discoverability, and customisation).

The next chapter details the evaluation of PILeT based on ease of use and discoverability and the
following chapter (Chapter 6) based on customisation.

48

Chapter Five: Usability and Discoverability Evaluation of PILeT

5.1 Chapter Overview
This chapter describes the process of evaluating PILeT by two groups: experts and users. As such this
chapter is divided into two main sections: heuristic evaluation (Section 5.4) and user testing (Section
5.5). The expert group will evaluate PILeT based on design guideless 1: usability, and the user group
will evaluate it based on design guideline 2: discoverability.

The heuristic evaluation section includes: usability heuristics, problems, recruitment process,
evaluation method and results. The user testing section contains a detailed test plan which was used
for evaluation, it includes: test artefacts, users profile and numbers, test environment and equipment,
usability metrics, evaluation method and results.

The chapter concludes with a summary of both evaluations (Section 5.6).

5.2 Introduction to Usability Evaluation
Usability evaluation, usability testing and interface testing are all interchangeable terms that describe
the process of identifying and recommending solutions for usability problems that arise as a result of a
software design, websites or web applications (usability.gov 2013). The evaluation process involves
collecting data that relates to the usability of a certain product by specific people for a specific activity
within a specific work context (Preece et al 1994). Usability problems could encompass anything that
interferes and hinders the user’s ability to efficiently and effectively complete a required task in a
satisfied manner (Karat et al 1992). According to Jakob Nielsen, usability is defined by a combination
of five characteristics (Nielsen 2012):

 Learnability: how easy it is for a user who confronts an interface for the first time to perform a
basic task.

 Efficiency: how fast can a user accomplish a task once they are familiar with the design.
 Memorability: how easy is it for a user to remember the interface and use it effectively after the

first visit
 Errors: the number of errors that the user makes, the severity of those errors and recovering from

those errors easily after committing them.
 Satisfaction: how satisfied is the user by the design of the system.

Usability evaluation of interfaces is necessary because it influences the users’ experience of websites.
If users struggle to locate the information they are looking for on a webpage in a timely fashion they
simply abandon it for other available alternatives regardless of the quality of the website’s content.
Therefore the evaluation process should guarantee that the design of the user interface provides a
friendly, natural, and clear environment for end users to interact with different elements of the website
and complete tasks successfully.

Despite the importance of usability, there is surprisingly little published in the computer science
education literature on the usability of educational software and websites. Instead, most of the
research centres on evaluating and measuring the learning outcomes of end users after using these
resources irrespective of how students or teachers interact and experience these learning tools (Levy
and Ben-Ari 2007, Stern, Markham and Hanewald 2005). This problem arises from the lack of
standardised design guidelines and usability testing for the development of educational software. This

49

problem is significantly pertinent in tools with rich content such as interactive features and graphics.
An early usability evaluation provides the developers with quick and valuable feedback during the
design process of any problems that might occur with the interface and suggestions for solutions. This
can be used in combination with other evaluation methods during the development process of these
tools to ensure a seamless experience for the end user.

5.3 Usability Evaluation Methods
A number of well-established usability evaluation methods have been developed to identify usability
problems and evaluate the user’s interaction with the interface. Most of these methods are either
classified as expert based, user based or automated software. The choice of a particular evaluation
method depends on many factors, for example the interface development stage, type of users and level
of involvement, expected kind of data and most importantly limitations such as time, cost and
availability of eager testers (Aedo et al 1996) .

Expert based evaluation is a cheap and effective method that could be applied to a software during
any stage of its development either as a prototype or end products. The objective is to present basic
tasks as they are represented in the interface to a group of usability experts who would assume the
role of representative end users and try and detect any issues in the interface design (Karoulis and
Athanasis 2006). Whilst user based evaluation seems like an obvious alternative to recruiting experts,
it comes with several drawbacks, for example, personal bias and subjectivity of testers, the users
inability to articulate errors, missing them or providing useless information during the test through no
fault of their own as they lack expert knowledge. Additionally, it is difficult to employ representative
end users to evaluate interfaces under real life situations (Lewis and Rieman 1994). Moreover, a user
based evaluation can only be applied at the end stage of a product. In contrast, expert based
evaluations are inexpensive as it is easier to locate experts willing to participate in the evaluation
process. They also provide valuable knowledge and offer different perspectives both in the field of
HCI (human computer interaction) and other domains and as such can detect usability issues just
looking at uncompleted projects.

The decision to apply a usability evaluation method over another is central to the success of a product.
The choice is mostly influenced by the development stage the product is undergoing, time constraints,
and the kind of data that needs to be collected for evaluation. Predicting user satisfaction with an end
product is somewhat difficult by an expert as opposed to an end user, it is also difficult for an end user
to reliably detect efficiency issues of an interface, therefore, it is recommended to combine different
types of evaluation methods if possible (Dillon 2001). In light of the literature on usability evaluation,
PILeT was evaluated by both expert users (Section 5.4.1) and end users (Section 5.5.1).

5.4 Heuristic Evaluation
A heuristic evolution is a usability inspection method that was developed by Nielsen and Molich
(Nielsen and Molich 1990) for analysing and detecting any usability problems in the interface design.
The methodology involves recruiting a small number of expert evaluators, usually five, to measure
the user interface compliance with a set of usability principles or heuristics (Nielsen 1995). The
heuristics are:

1. Visibility of system status: end users should constantly be updated and informed about
operations occurring in the system (visible status) in a user friendly language within a reasonable
timeframe.

50

2. Match between the system and the real world: the system should replicate the language and
ideas that end users encounter in real world environment depending on their target users. This
could be accomplished by presenting ideas in a logical manner which matches users’ life
experiences.

3. User control and freedom: give end users the option to backtrack steps in case of mistakes, this
includes undo and redo commands.

4. Consistency and standards: designers of interfaces must guarantee that textual and graphical
elements are consistent in meaning and function throughout the platform.

5. Error prevention: interface designers should aspire to keep the number of potential errors and
mistakes to a minimum. This could be achieved by eliminating situation where errors are most
likely to occur and offer the end user an option to confirm their selected action before proceeding.

6. Recognition rather than recall: end users’ cognitive load should be kept to a minimum by
making different elements and options more visible. The instructions to use the system and
different relating dialogue should not be remembered by users, instead, different recognition
techniques should be used by designers in the interface to navigate the system.

7. Flexibility and efficiency of use: for a quick and efficient navigation, designers should allow the
use of shortcuts and customised commands in the interface for repeated actions of end users.

8. Aesthetic and minimalistic design: the interface should only contain the necessary elements for
the completion of tasks. Therefore, supplementary information and dialogs should be kept to a
minimum to avoid clutter.

9. Help users recognise, diagnose and recover from errors: error messages should be presented in
a user friendly manner without technical jargon. The messages should be concise, describe the
problem, and offer solutions in way that end users will be able to understand.

10. Help and documentation: although it is ideal to develop systems that can be used without the
need of documentation for navigation, it may be necessary to include it at times specially for large
systems with several functionalities. End users should be able to easily search and locate
information related to the task they need assistance with.

Despite the popularity of Nielsen’s heuristics, some researchers argue that they are too broad and
ambiguous for the purpose of evaluating a website as these heuristics were developed before the
popularity of the internet, and were initially intended to evaluate products with screens (Brinck et al
2002, Pearrow and Mark 2000). Therefore, researchers advise developing a new set of usability
guidelines or design specific heuristics in line with Nielsen’s for evaluating the usability of an
interface (Rogers et al 2011).

A heuristic evaluation is performed by asking each inspector individually to examine the interface in
order to collect impartial opinions. After the inspection is completed by everyone, the results are
combined and analysed. The evaluation process is documented either by the use of recording devices
that capture verbal comments of evaluators as they inspect the interface or by the use of written
reports. The observer, who runs the evaluation session, can offer assistance to evaluators with any
issues with the interface when necessary as opposed to user based evaluation where intervention is
prohibited.

A usual session usually lasts two hours in which the evaluators explore the website more than once
and examine several features and dialogues of the interface. These elements are then compared
against the heuristics in addition to any usability guidelines that were developed for the website. At
the end of the process, the evaluators give their suggestions and recommendations for the interface
design.

51

There are several advantages to heuristic evaluation, they include:

 Being cost effective as they provide a reasonably quick and simple way to report feedback to
interface designers during the design process. This is beneficial as it is easier to fix problems at an
earlier stage rather than in a later phase.

 Each usability problem detected is examined against an established heuristic which make it easy
to categorise and fix errors.

 A heuristic evaluation could be used to detect different error types in an interface (major and
minor) and could be used in combination with other evaluation methods in order to refine any
usability issues.

 A heuristic evaluation does not follow the same ethical consideration associated with recruited
real life users.

5.4.1 Heuristic Evaluation of PILeT
For the evaluation, five experts used a set of ten comprehensive heuristics in order to detect any
usability problems associated with PILeT’s interface, and to identify any issues with the overall
design of the website. The focus of the evaluation was on the main functionalities of the interface:
registration and logging in, accessing chapters, using interactive features, and submissions of
exercises and quizzes. The experts evaluated PILeT individually in separate sessions, and the recorded
results were later aggregated along with comments and recommendations. As a result, the heuristic
evaluation revealed some usability issues that were prioritised and addressed. A user based testing
followed this evaluation to further investigate any problems with the usability of PILeT in addition to
user satisfaction with the website.

5.4.1.1. Usability Heuristics
Since the inception of Nielsen’s heuristics, several usability principles and guidelines emerged for the
purpose of evaluating commercial websites. As an educational tool, PILeT has a slightly different
interface similar to navigating an eBook but with interactive elements embedded in each page. For the
purpose of this dissertation and for a successful evaluation process, a list of 10 heuristics was
specifically developed for evaluating PILeT’s interface. The list is in line with Jakob Nielsen’s
heuristics (Nielsen 1995) and Shneiderman’s eight golden rules for interface design (Shneiderman
2004). The latter was specifically chosen as it has been used to evaluate educational websites aimed at
novice learners. The list was reviewed and evaluated for suitability by two experts with experience in
HCI and interface design. The heuristics are:

1. Inform user of system status and offer feedback: offer system feedback to users frequently,
display the progress level of long tasks and provide notification messages when a process is
completed.

2. Speak in the user natural language: use simple text to communicate with users, avoid technical
jargon and use familiar terms.

3. Allow easy navigation and reversal of actions: make commands easily accessible, group related
commands, and allow users to undo and redo actions.

4. Strive for consistency across the system: text format and graphics should be consistent within
the system, this includes icons, texts labels and dialog boxes. Additionally, buttons must perform
the same tasks throughout the system.

5. Design dialogues to yield closure and allow exists: actions should follow a sequence
(beginning, middle end). Allow users to cancel or abort actions.

52

6. Prevent errors and offer simple error handling: offer users the option to confirm selection
before proceeding, eliminate error prone situations and present errors in a simple language with
suggested solutions.

7. Reduce cognitive load: employ recognition methods for system instructions, make menu options
visible to users and use labels for buttons.

8. Provide shortcuts for repeated actions: reduce number of user interaction with interface by
using shortcuts and macros for repetitive actions.

9. Use minimalistic design: keep information to minimum, use user friendly text for all user groups
(e.g. users with dyslexia), employ colour and text size to highlight important ideas and use
spacing between paragraphs to divide sections.

10. Offer help at all times: offer users assistance with all tasks when necessary and enable users to
search for problem solutions.

5.4.1.2. Usability Problems Prioritisation
To categorise the usability issues discovered in the evaluation process, the problems were clustered in
accordance with the defined heuristics above. In order to examine the effect of each detected issue, a
ranking system was used in which each problem is rated based on it severity (Nielsen 1996) and ease
of fixing the problem (Olson 2004). The severity rating was influenced by three factors:

 The frequency of the problem’s occurrence: is it a rare or common problem?
 The impact of the occurred problem: is it easy or difficult to overcome the problem by users?
 The persistence of the usability problem: will the problem be solved once and for all by users or

will it be repeatedly faced by them?

The following tables describe the severity rating for usability problems (Table 5.1) and ease of fixing
rating (Table 5.2). Both tables were used to prioritise each usability problem (Table 5.4).

Rating Severity Rating
0 I don't agree that this is a usability problem at all.
1 Cosmetic problem only: need not be fixed unless extra time is available on project.
2 Minor usability problem: fixing this should be given low priority.
3 Major usability problem: important to fix, so should be given high priority.
4 Usability catastrophe: imperative to fix this before product can be released.

Table 5.1 Severity Rating for Usability Problems

Rating Ease of Fixing
0 Problem would be extremely easy to fix. Could be completed by one team member before

next release.
1 Problem would be easy to fix. Involves specific interface elements and solution is clear.
2 Problem would require some effort to fix. Involves multiple aspects of the interface or

would require team of developers to implement changes before next release or solution is
not clear.

3 Usability problem would be difficult to fix. Requires concentrated development effort to
finish before next release, involves multiple aspects of interface. Solution may not be
immediately obvious or may be disputed.

Table 5.2 Ease of Fixing Problems

5.4.1.3. Recruitment
According to Nielsen, research shows that usability experts (people with double experience in both
user interface design and usability issues) are better at detecting usability problems than other expert
groups. However, these specialists are difficult to find and recruit. As a protective measure, Stone et

53

al (Stone et al 2005) suggest hiring evaluators with different backgrounds such as domain expert, web
designer or usability tester. As for determining the optimal number of evaluators, Nielsen (Nielsen
2000) discovered that the number relies on their work experience; if they are usability experts then
hiring three to five evaluators will result in the discovery of 73% to 86% of usability issues whereas if
they were specialists in more than one field, then hiring two to three experts will unveil between 80%
to 91% of usability problems. If the evaluators are novices with no usability experience, then fourteen
evaluators are at least needed to detect more than 70% of the problems.

For PILeT’s heuristic evaluation, five experts who had personal connections with the author were
invited to participate. All of the experts combined had different experiences, academically and
commercially, in the fields of interface design, usability and online learning. Table 5.3 describes the
profile of the evaluators.

Evaluator Gender Domain Interface Design
Experience

Usability
Experience

Online
Learning

Experience
1 Female Academia Yes Yes Yes
2 Male Academia Yes Yes No
3 Female Commercial Yes Yes Yes
4 Male Commercial Yes Yes No
5 Male Commercial Yes Yes No

Table 5.3 Profile of Evaluators

5.4.1.4. Evaluation Process
At the beginning of the heuristic evaluation session, each expert was instructed to create a student
profile and navigate PILeT freely for twenty minute in order to get a feel of the website and
understand its objective. They were also encouraged to attempt the coding examples and exercises in
the user manual. Next, the list of usability heuristics (Appendix 4) was given to them in order to
compare the website interface with the usability principles whilst trying to complete different user
tasks. For each detected usability problem, the expert had to measure it against a heuristic principle,
rate the severity of the problem, ease of fixing it, and give any additional comments they wished to
make. At the end of the evaluation, all of the results were combined and aggregated in one report.

5.4.1.5. Evaluation Results
Twelve usability problems were identified as a result of PILeT heuristic evaluation (Appendix 5).
Some of these problems were detected more than once by different usability expert. Not all of the
heuristics were violated (for example 2, 6, 8, and 10). Table 5.4 lists all of the problems ranked by the
severity rating and ease of fixing. Most of the problems identified were minor or cosmetic usability
issues which were easy to fix.

54

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

1 Once a profile is created, the user
cannot access the profile page again to
change credentials (for example
password).

3. Allow easy
navigation and
reversal of actions.

4 3

2 The link to (Loops) chapter and its
subsequent sections is broken

4. Strive for
consistency across the
system

4 2

3 There are dead and unnecessary
buttons

4. Strive for
consistency across the
system

3 2

4 Instead of having the user manual as a
separate section, make it compulsory
and at the beginning as most users are
new users.

5. Design dialogue to
yield closure and allow
exists
7. Reduce cognitive
load

2 2

5 The confirm password field box is not
immediately under the password field
box.

4. Strive for
consistency across the
system

2 1

6 There is no clear indication that the
user is logged in

1. Inform user of
system status and offer
feedback

2 1

7 The option to log in is visible to
already logged in users

1. Inform user of
system status and offer
feedback

2 1

8 Users can see instructor’s page option,
it should be separate and at the
beginning

3. Allow easy
navigation and
reversal of actions

2 1

9 Users are unaware of their progress
level or whether a chapter is completed

1. Inform user of
system status and offer
feedback

1 1

10 Some tooltips have the same text as
the button making them redundant

9. Use minimalistic
design

1 0

11 Some concepts had a relatively larger
number of material and exercises

9. Use minimalistic
design:

0 0

12 The word “caution” is a bit alarming 5. Speak in the user
natural language

0 0

Table 5.4 Usability Problems Ranked By Severity and Ease of Fixing

55

5.4.1.6. Heuristic Evaluation Summary
A detailed heuristic evaluation, based on a list of ten usability principles, was performed by five
experts in order to detect any usability or design problems with the user interface. And whilst all of
the evaluators agreed that PILeT’s interface was user friendly and suitable for first time learners of
programming, they detected a small number of problems that might interfere with the usability of
PILeT. All of the issues and comments from the evaluators were grouped into twelve usability
problems and ranked based on the severity rating and ease of fixing. All of the twelve problems were
closely examined and fixed based on solutions and recommendations from the experts.

5.5 User Testing
User testing is another usability evaluation method that is conducted by users rather than experts. The
objective is to measure the end users’ satisfaction with the product, and how they interact with the
interface under conditions similar to real life situations. In a typical test, a selection of representative
users are hired to completed scripted tasks or scenarios successfully while the observer is watching
and taking notes. At the end, users are asked to give a couple of statements about their satisfaction and
experience with the product. In contrast to a heuristic evaluation, the test takes place at the end of the
development stage of a product in order to detect any necessary changes to improve the performance
of users (Usability.gov 2013).

5.5.1 User Testing of PILeT
For this task, a usability test plan was created to outline the steps and procedures to evaluate PILeT.
The plan was executed after fixing the usability issues that were detected in the heuristic evaluation.
The test plan included:

 Test artefacts.
 User profiles and number of users.
 Test environment and equipment.
 Usability metrics.
 Evaluation Method.
 Evaluation Results.

5.5.1.1. Test Artefacts
A couple of test artefacts were specifically developed for PILeT evaluation session. It consisted of:

 Moderator script from usability.gov (Appendix 6).
 Consent form (Appendix 7).
 Task scenarios (Appendix 8).
 Post-test questionnaire (Appendix 9)

Moderator Script

A moderator script from usability.gov was repurposed for this evaluation (Appendix 6). The script
was used by the evaluator to welcome participants and thank them for their involvement.
Additionally, the script provided information about the purpose of the evaluation and the process
which will be recorded.

56

Consent Form

Participants were required to sign a consent form (Appendix 7) before participating in the evaluation.
The form informed participants that their involvement was voluntary and as such they were free to
withdraw from the evaluation at any time without giving a reason. It also stated that their data will be
anonymously stored for later analysis.

Task Scenarios

A total of 14 tasks were developed for evaluation (Appendix 8). These tasks involved standard actions
that a typical user of an educational programming website would perform. The tasks stemmed from a
list of specific goals that PILeT aims to accomplish which include:

 Register with PILeT.
 Browse introductory Python concepts.
 Use different interactive features to learn.
 Submit exercises and quizzes.

In order for participants to perform the tasks, each task was assigned a scenario in accordance with
Nielsen’s recommendations for turning goals into task scenarios (Nielsen 2014). The tasks are:

1. Access PILeT by visiting www.obpilt.com
2. Create a user profile using the following credentials

2.1. Username: evaluator1
2.2. First name: Jane
2.3. Last name: Doe
2.4. Email: evaluator1@gmail.com
2.5. Password: Abcd1234!
2.6. Confirm password: Abcd1234!
2.7. Course name: pilet

3. Skip the user manual.
4. Access (Variables and Expressions) chapter and browse the content.
5. Play the video titled (Input Statement).
6. Scroll down to (ActiveCode 1) then run the embedded code.
7. Change the code to print(“Goodbye!”),save the code, delete it, load it, then run it.
8. Scroll down to (CodeLens1), step forward, back, first, last to trace code execution with Python

Tutor.
9. Navigate to (Parson’s Programming Puzzles 1), drag and drop the code blocks from the left

column to the right column. Click (Check Me) and (Reset) buttons.
10. Navigate to the quiz section, try answering the first question by selecting an answer and clicking

the (Check Me) button.
11. Move on to the next chapter (Selection Statements).
12. Edit the user profile you created by changing your first name to (Jack).
13. Navigate to (Functions) chapter.
14. Log off PILeT.

For each scenario, an estimated time and an optimal pathway to complete each task efficiently was
detailed but hidden from participants.

57

Post-test Questionnaire

A post-test questionnaire (Appendix 9) was used to collect information regarding usability
preferences and overall satisfaction with the interface design. The questionnaire was adopted from the
World Wide Web Consortium (W3C 2003) as it is considered a validated and reliable instrument for
usability testing. Respondents rate their agreement with 30 statements using a five point Likert scale
ranging from (1. Strongly disagree - 1) to (5. Strongly agree).

5.5.1.2. User Profile and Number of Users
The primary target of the website is users with no coding experience interested in learning Python
programming language. Based on this objective, a table of characteristics based on Rubin and
Chisnell’s work on identifying user profiles (Rubin and Chisnell 1994) was created.

Characteristic Requirement
Age Over 18
Education level Undergraduate level
Experience using computers 1 + Years
Experience using the internet 1 + Years

Table 5.5 User Profile

As for the numbers of testers, a couple of usability experts recommend hiring between 8 and 10
participants (Brinck et al 2002, Rubin and Chisnell 1994) whilst Nielsen (Nielsen 2006)
recommended 20 users in order to obtain statistically valid results as there are significant
individual differences when tasks are performed by users.

For the recruitment process, an email was sent out to first year undergraduate student at Oxford
Brookes University at the Department of Computing and Communication Technologies. The email
contained a description of the study and eligibility requirements. However, only five respondents
volunteered due to time restrictions and coursework load. After screening the participants, all of them
were recruited.

(It is important to note that PILeT was evaluated for usability again later in the year during a study to
measure the learning outcomes of PILeT using a SUS (System Usability Scale)) in Chapter 6.

5.5.1.3. Test Environment and Equipment
The evaluation took place in a computer lab with internet connection. The operating system of the
computer used to access PILeT was Windows 7 with the latest version of Google Chrome web
browser installed.

The observer recorded each participant’s actions, reactions and opinions using a notepad and an audio
recorder.

5.5.1.4. Usability Metrics
In order to accurately measure the user’s usability of PILeT, four usability metrics were used based on
Nielsen’s recommendations (Nielsen 2001):

 Success rate: the percentage in which a task is completed by the user correctly.
 Task time: the time it requires to complete each task successfully in minutes.
 Error rate: the frequency the error occurs over a specific time.

58

 Satisfaction: a user’s subjective satisfaction with the task. This metric is measured using SEQ
(Single Ease Question); a seven point Likert Scale about the difficulty of the task (Sauro 2012).

5.5.1.5. Evaluation Method
The evaluation took place over 5 individual sessions. Each session lasted an hour in which every
participant was briefed at the beginning about the objective of the study and test procedures (read
from the moderator script by the observer). After signing the consent form, the participant was asked
to complete a set of 14 tasked scenarios whilst concurrently thinking out loud to understand their
thought process and the reasoning behind their actions (usability.gov 2014). After each scenario was
completed, a question was asked about the participants’ satisfaction with the task. At the end of the
evaluation, a post-test questionnaire was given to each participant in order to get their overall
impression of the website. During the evaluation, the observer recorded the usability metrics of each
task (Appendix 10).

5.5.1.6. Evaluation Results
Most of the tasks listed in the scenarios (Appendix 7) were completed successfully without any
problems. However there were some minor issues reported with tasks (6, 7, 8, and 11):

1. Visit PILeT website: AVG satisfaction score: 7 / 7
The task involved visiting the website for the first time. All participants managed to complete the task
without any errors.

2. Create user profile: AVG satisfaction score: 7 / 7
Testers had to create a user profile with given credentials. No problems were reported with this task.

3. Skip user manual: AVG satisfaction score: 7 / 7
The task involved bypassing the user manual to access the content. The task was completed
successfully.

4. Access (Variables and Expressions) chapter and browse content: AVG satisfaction score: 7 / 7
Participants were required to visit the requested chapter. No issues were reported.

5. Play video: AVG satisfaction score: 7 / 7
The task involved playing a video that explained the concept. All participants located the play button.

6. Run ActiveCode: AVG satisfaction score: 6.6 / 7
The task involved executing a piece of embedded code. New users of PILeT would not know what
that means unless they read the user manual, which was skipped for the purpose of the evaluation.
Since the participants completed the task successfully after explaining the term, it was concluded that
the task itself was not problematic but rather the way it was approached.

7. Edit, save, load and run code: AVG satisfaction score: 5.8 / 7
This task, like number 6, involved a minimum understanding of how programming works. The first
participants who failed to complete the task argued that while they understood what “save” and “load”
referred to, they had difficulties applying it in a programming context. The second participant kept
making syntactical errors until they eventually succeeded. Both of these mistakes could be attributed
to understanding programming rather than usability issues with the task.

59

8. Use Codelens: AVG satisfaction score: 6.8 / 7
1 participant asked for the meaning of the terms “frames” and “objects”, a non-usability issue.

9. Use Parson’s Programming Puzzles: AVG satisfaction score: 7 / 7
The task involved dragging blocks of code from one side to the other in addition to resetting the order.
All participants managed to complete the task successfully.

10. Answer quiz: AVG satisfaction score: 7 / 7
Participants were required to test out the quiz functions regardless of the correctness of the answer.
The task was completed without any reported errors.

11. Move to next chapter: AVG satisfaction score: 7 / 7
1 participant suggested that the button should be bigger.

12. Edit user profile: AVG satisfaction score: 7 / 7
Participants were asked to change some information on their profile. No problems were reported.

13. Navigate to (Function) chapter: AVG satisfaction score: 7 / 7
The task involved navigating from the current page to another chapter. The task was completed
successfully by all of them.

14. Log off PILeT: AVG satisfaction score: 7 / 7
Participants were asked to log off the website by locating the log off button. All participants
completed the task.

Overall, these results suggest that participants only struggled with tasks involving programming rather
than using the interactive feature itself that was being evaluated (ActiveCode). This issue could have
been easily prevented by asking them to try out the feature in the user manual which describes its use
in detail.

5.5.1.7 Post-test Questionnaire results
Appendix 11 show five respondents’ satisfaction with the usability and the interface design of PILeT.
Any responses with rating from 1 to 3 were considered negative statements (usability problems)
whereas responses with 4 or 5 rating were considered positive ones (non-usability problems).

Most of the answers ranged between (4. Agree) and (5. Strongly agree). Interestingly, questions 27
through 30 received a rating of 5 by all respondents.

27. The site has a clear purpose.
28. I always felt I knew what it was possible to do next.
29. It is clear how screen elements (e.g., pop-ups, scrolling lists, menu options, etc.) work.
30. My mistakes were easy to correct.

These questions are concerning the objective of the website, the sequence of actions to complete a
task, usability of different elements, and error handling.

Combined together, the results from the user testing and the post-test questionnaire show that users
had little to no problems browsing the website or using its interactive features. Additionally, users
responded favourably towards the interface design of PILeT.

60

5.6 Summary
This chapter described the process of evaluating PILeT using two methods: heuristic evaluation
(Section 5.4.1) and user testing (Section 5.5.1). The objective of this evaluation is to measure PILeT
compliance with design guideline 1: usability and design guideline 2: discoverability.

The heuristic usability evaluation of was carried out by experts to detect any usability issues
associated with the overall design of PILeT. For this evaluation, a set of 10 comprehensive heuristics
was developed specifically for educational websites. As a result of this evaluation, a number of
usability problems were identified and fixed based on experts recommendations.

A user based testing followed the heuristic evaluation in order to measure end users’ satisfaction with
the interface and discoverability. For this evaluation, a number of represented users were hired and
asked to complete 14 tasked scenarios. The evaluator observed users’ interaction with different
interface elements and recorded 4 usability metrics for each task. The results of this evaluation
showed that users have a positive impression of PILeT.

The next chapter presents the methodology of measuring the learning outcomes of PILeT in addition
to usability guideline 4: customisation.

61

Chapter Six: Learning Outcomes and Customisation Evaluation

of PILeT

6.1 Chapter Overview
This chapter describes the process of measuring the learning outcomes of PILeT by comparing the
evaluation results against another education tool. In order to establish a fair comparison, both tools
were evaluated for usability (Section 6.4) before measuring the learning outcomes (Section 6.5).
(Section 6.6) measures design guideline 4: customisation. The chapter concludes with a summary of
all evaluations (Section 6.7).

6.2 Learning Outcomes Measurement
A central choice in evaluating an educational tool is selecting the evaluation method and measuring
the learning outcomes. Unfortunately, this process is complex and involves a wide range of variables
(e.g. efficacy, mental models, motivation and learning environment) to name a few.

In most programming modules, a combination of programming exercises, quizzes and the final mark
would be used to assess the students’ performance in a module. Ideally in the same vein, developers
of educational programming tools would like to use the same evaluation methods to measure students’
performance. However, there are several ethical constraints with that method, most importantly, a
group of students cannot be divided and offered different teaching methods within the same module as
one group might be at a disadvantage which eventually affects their final mark. Another problem with
learning outcomes evaluation is the willingness of participants themselves to fully commit to using
the educational tool at specific times without the influence of other teaching methods for a long
period. Whilst this might be achieved with paid participants keen on learning programming, it is very
difficult to recruit them. As a result, many researchers settled for conducting an experiment to
measure the results of one programming task (Redmiles 1993, Rowe and Thorburn 2000) or use pre
and post-tests in a single experimental session to evaluate the tool (Milne and Rowe 2002b, Shah and
Kumar 2002).

In order to get meaningful results, PILeT was evaluated by measuring the students’ performance after
learning two programming concepts using two different student groups at different times.
Additionally, their performance was compared against users of another educational tool; CS Circles.

6.3 CS Circles
Computer Science Circles (Pritchard and Vasiga 2013) is a free interactive website designed to teach
Python programming language to a novice audience with no previous programming experience. The
website was developed by the Centre for Education in Mathematics and Computing at the University
of Waterloo. CS Circles was chosen for comparison for two reasons:

 It teaches the same introductory concepts as PILeT (variables and expressions, selection
statements, loops, functions and lists).

 It contains some similar interactive features embedded in the website. These features are:
o A built in console for code execution, parallel to ActiveCode.
o CodeLens for code visualisation; the same in PILeT.
o Code scrambler: an exercise for arranging code blocks in the right order. Parallel to

Parson Programming Puzzles.

62

Whilst CS Circles sounds like good contender to PILeT at first, it suffers from several drawbacks
(number 1 and 3 were reported by the developers themselves):

1. Interactive input and output is currently unavailable in the website: all of the examples in CS
Circles are fixed and not editable, as such, users can only run the code to see the result of the
execution. If they wanted to experiment with the program they have to write it again in the
console. PILeT’s Activecode however allows users to execute worked examples, modify them, or
experiment with their own code in the same window without switching to another console.

2. The console displays the exact same error messages as other IDE’s: whilst this is not
considered a significant issue as the error messages in Python are user friendly, they can be quite
intimidating for first time learners. In ActiveCode, errors are described in a manner that matches
the user’s natural language, in terms of words and phrases, instead of system oriented expressions.
It also offers suggestions for fixing the error.

3. The code scrambler does not contain extra lines or space for the solution: this means that
users have to rearrange the code in the same space which is inconvenient. On the other hand,
Parson Programming Puzzles contains two columns; one for the scrambled code on the left and
the other is for the solution on the right. This makes it easy for users to drag the code blocks in the
right order.

4. CS Circles was not evaluated for usability: whilst the developers have usage statistics, it does
not give a clear picture of how users interact with the website or their impression of the design.
For example, the only recorded data is: the number of submitted code and automated assessments
solved regardless of the correctness of the solution for both. Another detected concern is that the
developers use the time elapsed between user registration and exercise completion as the time it
took for a user to complete an exercise which is unrealistic.

5. The concept pages are not consistent: in terms of content length, uniformity of interface design,
and the number and type of interactive features and exercises.

Despite these drawbacks, CS Circles was considered a suitable tool for comparison purposes as it is
bears the closest resemblance to PILeT in terms of usability and learning objectives. Furthermore,
comparing the interface design and interactive elements of PILeT against CS Circles before
measuring the learning outcomes of both will produce unbiased results about the usability of each
website, and evidence on whether those features affect the learning process of users.

6.4 Usability Evaluation
Due to time constraints, it was unrealistic to conduct a usability evaluation for CS Circle the same
way it was carried out for PILeT in (Chapter 5). For the purpose of ensuring a fair comparison, both
websites were evaluated using a usability survey and an SUS (System Usability Scale) questionnaire
(Brooke 1996).

The usability survey was distilled from a systematic review of studies on the requirements of e-book
designs and interactive instructions (Chong et al 2009a, Ericson et al 2015, Fenwick et al 2013,
Korhonen et al 2013, Pei Fen Chong et al 2008, Perrenet and Kaasenbrood 2006, Ruth Wilson et al
2009). The survey investigates the design preferences of both interfaces in terms of:

 Navigation design: the quality of seamlessly navigating between webpages to find specific
information.

 Page layout: the arrangement of different website elements, in addition the amount of content.

63

 Content design: the approach in which the visual and textual elements are displayed on the
interface.

 Interactive features: the usefulness of the built-in features.

The SUS questionnaire is a simple instrument that is used to measure the efficiency, effectiveness and
satisfaction of websites. The questionnaire consists of 10 questions with 5 options for respondents
ranging from (1. Strongly disagree) to (5. Strongly agree). The average SUS score is 68; a score above
68 is considered (above average) whereas a score below is considered (below average). The score is
then normalised to produce percentile ranking and grades from A to F. For example, an SUS score of
64 converts to a percentile rank of 60% which is interpreted as grade C.

6.4.1 Participants and Method
Participants were recruited from the Department of Computing and Communication Technology at
Oxford Brookes University. A call for participation was sent out to first year undergraduate students
via email which includes a short description of study and eligibility requirements. 49 students
volunteered to take part, all of which been screened and recruited for the study.

Prior to the study, a 10 minute demonstration of PILeT and CS Circles took place at computer lab to
introduce the students to both websites, and allow them enough time for registration and signing the
consent form (Appendix 12). Next, the students were instructed to experiment with the websites, and
navigate between the different pages on their own for 30 minutes. After the time was over, the
students were asked to complete the usability survey (Appendix 13) and SUS questionnaire
(Appendix 14) for PILeT and CS Circles online using Google forms. To avoid any bias that might
result from first impressions (using a website first before the other), 24 participants were randomly
assigned to start with PILeT first and 25 to start with CS Circles first. The study lasted 60 minutes.

6.4.2 Results
For the usability survey, out of 49 participants, 46 responses were received (24 for CS Circles and 22
for PILeT). In terms of navigation design, Table 6.1 shows that the students preferred the navigation
design of PILeT in terms of ease of navigation, page landing, and locating other pages within the
website.

No Statement Statement CS Circles PILeT

1 I found it easy to navigate
[website name here].

Strongly disagree 0 1
Disagree 7 1
Neither agree nor disagree 6 7
Agree 9 7
Strongly agree 2 6

2
It was easy to know which
page I was on and what
other pages I visited.

Strongly disagree 0 0
Disagree 7 1
Neither agree nor disagree 11 6
Agree 3 7
Strongly agree 3 8

3
It was easy to locate certain
pages of [website name
here]

Strongly disagree 0 1
Disagree 9 0
Neither agree nor disagree 8 10
Agree 7 5
Strongly agree 0 6

Table 6.1 Navigation Design Results

64

Table 6.2 shows positive responses towards the layout of PILeT in regards to the amount of
information on the page, the arrangement of the interactive features, and satisfaction towards the table
of content. On the other hand, CS Circles received lower scores.

For content design preferences, PILeT received higher rating across the board in terms of page length,
page legibility, typography, scan reading and page colour as seen in Table 6.3.

Finally, Table 6.4 shows that a great number of students were able to determine the purpose and
usefulness of Active Code, Codelens and Parson Programming Puzzles in PILeT. In contrast, they
struggled to identify the purpose of the console, Codelens and Code scrambler in CS Circles.
Therefore it is no surprise that the student did not find them useful.

The results from the usability survey indicate that PILeT’s interface design make it easier for students
to navigate the website, read the learning material, and use the different interactive features of the
website, which makes it a favourable choice amongst them.

No Statement Statement CS Circles PILeT

1 I am happy with the amount
of information on the page.

Strongly disagree 4 0
Disagree 5 3
Neither agree nor disagree 6 4
Agree 9 8
Strongly agree 0 7

2
I am happy with the
arrangement of the
interactive features.

Strongly disagree 3 1
Disagree 10 1
Neither agree nor disagree 4 5
Agree 7 7
Strongly agree 0 8

3 I am happy with the table of
content.

Strongly disagree 4 0
Disagree 7 3
Neither agree nor disagree 5 5
Agree 8 6
Strongly agree 0 8

Table 6.2 Page Layout Results

65

No Statement Statement CS Circles PILeT

1 I found the font easy to read.

Strongly disagree 0 0
Disagree 3 3
Neither agree nor disagree 4 4
Agree 12 5
Strongly agree 5 10

2 I found the page of
acceptable length.

Strongly disagree 0 0
Disagree 3 3
Neither agree nor disagree 9 7
Agree 12 5
Strongly agree 0 7

3 I found the page legible.

Strongly disagree 1 1
Disagree 4 1
Neither agree nor disagree 7 6
Agree 10 5
Strongly agree 2 9

4 I liked the typographical
aspects of the page.

Strongly disagree 0 0
Disagree 9 3
Neither agree nor disagree 8 6
Agree 6 6
Strongly agree 1 7

5 I found it easy to scan
through the page.

Strongly disagree 2 1
Disagree 10 4
Neither agree nor disagree 5 5
Agree 6 3
Strongly agree 1 9

6 I liked the colours of the
page.

Strongly disagree 4 3
Disagree 7 1
Neither agree nor disagree 9 8
Agree 3 5
Strongly agree 1 5

Table 6.3 Content Design Results

Number Statement CS Circles PILeT
1 I knew the purpose of Console Yes No

8 16
ActiveCode Yes No

22 0
2 I found the feature useful Console Yes No

14 10
ActiveCode Yes No

20 2
3 I knew the purpose of Codelens Yes No

7 17
CodeLens Yes No

22 0
4 I found the feature useful Codelens Yes No

15 19
CodeLens Yes No

18 4
5 I knew the purpose of Code

scrambler
Yes No
1 23

Parson’s
Programming
Puzzles

Yes No
22 0

6 I found the feature useful Code
scrambler

Yes No
11 13

Parson’s
Programming
Puzzles

Yes No
19 3

Table 6.4 Interactive Features Results

66

As for the SUS questionnaire, out of 49 participants, only 24 responses were returned for CS Circles
(Appendix 15) and 25 for PILeT (Appendix 16). The average usability score of 24 CS Circles
questionnaires was 46.7, which is below the SUS average (68). After normalising the score, it
produced a percentile ranking of grade F. For PILeT, the average usability score of 25 questionnaires
was 72.4, which is above the SUS average. After normalising the score, it produced a percentile
ranking of grade B, a significantly better ranking than CS Circles. This result means that CS Circles
has failed the usability test whilst PILeT is considered usable.

In summary, the results of the usability study suggest that users are satisfied with the interface design
and usability of PILeT. Based on those findings, it is possible to assume that the learning outcomes of
PILeT would be greater than CS Circles because the content design and interactive features of the
website do not obstruct the learning process of users interested in programming. This assumption will
be tested in the next section.

 6.5 Learning Outcomes Evaluation
The research hypothesis states that “combining multiple teaching methods to accommodate different
learners' preferences will significantly improve performance in programming”. In order to test the
hypothesis, PILeT and CS Circles were used on two separate occasions to teach two different Python
concepts (selection statements and loops). Their performance was compared against students who
learned those concepts using the apprenticeship model (Alshaigy et al 2015).

In the apprenticeship model, students are first exposed to a Python concept using PowerPoint slides.
Next, they spend a short period, usually 15 minutes, practising these concepts by solving small related
programming exercises under the supervision of the lecturer. This process is repeated until the end of
the lecture.

Although this method of teaching shows promising results, it is very expensive to administer and
manage by the department. Since PILeT is suggested as a suitable alternative for teaching
programming, as it caters to several learners’ preferences as a lecturer would, the apprenticeship
model students were used as the control group and PILeT and CS Circles students as the experimental
group.

6.5.1 Participants and Method
For this study, first year undergraduate students, who were already enrolled in a Python module at the
university, volunteered to take part.

6.5.1.1. Selection statements
In order to evaluate the learning outcome of each teaching method, 57 students were randomly and
equally grouped as follow:

 Apprenticeship model group: 19 participants. (9 students withdrew halfway through the study).
 CS Circles group: 19 participants.
 PILeT group: 19 participants.

After learning the concept, the students were tested with a quiz consisting of 3 programming
questions (Appendix 17). For each question they were awarded:

67

 0 marks for no submissions, incomplete or major mistakes.
 1 for minor mistakes.
 2 for correct answer.

The quiz was marked out of 6. The study lasted 75 minutes.

 6.5.1.2. Loops
As for evaluating the learning outcome of loops, 35 students were randomly grouped as follow:

 Apprenticeship model group: 10 participants.
 CS Circles group: 11 participants.
 PILeT group: 14 participants.

After learning the concept, the students were tested with a quiz consisting of 4 short programming
questions (Appendix 18) with the same marking scheme as selection statements. The quiz was marked
out of 8. The study lasted 75 minutes as well.

All of the questions included in both quizzes were similar to the examples and exercises they learn
from in the lecture or both websites.

6.5.2 Results
The results of each participant on the quiz are in Appendix 19. The descriptive statistics associated
with students’ performance on the selection statements quiz is summarised in Table 6.1.

For the results, a statistical analysis was conducted using a one way ANOVA technique in order to
find out whether or not a difference exists somewhere between the three different groups. The single
factor in this analysis is the teaching method. Therefore:

Null hypothesis (H0): combining multiple teaching methods to accommodate different learners’
preferences has no effect on the students’ performance in programming selection statements.

Alternative hypothesis (HA): combining multiple teaching methods to accommodate different
learners’ preferences has a positive effect on the students’ performance in programming selection
statements.

Between the three teaching methods, the CS Circles group was associated with a numerically smallest
mean level for students’ mark (M = 3.42), and the apprenticeship model group, the control group, was
associated with the numerically highest mean level for students’ marks (M = 5.9).

A one way ANOVA between subjects was applied to compare the effect of the teaching method on
the quiz marks of three different students groups (Table 6.6). The results present statistically
significant evidence that there is a difference in the mean of the groups that use different teaching
methods (F(2, 45) = 9.92, p = <0.001). Therefore based on the analysis, the null hypothesis is rejected
and the data supports the alternative hypothesis.

68

Groups Count Sum Average Variance
Control Group 10 59 5.9 0.1
CS Circles 19 65 3.421 2.035
PILeT 19 89 4.684 3.228

Table 6.5 Summary of Students' Results (Selection Statements)

Source of Variation SS df MS F P-value F crit
Between Groups 42.175 2 21.087 9.922 0.00026 3.204
Within Groups 95.636 45 2.125

Total 137.812 47

Table 6.6 One Way ANOVA (Selection Statements)

In order to rule out the chance of committing a Type 1 error (incorrect rejection of a true null
hypothesis; a false positive), a post hoc t-test called the Bonferroni correction was conducted between
the three groups. Another benefit of the test is to explore where the differences between the three
group means are found.

The new critical p value is:

P value (α) / no comparison
0.05 / 3 = 0.0167

As seen in Table 6.7, the value of P(T<=t) two-tail for the control group is (0.0000). Since the result
of the comparison between (0.0000 < 0.0167) is True, it can be concluded that there is a 95% chance
that the control group is different than the CS Circles group.

Moving on to Table 6.8, the value of the P(T<=t) for the control group is (0.0447). Since the result of
the comparison between (0.0447 < 0.0167) is False, it can be concluded that there are no significant
differences between the Control group and PILeT.

 Control Group CS Circles
Mean 5.9 3.421
Variance 0.1 2.035
Observations 10 19
Pooled Variance 1.390

 Hypothesized Mean Difference 0
 Df 27
 t Stat 5.381
 P(T<=t) one-tail 5.468
 t Critical one-tail 1.7032
 P(T<=t) two-tail 0.00001
 t Critical two-tail 2.0518

Table 6.7 t-test Between Control Group and CS Circles Group (Selection Statements)

69

 Control Group PILeT
Mean 5.9 4.684
Variance 0.1 3.228
Observations 10 19
Pooled Variance 2.185

 Hypothesized Mean Difference 0
 Df 27
 t Stat 2.105
 P(T<=t) one-tail 0.022
 t Critical one-tail 1.703
 P(T<=t) two-tail 0.044
 t Critical two-tail 2.051

Table 6.8 t-test between Control Group and PILeT Group (Selection Statements)

For the loops concept, a list of the students’ results is in Appendix 15. Table 6.9 describes a summary
the students’ performance in the loops quiz.

For the results, a statistical analysis was conducted using a one way ANOVA technique in order to
find out whether or not a difference exists somewhere between the three different groups. The single
factor in this analysis is the teaching method. Therefore:

Null hypothesis (H0): combining multiple teaching methods to accommodate different learners’
preferences has no effect on the students’ performance in programming loops.

Alternative hypothesis (HA): combining multiple teaching methods to accommodate different
learners’ preferences has a positive effect on the students’ performance in programming loops.

Between the three teaching methods, it can be seen that the CS Circles group was associated with a
numerically smallest mean level for students’ mark (M = 1.27) and the PILeT group was associated
with the numerically highest mean level for students’ marks (M = 5.71).

Again, a one way ANOVA between subjects was applied to compare the effect of the teaching
method on the quiz marks (Table 6.10). The results present statistically significant evidence that there
is a difference in the mean of the groups that use different teaching methods (F(2, 32) = 19.24, p =
<0.001). Therefore based on the analysis, the null hypothesis is rejected and the data supports the
alternative hypothesis.

Groups Count Sum Average Variance
Control Group 10 53 5.3 3.3444
CS Circles 11 14 1.272 5.818
PILeT 14 80 5.714 2.065

Table 6.9 Summary of Students' Results (Loops)

70

Source of Variation SS df MS F P-value F crit
Between Groups 138.461 2 69.230 19.240 0.0000 3.294
Within Groups 115.138 32 3.598

Total 253.6 34

Table 6.10 One Way ANOVA (Loops)

As seen in Table 6.11, the value of P(T<=t) two-tail for the control group is (0.0004). Since the result
of the comparison between (0.0004 < 0.0167) is True, it can be concluded that there is a 95% chance
that the control group is different than the CS Circles group.

As for Table 6.12, the value of of the P(T<=t) for the control group is (0.05404). Since the result of
the comparison between (0.0540 < 0.0167) is False, it can be concluded that there are no significant
differences between the Control group and PILeT.

 Control Group CS Circles
Mean 5.3 1.2727
Variance 3.34444 5.8181
Observations 10 11
Pooled Variance 4.64641

 Hypothesized Mean Difference 0
 Df 19
 t Stat 4.2760
 P(T<=t) one-tail 0.00020
 t Critical one-tail 1.7291
 P(T<=t) two-tail 0.0004
 t Critical two-tail 2.0930

Table 6.11 t-test Between Control Group and CS Circles Group (Loops)

 Control Group PILeT
Mean 5.3 5.71428
Variance 3.34444 2.0659
Observations 10 14
Pooled Variance 2.5889

 Hypothesized Mean Difference 0
 Df 22
 t Stat -0.6218
 P(T<=t) one-tail 0.2702
 t Critical one-tail 1.7171
 P(T<=t) two-tail 0.5404
 t Critical two-tail 2.0738

Table 6.12 t-test Between Control Group and PILeT Group (Loops)

In summary, for both concepts (selection statements and loops), the ANOVA test was significant, and
a Bonferroni corrected post-test (t-test) indicate the control group is significantly higher than CS
Circles whereas no significant differences were found between the control group and PILeT. This
means that the results of the learning outcome evaluation show that teaching programming using CS
Circles has negative consequences on students’ learning whereas using PILeT for teaching has the

71

same effect as the apprenticeship model. This result confirms the assumption made in usability study
(Section 6.4.2) that the content design and interactive features of a website could either contribute or
distract the students from the learning process.

6.6 PILeT 1.1
In the initial learning outcomes evaluation study (Section 6.5), Google Analytics was implemented to
track the students’ use of different elements of the website (e.g. textual, visual), and match it against
their learning styles preferences which the students’ identified at the beginning of the study using the
ILS (Index of Learning Style) questionnaire (Felder and Soloman 1997) (Appendix 20). However,
after looking at the analytics report, it was discovered that all of the students clicked on every website
element regardless of their learning preference. This could be attributed to many reasons: fear of
missing out on important information, not getting used to the website, or even because the student did
actually need the supplementary material in a different medium to understand the concept. Therefore,
it was decided that in order to test the “accommodate different learners’ preferences” part of the
hypothesis correctly in addition to guideline 4: customisation, PILeT needs to be customised for each
users’ needs and evaluated again.

PILeT 1.1 was released after 2 weeks. The difference between the old version and the new one is that
instead of presenting the user with all of the teaching content in all of the different formats available,
users get customised pages based on their learning style choice. So for example, if a user identifies as:

Active learners - Reflective learners
Visual learners - Verbal learners
Sensing learners - Intuitive learners

Then the user will be presented with:

 Videos to explain the concept
 Codelens for code visualisation.
 Supplementary images.
 Interactive examples and exercise (ActiveCode, automated assessments).

If another user identifies as:

Active learners - Reflective learners
Visual learners - Verbal learners
Sensing learners - Intuitive learners

Then the user will be presented with:

 Text and slides to explain the concept.
 Hyperlinks that directs the user to additional reading material.
 Parson’s Programming Puzzles.
 Programming questions.

Due to time restrictions, the new version of PILeT was developed to teach only two concepts
(selection statements, loops) and as such, the (sequential, global learners) classification was not
considered.

72

6.6.1 Demo Session
New users to the website register in the same way they did in the previous version by submitting their
details. Next, users fill in a form consisting of 44 multiple choice questions to determine their learning
style based on the four dimensions identified in the Felder – Silverman model. After completing the
index of learning styles questionnaire, users are directed to a customised selection statements page
with content based on their preference. The forward button at the top of the page takes the users to a
similarly customised loops page. Figure 6.1 shows a screenshot of a customised loops page for a
visual user.

Figure 6.1 Screenshot of Loops Page (Visual User)

73

The next section describes the learning outcomes evaluation of PILeT 2.0. The study follows the same
structure and format as the previous one (Section 6.5), however CS Circles was not included in the
study as the results about its usability were already conclusive.

6.6.2 Participants and Method
For the evaluation, two user groups volunteered to take part:

 First year undergraduate students already enrolled in a Python module at Oxford Brookes
University.

 Undergraduate students from Oxford University enrolled in a CodeFirst: Girls Python course.

6.6.2.1. Selection statements
In order to evaluate the learning outcome of each teaching method, 24 Oxford Brookes University
students were randomly and equally grouped as follow:

 Apprenticeship model group: 12 participants
 PILeT group: 12 participants.

After learning the concept, the students were tested with a quiz consisting of 3 programming
questions (Appendix 17). For each question they were awarded:

 0 marks for no submissions, incomplete or major mistakes.
 1 for minor mistakes.
 2 for correct answer.

The quiz was marked out of 6. The evaluation lasted 75 minutes.

6.6.2.2. Loops
As for evaluating the learning outcome of loops, 13 Oxford University students were used as the
experimental group, and 12 Oxford Brookes University students were used as the control group.

 Apprenticeship model group: 12 participants
 PILeT group: 13 participants.

After learning the concept, the students were tested with a quiz consisting of 4 short programming
questions (Appendix 18) with the same marking scheme as selection statements. The quiz was marked
out of 8. The study lasted 75 minutes as well.

6.6.3 Results
The results of each participant on the quiz are in Appendix 21. The descriptive statistics associated
with students’ performance on the selection statements quiz is summarised in Table 6.13.

For the results, a statistical analysis was conducting using a two independent sample t-test in order to
find out whether there is a statistically significant difference between the means of the two groups.
Therefore:

Null hypothesis (H0): for selection statements, there is no difference between the mean marks of the
apprenticeship model group (control group) and PILeT group.

74

Alternative hypothesis (HA): for selection statements, there is a difference between the mean marks
of the apprenticeship model group (control group) and PILeT group.

Between the two teaching methods, the PILeT group was associated with a numerically highest mean
level for students’ mark (M = 5.58), and the apprenticeship model group, the control group, was
associated with the numerically smallest mean level for students’ marks (M = 4.92).

An independent-samples t-test was applied to compare the effect of the teaching method on the quiz
marks of two different student groups (Table 6.14). The results present no statistically significant
evidence that there is a difference in the mean of the PILeT group (M = 5.58, SD = 0.793) and
control group (M = 5.58, SD = 1.240) conditions; t(22) = -1.568, p = 0.131. Additionally, the value of
(T<=t) two-tail for the control group is (0.131) is not less than 0.005. Therefore based on the analysis,
we fail to reject the null hypothesis.

Groups Count Sum Average Variance SD
Control Group 12 59 4.9166 1.5378 1.240
PILeT 12 67 5.58333 0.6287 0.793

Table 6.13 Summary of Students' Results (Selection Statements)

 Control Group PILeT
Mean 4.9166 5.5833
Variance 1.5378 0.6287
Observations 12 12
Pooled Variance 1.0833

 Hypothesized Mean Difference 0
 Df 22
 t Stat -1.5689
 P(T<=t) one-tail 0.0654
 t Critical one-tail 1.7171
 P(T<=t) two-tail 0.1309
 t Critical two-tail 2.0738

Table 6.14 t-test Between Control Group and PILeT Group (Selection Statements)

For the loops concept, a list of the students’ results is in Appendix 17. Table 6.15 describes a
summary the students’ performance in the loops quiz.

For the results, a statistical analysis was conducting using a two independent sample t-test in order to
find out whether there is a statistically significant difference between the means of the two groups.
Therefore:

Null hypothesis (H0): for loops, there is no difference between the mean marks of the apprenticeship
model group (control group) and PILeT group.

Alternative hypothesis (HA): for loops, there is a difference between the mean marks of the
apprenticeship model group (control group) and PILeT group.

Between the two teaching methods, the PILeT group was associated with a numerically highest mean
level for students’ mark (M = 7.17), and the apprenticeship model group, the control group, was
associated with the numerically smallest mean level for students’ marks (M = 5.25).

75

Again, an independent-samples t-test was applied to compare the effect of the teaching method on the
quiz marks of two different student groups (Table 6.16). The results present statistically significant
evidence that there is a difference in the mean of the PILeT group (M = 7.17, SD = 0.832) and
control group (M = 5.25, SD = 1.712) conditions; t(22) = -3.485, p = 0.002. Additionally, the value of
(T<=t) two-tail for the control group is (0.002) is less than 0.005. Therefore based on the analysis, the
null hypothesis is rejected and the data supports the alternative hypothesis.

Groups Count Sum Average Variance SD
Control Group 12 63 5.25 2.9318 1.712
PILeT 13 94 7.2307 0.6923 0.832

Table 6.15 Summary of Students' Results (Loops)

 Control Group PILeT
Mean 5.25 7.1666
Variance 2.9318 0.6969
Observations 12 12
Pooled Variance 1.8143

 Hypothesized Mean Difference 0
 Df 22
 t Stat -3.4854
 P(T<=t) one-tail 0.0010
 t Critical one-tail 1.7171
 P(T<=t) two-tail 0.0020
 t Critical two-tail 2.0738

Table 6.16 t-test Between Control Group and PILeT Group (Loops)

In summary, for selection statements, the independent-samples t-test results show that there are no
statistical differences between the means of the two groups, whereas for loops, the results show that
the mean of the PILeT group is statistically higher than the mean of the control group. This means that
the results of the learning outcomes evaluation show that whilst teaching programming in PILeT
yields higher results for both concepts, it was proven that the difference were not significant in one
instance (selection statement) and significant in the other (loops). Combing these results with the
findings from (Section 6.5.2), indicates that teaching programming using PILeT has the same or
greater affect than teaching it using the apprenticeship model. This means that in cases where the
apprenticeship model is not administered, PILeT would be considered a suitable alternative.

6.7 Summary
This chapter described the process of evaluating PILeT in terms of customisation and learning
outcomes against another educational website; CS Circles.

For the evaluation, a usability survey in addition to an SUS questionnaire were used for the process.
The evaluation results show that students prefer the interface design and the usability of PILeT over
CS Circles for learning programming.

As for the learning outcomes evaluation, a quiz was used to measure the students’ performance in two
programming concept (selection statements and loops). Their performance was compared against
students who learned Python using the apprenticeship model. The evaluation results show that
teaching programming using PILeT has the same or greater effect than teaching it in the
apprenticeship model, while it has negative effects teaching it using CS Circles.

76

In the next chapter, a reflection on the research statement and objectives is included along with threats
to validity and future work.

77

Chapter Seven: Conclusion and Future Work

7.1 Chapter Overview

The final chapter in this dissertation reflects on the research statement, objectives and contributions. It
also presents some threats that might have influenced the results of the studies. The chapter concludes
with recommendations for future work.

7.1 Reflection on the Research Statement and Objectives

The motivation behind this research was to improve the teaching of introductory programming
courses at university by using a pedagogical tool to support students’ learning. Whilst several
educational software and online systems are already available for that purpose, several learners
struggle to use them due to major design issues. In addition, many of these environments fail to
recognise the learning styles exhibited by a diverse cohort of student. Therefore, the research stated
the hypothesis that combining multiple teaching methods to accommodate different learners'
preferences will significantly improve performance in programming.

Consequently, the research’s’ main contribution is devising a set of 11 essential design guidelines for
the development of educational programming environments. These guidelines were derived by
combining the results of an extensive literature review on educational software with established
design guidelines for websites. In order to evaluate them, an interactive learning tool, PILeT, was
developed which conformed to the guidelines. PILeT offers a combination of pedagogical methods to
support students’ learning style. As such, each programming concept is explained using videos,
reading material, examples, and exercises adequately on their own, or by mixing these approaches
together. Additionally, automated assessment methods and code submissions are available at the end
of each lesson to assess the students’ comprehension and performance on each taught concept.
Finally, PILeT was tested by combining usability tests with measurements of conceptual
understanding of programming knowledge in students.

The development of the tool was accomplished by meeting five core objectives as outlined in the
beginning of the research in Chapter 1. Below is a summarised description of how they were
achieved.

Objective one: identify essential design guidelines for the development of pedagogical tools

For this objective, an extensive literature review was conducted to support the hypothesis in Chapter 2
and to identify the guidelines for the development stage in Chapter 4. The areas covered:

1. Predominant programming problems exhibited by first time learners.
2. Teaching methods in introductory courses.
3. Learning styles and preferences in students.
4. Evidence of existing relationships between learning styles and teaching methods.
5. The implications of the choice of the first programming language taught to students.
6. Examples of popular programming environments for novices.
7. Students’ and teachers’ use of pedagogical tools.

Following an analysis of the literature review and synthesis of the findings, a set of eleven design
principles were developed for PILeT. They are:

78

1. Ease of use.
2. Discoverability.
3. Interactive functionalities.
4. Customisation.
5. Error handling.
6. Automated assessment and feedback.
7. Visualisation.
8. Improving problem solving techniques.
9. Minimise cognitive overload.
10. Cover core programming concepts taught in introductory programming course.
11. Dependency.

Objective two: develop the interactive tool (PILeT) based on those guidelines

Chapter 4 illustrated the process of developing PILeT including a layout of the system’s architecture,
a list of the interactive features, in addition to a description of a demo session. The chapter also
explained how PILeT complied with the design guidelines and the Felder-Silverman learning style
model.

Objective three: perform a heuristic evaluation of PILeT

For this evaluation, a set of 10 comprehensive heuristics was developed specifically for educational
websites based on work by prominent usability consultants Jakob Nielsen (Nielsen 1995) and Ben
Shneiderman (Shneiderman 2004) (Chapter 5). The heuristics are:

1. Inform user of system status and offer feedback.
2. Speak in the user natural language.
3. Allow easy navigation and reversal of actions.
4. Strive for consistency across the system.
5. Design dialogue to yield closure and allow exists.
6. Prevent errors and offer simple error handling.
7. Reduce cognitive load.
8. Provide shortcuts for repeated actions.
9. Use minimalistic design.
10. Offer help at all times.

Following this step, a heuristic evaluation of PILeT was carried out to detect any usability problems
associated with the interface design by five usability experts. The process resulted in identifying 12
usability problems which were addressed and fixed based on experts’ recommendations.

Objective four: perform user based evaluation of PILeT

A user based testing followed the heuristic evaluation of PILeT in order to measure end users’
satisfaction with the interface and improve their experiences with the tool. For this objective, five
represented users were hired and asked to complete 14 tasked scenarios for testing the website
(Chapter 5). The results of this evaluation showed that users responded favourably towards the design
and usability of PILeT.

79

Objective five: measure learning outcomes of PILeT

In order to get meaningful results for the learning outcomes, PILeT was evaluated by measuring the
students’ performance after learning two programming concepts (selection statements and loops) and
comparing their results against users of another education tool called CS Circles (Chapter 6).The
evaluation results showed that teaching programming using PILeT significantly improved
performance in programming which confirms the hypothesis.

7.2 Threats to Validity

During the course of this research, every measure was taken to ensure the accuracy and reliability of
the design and methods. In few cases, a number of issues that might influence the validity of results
were encountered. Some were addressed at the time, for example how to evaluate support tool in
Chapter 6, the rest are acknowledged and discussed below.

7.2.1 Internal Validity

Broadly speaking, experimental research design is always under the threat of violating a couple of
rules that might affect its validity mainly because either the results are influenced by other factors that
were not considered, or the interpretation of results is flawed (Reis and Judd 2000). Some of the
factors that affected this research were:

Research participants:

Whilst the recruitment process aimed to be as diverse as possible, all of the research participants who
volunteered for the studies are either personal contacts or current students of the researcher. This is
not surprising as the experiment design required lengthy and mentally taxing activities that might not
interest people who are not keen on learning programming. Even with the current computing students
at the university, it was difficult to get them engaged in the study without offering monetary
incentives. Therefore, it was difficult to get the target sample size for the learning outcomes
evaluation study. To address this shortfall, this research used statistical methods that deal with small
sample sizes (one way ANOVA, two independent sample t-test which compares the means of the
groups (Sauro 2013) in addition to repeating the experiment to ensure the reliability of the results.

Another main concern with participants was controlling the factors that might influence their
performance during the study such as demotivation (Robert Fitzgerald and Fuller 1982), programming
anxiety (Connolly et al 2009) and subjects bias (Furnham 1986). To minimize their effects,
volunteered were constantly reminded about the objective of the research and the anonymity of their
responses.

Study Design:

For the learning outcomes study, the experiment setup does not reflect a real life situation. For
instance, the time it requires a student to learn a concept varies from one person to another. In
addition, quiz scores exclusively are not indicative of comprehension of programming concepts or
ability. In order to reduce its impact, careful consideration went into deciding the concepts that were
being tested to ensure that they are just challenging enough to reflect participants’ understanding. In
addition, there was not a time limit for participants to complete the study although they might have
felt pressured to finish when other participants left early.

80

7.2.2 Validity of Learning Styles

There is a lot of controversy and negative connotations associated with the term “learning styles”.
Many argue that the theories are either myths or pseudoscience that is not supported by validated
scientific evidence (Association for Psychological Science 2016). Therefore, it is redundant to
customise teaching instructions to accommodate learners if there is no added learning value.
However, there is evidence to support the idea that “people do learn differently” (Willingham 2016)
but there is a difference between style and ability.

Irrespective of the learning style model, if a student is offered several options and resources for
learning, they have the freedom to choose the method or medium they are comfortable with which
results in an increase in interest and retention. And whilst some of the learning styles models are
questionable, or based on self-report questionnaires, or even designed in such a way to support their
theory, does that deny the existence of learning styles? Suppose a student expressed difficulties
learning programming from a textbook, and they identify themselves as "visual learner", regardless of
whether their diagnosis is correct, should the instructor dismiss their preference and insist on
proceeding with the textbook rather than offer alternatives such as code visualisation? Moreover,
some researchers assume that "categorising individuals can lead to the assumption of fixed or rigid
learning style, which impair motivation to apply oneself or adapt " (The Guardian 2017), a fact which
is disputed by proponents of learning styles as they recognise that students’ preferences are fluid and
develop overtime due to the teaching environment or other aspects. As a matter of fact, the Felder-
Silverman model specifically does not pigeonhole learners into categories, instead it postulates that
students have a tendency towards a preference more than the other depending on the concept they are
learning or even the subject. Furthermore, even though the process of customising the teaching
material based on the learning style is costly, it is a one-off cost. That is not to say that instructors
should spend their time classifying each learning style in existence and producing appropriate material
accordingly, but instead they should offer a number of alternative options beneficial to many students.

7.3 Recommendations for Future Work

For the future development of PILeT, a number of recommendations are suggested to address any
limitations or threats that were encountered during the research.

For an accurate measurement of the learning outcomes of PILeT, the tool should be integrated in the
lectures during the whole academic semester. Not only will it guarantee a larger sample size, but
testing the tool with a greater number of concepts at the end would give a better reflection of students’
abilities in programming. For evaluation purposes, qualitative methods should be used in combination
with quantitative techniques in order to get a rich and comprehensive understanding of how students’
really feel about the tool as a teaching instrument. This process should be replicated multiple times
with different participants and concepts to ensure the validity and reliability of results.

The design of PILeT allows it to be repurposed for teaching other Computer Science topics or expand
to different fields with minimal configurations. Replacing traditional teaching with interactive
features engages learners, increases participation, and improves students’ understanding in the long
run.

Another area of consideration with huge potential is harnessing the power of artificial intelligence for
developing customised content based on learners’ preference and progress, and providing meaningful
feedback. The sheer computational power of AI has the ability to track students over extended periods

81

and capture nuances that would go undetected by the instructor and thus catering to learners’
cognitive skills and psychological needs. The flexibility and convenience of AI will allow students to
manage and control their own learning even outside the lecture.

7.4 Summary

Learning programming is a notoriously difficult. Computer Science educators are constantly
researching solutions to elevate this difficulty. Given the recent advancement in educational
technologies, many are inclined to adopt these resources in their teaching. However, these initiatives
tend to impede students’ progress due to several reasons mainly because these tools were designed for
specific user groups. This research detailed the process of developing and testing an educational
programming tool for a diverse audience taking into account their individual preferences and needs.
One of the main contributions is devising a set of standardised design guidelines for the development
of educational tools. The findings of this research show promising results that could be expanded to
other fields.

82

83

References
Aedo I, Catenazzi N and Díaz P (1996) The evaluation of a hypermedia learning environment: the
CESAR experience. Journal of Educational Multimedia and Hypermedia. Association for the
Advancement of Computing in Education. Available at: http://dl.acm.org/citation.cfm?id=228071
(accessed 23/08/17).

Agarwal KK and Agarwal A (2006) Simply Python for CS0. J. Comput. Sci. Coll. 21(4): 162–170.

Alaoutinen S and Smolander K (2010) Are Computer Science Students Different Learners? .

Allert J (2004) Learning style and factors contributing to success in an introductory computer science
course. IEEE International Conference on Advanced Learning Technologies, 2004. Proceedings.
IEEE, 385–389. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1357442 (accessed 07/06/16).

Allert J (2004) Learning Style and Factors Contributing to Success in an Introductory Computer
Science Course. Proceedings of the IEEE International Conference on Advanced Learning
Technologies. IEEE Computer Society.

Alshaigy B, Kamal S, Mitchell F, Martin C and Aldea A (2015) PILeT: An Interactive Learning Tool
To Teach Python. Proceedings of the Workshop in Primary and Secondary Computing Education
(Figure 1): 76–79. Available at: http://doi.acm.org/10.1145/2818314.2818319.

Ardito C, De Marsico M, Lanzilotti R, Levialdi S, Roselli T, Rossano V and Tersigni M (2004)
Usability of E-learning tools. Proceedings of the working conference on Advanced visual interfaces -
AVI ’04. New York, New York, USA: ACM Press, 80. Available at:
http://portal.acm.org/citation.cfm?doid=989863.989873 (accessed 01/04/18).

Association for Psychological Science (2016) Learning Styles Debunked: There is No Evidence
Supporting Auditory and Visual Learning, Psychologists Say – Association for Psychological Science.
. Available at: http://www.psychologicalscience.org/news/releases/learning-styles-debunked-there-is-
no-evidence-supporting-auditory-and-visual-learning-psychologists-say.html#.WUqE3OvyuHu
(accessed 21/06/17).

Astrachan O, Bruce K, Koffman E, Kölling M and Reges S (2005) Resolved. ACM SIGCSE Bulletin
37(1): 451–452. Available at: http://portal.acm.org/citation.cfm?doid=1047124.1047359 (accessed
26/10/16).

Bayliss JD (2009) Using games in introductory courses. Proceedings of the 40th ACM technical
symposium on Computer science education - SIGCSE ’09. New York, New York, USA: ACM Press,
337. Available at: http://portal.acm.org/citation.cfm?doid=1508865.1508989 (accessed 07/06/16).

Beaubouef T, Lucas R and Howatt J (2001) The UNLOCK system. ACM SIGCSE Bulletin. ACM
33(2): 43. Available at: http://portal.acm.org/citation.cfm?doid=571922.571953 (accessed 07/06/16).

Beaubouef T and Mason J (2005) Why the high attrition rate for computer science students. ACM
SIGCSE Bulletin. ACM 37(2): 103. Available at:
http://portal.acm.org/citation.cfm?doid=1083431.1083474 (accessed 07/06/16).

Bishop-Clark C, Courte J, Evans D and Howard E V. (2007) A Quantitative and Qualitative
Investigation of Using Alice Programming to Improve Confidence, Enjoyment and Achievement
among Non-Majors. Journal of Educational Computing Research. SAGE PublicationsSage CA: Los
Angeles, CA 37(2): 193–207. Available at: http://journals.sagepub.com/doi/10.2190/J8W3-74U6-
Q064-12J5 (accessed 13/03/17).

Bjork RA, Dunlosky J and Kornell N (2013) Self-Regulated Learning: Beliefs, Techniques, and

84

Illusions. Annu. Rev. Psychol 64: 417–44. Available at:
http://cognitrn.psych.indiana.edu/rgoldsto/courses/cogscilearning/bjorkdunlosky.pdf (accessed
05/06/17).

Blikstein P, Worsley M, Piech C, Sahami M, Cooper S and Koller D (2014) Programming Pluralism:
Using Learning Analytics to Detect Patterns in the Learning of Computer Programming. Journal of
the Learning Sciences 23(4): 561–599. Available at:
http://www.tandfonline.com/doi/abs/10.1080/10508406.2014.954750 (accessed 27/01/17).

Bornat R and Dehnadi S (2008) Mental models, Consistency and Programming Aptitude. .

Borstler J, Hall MS, Nordstr M, Paterson JH, Sanders K, Schulte C and Thomas L (2010) An
evaluation of object oriented example programs in introductory programming textbooks. SIGCSE
Bull. 41(4): 126–143.

Bosse Y and Gerosa MA (2017) Why is programming so difficult to learn? ACM SIGSOFT Software
Engineering Notes. ACM 41(6): 1–6. Available at:
http://dl.acm.org/citation.cfm?doid=3011286.3011301 (accessed 29/03/18).

Bouvier D, Zarb M, Lovellette E, Matta J, Alshaigy B, Becker BA, Craig M, Jackova J, McCartney R
and Sanders K (2016) Novice Programmers and the Problem Description Effect. Proceedings of the
2016 ITiCSE Working Group Reports on - ITiCSE ’16. New York, New York, USA: ACM Press,
103–118. Available at: http://dl.acm.org/citation.cfm?doid=3024906.3024912 (accessed 31/03/18).

Brandl G (2008) Overview — Sphinx 1.6.3+ documentation. . Available at: http://www.sphinx-
doc.org/en/stable/ (accessed 31/05/17).

Braun V and Clarke V (2006) Using thematic analysis in psychology. Qualitative Research in
Psychology 3(2): 77–101. Available at:
http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa (accessed 01/04/18).

Briggs Myers I and Myers PB (1980) Gifts differing: Understanding personality type. Palo Alto: CPP
Books.

Brinck T, Gergle D and Wood SD (2002) Designing Web sites that work : usability for the Web.
Morgan Kaufmann Publishers.

Brooke J (1996) SUS-A quick and dirty usability scale. Usability evaluation in industry 189(194): 4–
7.

Bruce KB (2004) Controversy on how to teach CS 1. Working group reports from ITiCSE on
Innovation and technology in computer science education - ITiCSE-WGR ’04. New York, New York,
USA: ACM Press, 29. Available at: http://portal.acm.org/citation.cfm?doid=1044550.1041652
(accessed 25/10/16).

Bruce KB and Bruce KB (2004) Controversy on how to teach CS 1. Working group reports from
ITiCSE on Innovation and technology in computer science education - ITiCSE-WGR ’04. New York,
New York, USA: ACM Press, 29. Available at:
http://portal.acm.org/citation.cfm?doid=1044550.1041652 (accessed 07/06/16).

Brusilovsky P (2001) WebEx: Learning from Examples in a Programming Course. . Available at:
http://www.pitt.edu/~peterb/papers/WebNet01.html (accessed 04/06/17).

Brusilovsky P, Grady J, Spring M and Lee C-H (2006) What should be visualized?: faculty perception
of priority topics for program visualization. SIGCSE Bull. 38(2): 44–48.

Carbone A, Hurst J, Mitchell I and Gunstone D (2000) Principles for designing programming
exercises to minimise poor learning behaviours in students. Proceedings of the Australasian

85

conference on Computing education. Melbourne, Australia: ACM.

Carbone A, Hurst J, Mitchell I and Gunstone D (2001) Characteristics of programming exercises that
lead to poor learning tendencies: Part II. Proceedings of the 6th annual conference on Innovation and
technology in computer science education. Canterbury, United Kingdom: ACM.

Carbone A, Hurst J, Mitchell I and Gunstone D (2009) An exploration of internal factors influencing
student learning of programming. Proceedings of the Eleventh Australasian Conference on
Computing Education - Volume 95. Australian Computer Society, Inc.

Carlisle MC, Wilson TA, Humphries JW, Hadfield SM, Carlisle M, Humphries J, Hadfield S and af
mil U (2005) RAPTOR : A Visual Programming Environment for Teaching Algorithmic Problem
Solving. . Available at:
https://www.researchgate.net/profile/Martin_Carlisle/publication/221537443_RAPTOR_A_visual_pr
ogramming_environment_for_teaching_algorithmic_problem_solving/links/0912f5102d415b0198000
000.pdf (accessed 13/03/17).

Carmo L, Marcelino M and Mendes A (2007) The Impact of Learning Styles in Introductory
Programming Learning. In International Conference on Engineering Education-ICEE.

Carter J and Jenkins T (2010) The problems of Teaching Programming: Do They Change with Time?
11 th Annual Conference of the Subject Centre. Available at:
http://www.academia.edu/download/30848015/download.pdf#page=9 (accessed 25/10/16).

Carter P and Paul (2009) An experiment with online instruction and active learning in an introductory
computing course for engineers. Proceedings of the 14th Western Canadian Conference on
Computing Education - WCCCE ’09. New York, New York, USA: ACM Press, 103. Available at:
http://portal.acm.org/citation.cfm?doid=1536274.1536305 (accessed 02/06/17).

Carver CA, Howard RA and Lane WD (1999) Enhancing student learning through hypermedia
courseware and incorporation of student learning styles. IEEE Transactions on Education 42(1): 33–
38. Available at: http://ieeexplore.ieee.org/document/746332/ (accessed 31/01/17).

Cha S, Kwon D and Lee W (2007) Using puzzles: problem-solving and abstraction. Proceedings of
the 8th ACM SIGITE conference on Information technology education. Destin, Florida, USA: ACM.

Chin C and Brown DE (2000) Learning in Science: A Comparison of Deep and Surface Approaches.
Journal of Research in Science Teaching. Wiley-Blackwell 37(2): 109–138. Available at:
http://doi.wiley.com/10.1002/%28SICI%291098-
2736%28200002%2937%3A2%3C109%3A%3AAID-TEA3%3E3.0.CO%3B2-7 (accessed 31/03/18).

Chong P, Lim Y and Ling S (2009a) On the Design Preferences for Ebooks. IETE Technical Review
26(3): 213. Available at: http://tr.ietejournals.org/text.asp?2009/26/3/213/50706 (accessed 02/09/17).

Chong P, Lim Y and Ling S (2009b) On the Design Preferences for Ebooks. IETE Technical Review
26(3): 213. Available at: http://tr.ietejournals.org/text.asp?2009/26/3/213/50706 (accessed 01/03/17).

Chudowsky N, Glaser R and Pellegrino JW (2001) Knowing what students know: The science and
design of educational assessment. National Academy Press.

Clark RC and Mayer RE (2016) E-Learning and the Science of Instruction: Proven Guidelines for
Consumers ... - Ruth C. Clark, Richard E. Mayer - Google Books. John Wiley & Sons. Available at:
https://books.google.co.uk/books?hl=en&lr=&id=v1uzCgAAQBAJ&oi=fnd&pg=PR17&dq=e‐
Learning+and+the+science+of+instruction:+proven+guidelines+for+consumers+and+designers+of+
multimedia+learning&ots=TLBLkHaQ9m&sig=DajHmw8clMc44bfFZBZuBg-0jzU#v=onepage&q
(accessed 01/03/17).

Cliburn DC and Miller S (2008) Games, stories, or something more traditional: the types of

86

assignments college students prefer. SIGCSE Bull. 40(1): 138–142.

Coffield F, Moseley D, Hall E and Ecclestone K (2004) Learning styles and pedagogy in post 16
learning: a systematic and critical review. London: The Learning and Skills Research Centre.

Connolly C, Murphy E and Moore S (2009) Programming Anxiety amongst Computing Students – A
Key in the Retention Debate ? . Available at:
https://www.researchgate.net/profile/Cornelia_Connolly/publication/220675700_Programming_Anxi
ety_Amongst_Computing_Students_-
_A_Key_in_the_Retention_Debate/links/57d81e8808ae0c0081edf189.pdf (accessed 12/09/17).

Crump BJ (2004) New Arrival Students: Mitigating Factors on the Culture of the Computing
Learning Environment. 30.

Curtis SA (2005a) Word puzzles in Haskell. Proceedings of the 2005 workshop on Functional and
declaritive programming in education - FDPE ’05. New York, New York, USA: ACM Press, 15.
Available at: http://portal.acm.org/citation.cfm?doid=1085114.1085119 (accessed 07/06/16).

Curtis SA (2005b) Word puzzles in Haskell: interactive games for functional programming exercises.
Proceedings of the 2005 workshop on Functional and declarative programming in education. Tallinn,
Estonia: ACM.

Cutts Q, Haden P, Sutton K, Box I, Hamer J, Lister R, Tolhurst D, Fincher S, Anthony Robins
kentacuk, Baker B, de Raadt M, Hamilton M, Petre M and Tutty J (2006) The Ability to Articulate
Strategy as a Predictor of Programming Skill. 52.

Dale NB (2006) Most difficult topics in CS1: results of an online survey of educators. SIGCSE Bull.
38(2): 49–53.

Dillon A (2001) The Evaluation of software usability Item type Book Chapter The evaluation of
software usability. . Available at: http://hdl.handle.net/10150/105344 (accessed 24/08/17).

Dingle A, Zander C, Dingle A, Zander C, Dingle A and Zander C (2000) Assessing the ripple effect
of CS1 language choice. Journal of Computing Sciences in Colleges. Consortium for Computing
Sciences in Colleges 16(2): 85–93.

Eagle M, Barnes T, Eagle M and Barnes T (2008) Wu’s castle. Proceedings of the 13th annual
conference on Innovation and technology in computer science education - ITiCSE ’08. New York,
New York, USA: ACM Press, 245. Available at:
http://portal.acm.org/citation.cfm?doid=1384271.1384337 (accessed 07/06/16).

Eckerdal A, McCartney R, Mostr JE, Ratcliffe M, Sanders K and Zander C (2006) Putting threshold
concepts into context in computer science education. SIGCSE Bull. 38(3): 103–107.

Edmondson C (2009) Proglets for first-year programming in Java. SIGCSE Bull. 41(2): 108–112.

EDU-SIG (2016) EDU-SIG: Python in Education | Python.org. . Available at:
https://www.python.org/community/sigs/current/edu-sig/.

Elza D, Goodger D and Wiemann L (2012) Creating reStructuredText Directives. . Available at:
http://docutils.sourceforge.net/docs/howto/rst-directives.html (accessed 31/05/17).

Ericson B, Moore S, Morrison B and Guzdial M (2015) Usability and Usage of Interactive Features in
an Online Ebook for CS Teachers. Proceedings of the Workshop in Primary and Secondary
Computing Education on ZZZ - WiPSCE ’15. New York, New York, USA: ACM Press, 111–120.
Available at: http://dl.acm.org/citation.cfm?doid=2818314.2818335 (accessed 02/09/17).

Ernie Giangrande J (2007) CS1 programming language options. J. Comput. Small Coll. 22(3): 153–

87

160.

Fagin BS (2002) Quantitative Analysis of the Effects of Robots on Introductory Computer Science
Education. ACM Journal of Educational Resources in Computing 2(4): 1–18. Available at:
http://xphileprof.com/professional/publications and presentations/2002_12 jeric.pdf (accessed
13/03/17).

Felder RM (1996) Matters of Style. ASEE Prism 6(4): 18–23.

Felder RM and Brent R (2005) Understanding Student Differences. Journal of Engineering Education
94(1): 57–72.

Felder RM and Silverman LK (1988) Learning and teaching styles in engineering education.
Engineering education 78(7): 674–681.

Felder RM and Soloman B (1997) Index of Learning Style Questionnaire. . Available at:
http://www.engr.ncsu.edu/learningstyles/ilsweb.html.

Felder RM and Spurlin J (2005) Applications, reliability and validity of the index of learning styles.
International Journal of Engineering Education 21(1): 103–112.

Fenwick JB, Kurtz BL, Meznar P, Phillips R and Weidner A (2013) Developing a highly interactive
ebook for CS instruction. Proceeding of the 44th ACM technical symposium on Computer science
education - SIGCSE ’13. New York, New York, USA: ACM Press, 135. Available at:
http://dl.acm.org/citation.cfm?doid=2445196.2445241 (accessed 01/03/17).

Fidge C and Teague D (2009) Losing their marbles: syntax-free programming for assessing problem-
solving skills. Proceedings of the Eleventh Australasian Conference on Computing Education -
Volume 95. Wellington, New Zealand: Australian Computer Society, Inc.

Fitzgerald R and Fuller L (1982) I Hear You Knocking But You Can’t Come In. Sociological
Methods & Research. SAGE PUBLICATIONS 11(1): 3–32. Available at:
http://journals.sagepub.com/doi/10.1177/0049124182011001001 (accessed 12/09/17).

Fitzgerald S, Lewandowski G, Mccauley R, Murphy L, Simon B, Thomas L and Zander C (2008)
Debugging : finding , fixing and flailing , a multi - institutional study of novice debuggers. .

Franzoni AL and Assar S (2009) Student Learning Styles Adaptation Method Based on Teaching
Strategies and Electronic Media. Educational Technology & Society 12(4): 15–29.

Furnham A (1986) Response bias, social desirability and dissimulation. Personality and Individual
Differences 7(3): 385–400. Available at:
http://linkinghub.elsevier.com/retrieve/pii/0191886986900140 (accessed 12/09/17).

Goldman K, Gross P, Heeren C, Herman G, Kaczmarczyk L, Loui MC and Zilles C (2008)
Identifying important and difficult concepts in introductory computing courses using a delphi process.
Proceedings of the 39th SIGCSE technical symposium on Computer science education - SIGCSE ’08.
New York, New York, USA: ACM Press, 256. Available at:
http://portal.acm.org/citation.cfm?doid=1352135.1352226 (accessed 25/10/16).

Gomes AJ, Santos AN and Mendes AJ (2012) A study on students’ behaviours and attitudes towards
learning to program. Proceedings of the 17th ACM annual conference on Innovation and technology
in computer science education - ITiCSE ’12. New York, New York, USA: ACM Press, 132. Available
at: http://dl.acm.org/citation.cfm?doid=2325296.2325331 (accessed 29/03/18).

Gomez-Albarran M (2005) The Teaching and Learning of Programming: A Survey of Supporting
Software Tools. The Computer Journal 48(2): 130–144. Available at:
http://comjnl.oupjournals.org/cgi/doi/10.1093/comjnl/bxh080 (accessed 07/06/16).

88

Goodger D (2002) reStructuredText. . Available at: http://docutils.sourceforge.net/rst.html (accessed
31/05/17).

Graf S, Rita S and Leo T (2007) In-Depth Analysis of the Felder-Silverman Learning Style
Dimensions. Journal of Research on Technology in Education.

Graham S (2010) Skulpt. . Available at: http://www.skulpt.org/ (accessed 01/06/17).

Guo P (2013) Visualize Python, Java, JavaScript, TypeScript, and Ruby code execution. . Available
at: http://www.pythontutor.com/visualize.html#mode=edit (accessed 01/06/17).

Guzdial M (2003) Programming Environments for Novices. .

Guzidial M (2016) CS Principles: Big Ideas in Programming — Runestone Interactive Overview. .
Available at: http://interactivepython.org/runestone/static/StudentCSP/index.html (accessed
31/05/17).

Haden P, Fincher S and Petre M (2004) Kent Academic Repository Versions of research Citation for
published version. . Available at: http://kar.kent.ac.uk/14131/ (accessed 30/01/17).

Hamilton S, Hamilton M and Simon (2008) Mental models, consistency and programming aptitude.
Proceedings of the tenth conference on Australasian computing education - Volume 78. Australian
Computer Society, Inc. Available at: https://dl.acm.org/citation.cfm?id=1379253 (accessed 31/03/18).

Hansen S and Eddy E (2007) Engagement and frustration in programming projects. Proceedings of
the 38th SIGCSE technical symposium on Computer science education. Covington, Kentucky, USA:
ACM.

Haverbeke M (2011) CodeMirror. . Available at: http://codemirror.net/ (accessed 01/06/17).

Heliotis J and Zanibbi R (2011) Moving away from programming and towards computer science in
the CS first year. J. Comput. Small Coll. 26(3): 115–125.

Hermann N (1982) Hermann Brain Dominance Instrument. Applied Services.

Higher Education Student Data (2017) What do HE students study? | HESA. . Available at:
https://www.hesa.ac.uk/data-and-analysis/students/what-study (accessed 29/03/18).

Holland S, Griffiths R and Woodman M (1997) Avoiding object misconceptions. SIGCSE Bull. 29(1):
131–134.

Hristova M, Misra A, Rutter M and Mercuri R (2003) Identifying and Correcting Java Programming
Errors for Introductory Computer Science Students. . Available at:
http://notablesoftware.com/Papers/SIGCSEfin162.pdf (accessed 03/06/17).

Kaczmarczyk LC, Petrick ER, East JP and Herman GL (2010a) Identifying student misconceptions of
programming. Proceedings of the 41st ACM technical symposium on Computer science education -
SIGCSE ’10. New York, New York, USA: ACM Press, 107. Available at:
http://portal.acm.org/citation.cfm?doid=1734263.1734299 (accessed 25/10/16).

Kaczmarczyk LC, Petrick ER, East JP and Herman GL (2010b) Identifying student misconceptions of
programming. Proceedings of the 41st ACM technical symposium on Computer science education.
Milwaukee, Wisconsin, USA: ACM.

Karat C-M, Campbell R and Fiegel T (1992) Comparison of empirical testing and walkthrough
methods in user interface evaluation. Proceedings of the SIGCHI conference on Human factors in
computing systems - CHI ’92. New York, New York, USA: ACM Press, 397–404. Available at:
http://portal.acm.org/citation.cfm?doid=142750.142873 (accessed 23/08/17).

89

Karoulis A and Athanasis (2006) Evaluating the LEGO--RoboLab interface with experts. Computers
in Entertainment. ACM 4(2): 6. Available at:
http://portal.acm.org/citation.cfm?doid=1129006.1129017 (accessed 13/02/17).

Kawash J (2012) Engaging students by intertwining puzzle-based and problem-based learning.
Proceedings of the 13th annual conference on Information technology education. Calgary, Alberta,
Canada: ACM.

Keefe JW (1979) Learning style: An overview." Student learning styles: Diagnosing and prescribing
programs. .

Khalife JT (2006) Threshold for the introduction of programming: Providing learners with a simple
computer model. Information Technology Interfaces, 2006. 28th International Conference on. IEEE,
71–76.

Kolb DA (1984) Experiential learning: Experience as the source of learning and development.
Prentice-Hall Englewood Cliffs, NJ.

Kölling M and Michael (2010) The Greenfoot Programming Environment. ACM Transactions on
Computing Education. ACM 10(4): 1–21. Available at:
http://portal.acm.org/citation.cfm?doid=1868358.1868361 (accessed 13/02/17).

Koohang A and Harman K (2007) Learning objects and instructional design. Informing Science
Press. Available at:
https://books.google.co.uk/books?hl=en&lr=&id=DOZFrbLt1CUC&oi=fnd&pg=PR9&dq=learning+
objects+and+instructional+design&ots=QogskK2az4&sig=yn4UGHJs2M9wZNWLCBGwir9XpQo#
v=onepage&q=learning objects and instructional design&f=false (accessed 02/06/17).

Korhonen A, Ross R, Shaffer CA, Naps T, Boisvert C, Crescenzi P, Karavirta V, Mannila L, Miller B,
Morrison B and Rodger SH (2013) Requirements and design strategies for open source interactive
computer science eBooks. Proceedings of the ITiCSE working group reports conference on
Innovation and technology in computer science education-working group reports - ITiCSE -WGR ’13.
New York, New York, USA: ACM Press, 53–72. Available at:
http://dl.acm.org/citation.cfm?doid=2543882.2543886 (accessed 01/03/17).

Lahtinen E, Ala-Mutka K, Järvinen H-M, Lahtinen E, Ala-Mutka K and Järvinen H-M (2005) A study
of the difficulties of novice programmers. Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education - ITiCSE ’05. New York, New York, USA:
ACM Press, 14. Available at: http://portal.acm.org/citation.cfm?doid=1067445.1067453 (accessed
07/06/16).

Layman L, Williams L and Slaten K (2007) Note to self: make assignments meaningful. Proceedings
of the 38th SIGCSE technical symposium on Computer science education. Covington, Kentucky,
USA: ACM.

Leping V, Lepp M, Niitsoo M, T E, nisson, Vene V and Villems A (2009) Python prevails.
Proceedings of the International Conference on Computer Systems and Technologies and Workshop
for PhD Students in Computing. Ruse, Bulgaria: ACM.

Levy RB-B and Ben-Ari M (2007) We work so hard and they don’t use it: acceptance of software
tools by teachers. Proceedings of the 12th annual SIGCSE conference on Innovation and technology
in computer science education. Dundee, Scotland: ACM.

Levy RB-B, Ben-Ari M, Levy RB-B and Ben-Ari M (2007) We work so hard and they don’t use it.
Proceedings of the 12th annual SIGCSE conference on Innovation and technology in computer
science education - ITiCSE ’07. New York, New York, USA: ACM Press, 246. Available at:
http://portal.acm.org/citation.cfm?doid=1268784.1268856 (accessed 07/06/16).

90

Lewis C and Rieman J (1994) Task-Centered User Interface Design A Practical Introduction. .
Available at: https://web.cs.dal.ca/~jamie/TCUID/covers-tcuid.pdf (accessed 23/08/17).

Lister R, Seppälä O, Simon B, Thomas L, Adams ES, Fitzgerald S, Fone W, Hamer J, Lindholm M,
McCartney R, Moström JE, Sanders K, Lister R, Adams ES, Fitzgerald S, Fone W, Hamer J,
Lindholm M, McCartney R, Moström JE, Sanders K, Seppälä O, Simon B and Thomas L (2004) A
multi-national study of reading and tracing skills in novice programmers. Working group reports from
ITiCSE on Innovation and technology in computer science education - ITiCSE-WGR ’04. New York,
New York, USA: ACM Press, 119. Available at:
http://portal.acm.org/citation.cfm?doid=1044550.1041673 (accessed 07/06/16).

Malan DJ (2007) Podcasting Computer Science E-1. Association for Computing Machinery 389–393.
Available at: https://dash.harvard.edu/bitstream/handle/1/2829931/1239630301-fp150-
malan.pdf?sequence=2 (accessed 02/06/17).

Malan K and Halland K (2004) Examples that can do harm in learning programming. Companion to
the 19th annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications. Vancouver, BC, CANADA: ACM.

Mannila L, Peltomäki M and Salakoski T (2006) What about a simple language? Analyzing the
difficulties in learning to program. Computer Science Education. Routledge 16(3): 211–227.
Available at: http://www.tandfonline.com/doi/abs/10.1080/08993400600912384 (accessed 17/11/16).

Mannila L and de Raadt M (2006) An objective comparison of languages for teaching introductory
programming. Proceedings of the 6th Baltic Sea conference on Computing education research Koli
Calling 2006 - Baltic Sea ’06. New York, New York, USA: ACM Press, 32. Available at:
http://portal.acm.org/citation.cfm?doid=1315803.1315811 (accessed 25/10/16).

Mannila L and Raadt M de (2006) An objective comparison of languages for teaching introductory
programming. Proceedings of the 6th Baltic Sea conference on Computing education research: Koli
Calling 2006. Uppsala, Sweden: ACM.

Maravić Čisar S, Pinter R and Radosav D (2011) Effectiveness of Program Visualization in Learning
Java: a Case Study with Jeliot 3. International Journal of Computers Communications & Control
6(4): 668. Available at: http://univagora.ro/jour/index.php/ijccc/article/view/2094 (accessed
13/03/17).

McCracken M, Wilusz T, Almstrum V, Diaz D, Guzdial M, Hagan D, Kolikant YB-D, Laxer C,
Thomas L and Utting I (2001) A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. ACM SIGCSE Bulletin. ACM 33(4): 125. Available at:
http://portal.acm.org/citation.cfm?doid=572139.572181 (accessed 07/06/16).

McGettrick A, Boyle R, Ibbett R, Lloyd J, Lovegrove G and Mander K (2005a) Grand Challenges in
Computing: Education--A Summary. The Computer Journal 48(1): 42–48. Available at:
http://comjnl.oupjournals.org/cgi/doi/10.1093/comjnl/bxh064 (accessed 07/06/16).

McGettrick A, Boyle R, Ibbett R, Lloyd J, Lovegrove G and Mander K (2005) Grand Challenges in
Computing: Education—A Summary. The Computer Journal 48(1): 42–48. Available at:
http://comjnl.oxfordjournals.org/content/48/1/42.abstract.

McGettrick A, Boyle R, Ibbett R, Lloyd J, Lovegrove G and Mander K (2005b) Grand Challenges in
Computing: Education--A Summary. The Computer Journal. Oxford University Press 48(1): 42–48.
Available at: http://comjnl.oupjournals.org/cgi/doi/10.1093/comjnl/bxh064 (accessed 25/10/16).

Merrick KE (2010) An empirical evaluation of puzzle-based learning as an interest approach for
teaching introductory computer science. Education, IEEE Transactions on 53(4): 677–680.

91

Milbrandt G (1995) Using Problem Solving to Teach a Programming Language. Learning & Leading
with Technology 23(2): 27–31.

Miller B (2015) Fundamentals of Web Programming — Fundamentals of Web Programming. .
Available at: http://interactivepython.org/runestone/static/webfundamentals/index.html (accessed
31/05/17).

Milne I and Rowe G (2002a) Difficulties in Learning and Teaching Programming\—Views of
Students and Tutors. Education and Information Technologies 7(1): 55–66.

Milne I and Rowe G (2002b) OGRE-3D Program Visualization for C++. In Proceedings of the 3rd
Annual LTSN-ICS Conference.

Moons J and De Backer C (2013) The design and pilot evaluation of an interactive learning
environment for introductory programming influenced by cognitive load theory and constructivism.
Computers & Education 60(1): 368–384.

Murphy C, Kim E, Kaiser G, Cannon A, Murphy C, Kim E, Kaiser G and Cannon A (2008) Backstop.
ACM SIGCSE Bulletin. ACM 40(1): 173. Available at:
http://portal.acm.org/citation.cfm?doid=1352322.1352193 (accessed 07/06/16).

Naps TL, R G, ling, Almstrum V, Dann W, Fleischer R, Hundhausen C, Korhonen A, Malmi L,
McNally M, Rodger S, J, Vel ngel and zquez I (2002) Exploring the role of visualization and
engagement in computer science education. SIGCSE Bull. 35(2): 131–152.

Nielsen J (1995) How to Conduct a Heuristic Evaluation. Nielsen Norman Group. Available at:
http://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/.

Nielsen J (1996) Severity Ratings for Usability Problems: Article by Jakob Nielsen. . Available at:
https://www.nngroup.com/articles/how-to-rate-the-severity-of-usability-problems/ (accessed
25/08/17).

Nielsen J (2000) Why You Only Need to Test with 5 Users. Nielsen Norman Group. Available at:
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/.

Nielsen J (2001) Usability Metrics. . Available at: https://www.nngroup.com/articles/usability-
metrics/ (accessed 31/08/17).

Nielsen J (2006) How Many Test Users in a Usability Study? . Available at:
https://www.nngroup.com/articles/how-many-test-users/ (accessed 30/08/17).

Nielsen J (2012) Usability 101: Introduction to Usability. Jakob Nielsen’s Alertbox. Available at:
http://www.nngroup.com/articles/usability-101-introduction-to-usability/.

Nielsen J (2014) Task Scenarios for Usability Testing. . Available at:
https://www.nngroup.com/articles/task-scenarios-usability-testing/ (accessed 30/08/17).

Nielsen J and Molich R (1990) Heuristic evaluation of user interfaces. Proceedings of the SIGCHI
conference on Human factors in computing systems Empowering people - CHI ’90. New York, New
York, USA: ACM Press, 249–256. Available at: http://portal.acm.org/citation.cfm?doid=97243.97281
(accessed 24/08/17).

Nikula U, Gotel O and Kasurinen J (2011) A Motivation Guided Holistic Rehabilitation of the First
Programming Course. ACM Trans . Comput . Educ . Article 11(24).

Olson J (2004) Quick Methods: Checklists, Heuristic Evaluation, Cognitive Walkthrough. Evaluation
of Systems and Services. Power Point Presentation.

92

Özmen B and Altun A (2014) Undergraduate Students’ Experiences in Programming: Difficulties and
Obstacles. Turkish Online Journal of Qualitative Inquiry 5(3): 1–27. Available at:
http://dergipark.gov.tr/doi/10.17569/tojqi.20328 (accessed 29/03/18).

Palumbo DB (1990) Programming Language/Problem-Solving Research: A Review of Relevant
Issues. Review of Educational Research. SAGE Publications 60(1): 65–89. Available at:
http://rer.sagepub.com/cgi/doi/10.3102/00346543060001065 (accessed 17/11/16).

Paredes P and Rodriguez P (2004) A MIXED APPROACH TO MODELLING LEARNING STYLES
IN ADAPTIVE EDUCATIONAL HYPERMEDIA. .

Parsons D and Haden P (2006) Parson’s programming puzzles: a fun and effective learning tool for
first programming courses. Proceedings of the 8th Australasian Conference on Computing Education
- Volume 52. Hobart, Australia: Australian Computer Society, Inc.

Pashler H, McDaniel M, Rohrer D and Bjork R (2008) Learning Styles: Concepts and Evidence.
Psychological Science in the Public Interest. Sage Publications, Inc.Association for Psychological
Science, 105–119. Available at: http://www.jstor.org/stable/20697325 (accessed 31/03/18).

Pearrow M and Mark (2000) Web site usability handbook. Charles River Media, Inc. Available at:
http://dl.acm.org/citation.cfm?id=518262 (accessed 24/08/17).

Pears A, Seidman S, Malmi L, Mannila L, Adams E, Bennedsen J, Devlin M, Paterson J, Pears A,
Seidman S, Malmi L, Mannila L, Adams E, Bennedsen J, Devlin M and Paterson J (2007) A survey of
literature on the teaching of introductory programming. ACM SIGCSE Bulletin. ACM 39(4): 204.
Available at: http://portal.acm.org/citation.cfm?doid=1345375.1345441 (accessed 07/06/16).

Pei Fen Chong, Yan-Peng Lim and Siew Woei Ling (2008) E-book design preferences: A case study.
2008 International Symposium on Information Technology. IEEE, 1–8. Available at:
http://ieeexplore.ieee.org/document/4631538/ (accessed 02/09/17).

Peña C-I, Marzo J-L and De La Rosa J-L (2002) Intelligent Agents in a Teaching and Learning
Environment on the Web. .

Perrenet J and Kaasenbrood E (2006) Levels of abstraction in students’ understanding of the concept
of algorithm: the qualitative perspective. Proceedings of the 11th annual SIGCSE conference on
Innovation and technology in computer science education. Bologna, Italy: ACM.

Pollock L and Harvey T (2011a) Combining multiple pedagogies to boost learning and enthusiasm.
Proceedings of the 16th annual joint conference on Innovation and technology in computer science
education - ITiCSE ’11. New York, New York, USA: ACM Press, 258. Available at:
http://portal.acm.org/citation.cfm?doid=1999747.1999820 (accessed 07/06/16).

Pollock L and Harvey T (2011b) Combining multiple pedagogies to boost learning and enthusiasm.
Proceedings of the 16th annual joint conference on Innovation and technology in computer science
education. Darmstadt, Germany: ACM.

Potatoes H (2001) Hot Potatoes Home Page. . Available at: https://hotpot.uvic.ca/ (accessed
01/06/17).

Preece J, Rogers Y, Sharp H, Benyon D, Holland S and Carey T (1994) Human-computer interaction.
Addison-Wesley Pub. Co. Available at: http://dl.acm.org/citation.cfm?id=561701 (accessed
23/08/17).

Pritchard D and Vasiga T (2013) CS circles. Proceeding of the 44th ACM technical symposium on
Computer science education - SIGCSE ’13. New York, New York, USA: ACM Press, 591. Available
at: http://dl.acm.org/citation.cfm?doid=2445196.2445370 (accessed 02/09/17).

93

de Raadt M, Watson R and Toleman M (2002) Language trends in introductory programming courses.
Informing Science Institute.

de Raadt M, Watson R and Toleman M (2004) Introductory programming: what’s happening today
and will there be any students to teach tomorrow? Proceedings of the Sixth Australasian Conference
on Computing Education - Volume 30. Australian Computer Society, Inc., 277–282.

Radenski A (2006) ‘Python first’: a lab-based digital introduction to computer science. SIGCSE Bull.
38(3): 197–201.

Ramalingam V, Labelle D and Wiedenbeck S (2004) Self-Efficacy and Mental Models in Learning to
Program. ITiCSE ’04 Proceedings of the 9th annual SIGCSE conference on Innovation and
technology in computer science education, 171–175.

Randolph and J. J (2007) Computer science education research at the crossroads: a methodological
review of computer science education research, 2000--2005. Utah State University.

Redmiles DF (1993) Reducing the Variability of Programmers’ Performance Through Explained
Examples Reducing the Variability of Programmers’ Performance Through Explained Examples. .
Available at:
https://www.researchgate.net/profile/David_Redmiles/publication/2607698_Reducing_the_Variabilit
y_of_Programmers’_Performance_Through_Explained_Examples/links/55eb7fba08ae65b6389dec1e.
pdf (accessed 06/09/17).

Reis HT and Judd CM (2000) Handbook of research methods in social and personality psychology. .
Available at:
https://books.google.co.uk/books?hl=en&lr=&id=NRWTAgAAQBAJ&oi=fnd&pg=PA11&dq=Resea
rch+Design+and+Issues+of+Validity&ots=3Hh8wtTqnK&sig=2NWrIe7D98bHSBZ1FNKu8ODkgJ
A#v=onepage&q=Research Design and Issues of Validity&f=false (accessed 12/09/17).

Robins A (2010) Learning edge momentum: A new account of outcomes in CS1. Computer Science
Education 20(1). Available at: http://www.informaworld.com/smpp/ (accessed 30/01/17).

Robins A, Rountree J and Rountree N (2003) Learning and Teaching Programming: A Review and
Discussion. Computer Science Education 13(2): 137–172. Available at:
http://www.tandfonline.com/doi/abs/10.1076/csed.13.2.137.14200 (accessed 07/06/16).

Rogers Y, Sharp H and Preece J (2011) Interaction design : beyond human-computer interaction.
Wiley. Available at: https://books.google.co.uk/books?hl=en&lr=&id=b-
v_6BeCwwQC&oi=fnd&pg=PR11&dq=Interaction+Design:+beyond+human&ots=QJjK48FKza&sig
=_ws63lhiR9ELtLLVXlly-v1Mo-w#v=onepage&q=Interaction Design%3A beyond human&f=false
(accessed 24/08/17).

Ross JM (2002) Guiding students through programming puzzles: value and examples of Java game
assignments. SIGCSE Bull. 34(4): 94–98.

Rowe G and Thorburn G (2000) VINCE-an on-line tutorial tool for teaching introductory
programming. British Journal of Educational Technology. Blackwell Publishers Ltd 31(4): 359–369.
Available at: http://doi.wiley.com/10.1111/1467-8535.00168 (accessed 06/09/17).

Rubin J and Chisnell D (1994) Handbook of Usability Testing How to Plan, Design, and Conduct
Effective Tests Handbook of Usability Testing, Second Edition: How to Plan, Design, and Conduct
Effective Tests. . Available at: http://ccftp.scu.edu.cn:8090/Download/efa2417b-08ba-438a-b814-
92db3dde0eb6.pdf (accessed 30/08/17).

Runestone (2012) Runestone Interactive Documentation — Runestone Interactive 1.0 documentation.
. Available at: http://runestoneinteractive.org/build/html/index.html (accessed 31/05/17).

94

Sanders ID and Langford S (2008) Students’ perceptions of python as a first programming language at
wits. SIGCSE Bull. 40(3): 365.

Sauro J (2012) MeasuringU: 10 Things To Know About The Single Ease Question (SEQ). . Available
at: https://measuringu.com/seq10/ (accessed 31/08/17).

Sauro J (2013) MeasuringU: Best Practices for Using Statistics on Small Sample Sizes. . Available at:
https://measuringu.com/small-n/ (accessed 12/09/17).

Shah H and Kumar AN (2002) A tutoring system for parameter passing in programming languages.
Proceedings of the 7th annual conference on Innovation and technology in computer science
education - ITiCSE’02. New York, New York, USA: ACM Press, 170. Available at:
http://portal.acm.org/citation.cfm?doid=544414.544464 (accessed 06/09/17).

Shang Y, Shi H and Chen S-S (2001) An Intelligent Distributed Environment for Active Learning. .

Shneiderman B (2004) Designing for fun. interactions. ACM 11(5): 48. Available at:
http://portal.acm.org/citation.cfm?doid=1015530.1015552 (accessed 25/08/17).

Shuhidan SM, Hamilton M and D’Souza D (2011) Understanding novice programmer difficulties via
guided learning. Proceedings of the 16th annual joint conference on Innovation and technology in
computer science education. Darmstadt, Germany: ACM.

Shute VJ (1991) Who is Likely to Acquire Programming Skills? Journal of Educational Computing
Research. SAGE Publications 7(1): 1–24. Available at:
http://jec.sagepub.com/lookup/doi/10.2190/VQJD-T1YD-5WVB-RYPJ (accessed 25/10/16).

Sorva J (2010) Reflections on threshold concepts in computer programming and beyond. Proceedings
of the 10th Koli Calling International Conference on Computing Education Research. Koli, Finland:
ACM.

Sorva J, Karavirta V and Malmi L (2013) A Review of Generic Program Visualization Systems for
Introductory Programming Education. ACM Transactions on Computing Education. ACM 13(4): 1–
64. Available at: http://dl.acm.org/citation.cfm?doid=2543488.2490822 (accessed 07/06/16).

Stash N, Cristea A and De Bra P (2006) Adaptation to Learning Styles in E-Learning: Approach
Evaluation. .

Stephenson B (2009) Using python and QuickDraw to foster student engagement in CS1. Proceedings
of the 24th ACM SIGPLAN conference companion on Object oriented programming systems
languages and applications. Orlando, Florida, USA: ACM.

Stern L, Markham S and Hanewald R (2005) You can lead a horse to water: how students really use
pedagogical software. Proceedings of the 10th annual SIGCSE conference on Innovation and
technology in computer science education. Caparica, Portugal: ACM.

Stern L, Markham S, Hanewald R, Stern L, Markham S and Hanewald R (2005) You can lead a horse
to water. ACM SIGCSE Bulletin. ACM 37(3): 246. Available at:
http://portal.acm.org/citation.cfm?doid=1151954.1067513 (accessed 07/06/16).

Stone D, Jarrett C, Woodroffe M and Minocha S (2005) User interface design and evaluation.
Elsevier.

Sung K, Hillyard C, Angotti RL, Panitz MW, Goldstein DS and Nordlinger J (2011) Game-Themed
Programming Assignment Modules: A Pathway for Gradual Integration of Gaming Context Into
Existing Introductory Programming Courses. IEEE Transactions on Education 54(3): 416–427.
Available at: http://ieeexplore.ieee.org/document/5559399/ (accessed 26/10/16).

95

Sweller J (1988) Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science.
Lawrence Erlbaum Associates, Inc. 12(2): 257–285. Available at:
http://doi.wiley.com/10.1207/s15516709cog1202_4 (accessed 05/06/17).

Sykes ER (2007) Determining the effectiveness of the 3D Alice programming environment at the
computer science I level. Journal of Educational Computing Research 36.2: 223–244. Available at:
https://www.researchgate.net/profile/Edward_Sykes2/publication/240793117_Determining_the_Effec
tiveness_of_the_3D_Alice_Programming_Environment_at_the_Computer_Science_I_Level/links/0de
ec53b8b7011c7c9000000.pdf (accessed 13/03/17).

Tan P-H, Ting C-Y and Ling S-W (2009) Learning Difficulties in Programming Courses:
Undergraduates’ Perspective and Perception. Computer Technology and Development, 2009.
ICCTD’09. International Conference on. IEEE, 42–46.

Tasneem S (2012) Critical thinking in an introductory programming course. J. Comput. Sci. Coll.
27(6): 81–83.

The Guardian (2017) No evidence to back idea of learning styles | Letter | Education | The Guardian.
. Available at: https://www.theguardian.com/education/2017/mar/12/no-evidence-to-back-idea-of-
learning-styles (accessed 12/09/17).

The Joint Task Force on Computing Curricula (2013) Computer Science Curricula 2013. Association
for Computing Machinery (ACM) IEEE Computer Society. Available at:
http://www.acm.org/education/CS2013-final-report.pdf (accessed 02/03/17).

Thomas L, Ratcliffe M, Woodbury J and Jarman E (2002a) Learning styles and performance in the
introductory programming sequence. Proceedings of the 33rd SIGCSE technical symposium on
Computer science education - SIGCSE ’02. New York, New York, USA: ACM Press, 33. Available
at: http://portal.acm.org/citation.cfm?doid=563340.563352 (accessed 25/10/16).

Thomas L, Ratcliffe M, Woodbury J and Jarman E (2002b) Learning styles and performance in the
introductory programming sequence. SIGCSE Bull. 34(1): 33–37.

Tie H-H and Umar IN (2010) The Impact of Learning Styles and Instructional Methods on Students’
Recall and Retention in Programming Education. .

TIOBE (2016) TIOBE Index | TIOBE - The Software Quality Company. . Available at:
http://www.tiobe.com/tiobe-index/.

Universities UK (2015) Patterns and trends in UK higher education – 2015. . Available at:
http://www.universitiesuk.ac.uk/facts-and-stats/data-and-analysis/Pages/patterns-and-trends-uk-
higher-education-2015.aspx (accessed 07/06/16).

usability.gov (2013) Usability Evaluation Basics. Department of Health and Human Services.
Available at: https://www.usability.gov/what-and-why/usability-evaluation.html (accessed 23/08/17).

usability.gov (2014) Running a Usability Test. Department of Health and Human Services. Available
at: https://www.usability.gov/how-to-and-tools/methods/running-usability-tests.html (accessed
31/08/17).

Usability.gov (2013) Usability Testing. Department of Health and Human Services. Available at:
https://www.usability.gov/how-to-and-tools/methods/usability-testing.html (accessed 30/08/17).

W3C (2003) WAI Site Usability Testing Questions. . Available at:
https://www.w3.org/WAI/EO/Drafts/UCD/questions.html (accessed 30/08/17).

Willingham D (2016) Daniel Willingham’s Learning Styles FAQ - Daniel Willingham--Science
& Education. . Available at: http://www.danielwillingham.com/learning-styles-faq.html

96

(accessed 21/06/17).

Wilson BC and Shrock S (2001) Contributing to success in an introductory computer science course.
Proceedings of the thirty-second SIGCSE technical symposium on Computer Science Education -
SIGCSE ’01. New York, New York, USA: ACM Press, 184–188. Available at:
http://portal.acm.org/citation.cfm?doid=364447.364581 (accessed 25/10/16).

Wilson R, Landoni M and Gibb F (2009) Guidelines for Designing Electronic Books. IETE Technical
Review 26(23): 213–222.

Winslow LE and E. L (1996) Programming pedagogy---a psychological overview. ACM SIGCSE
Bulletin. ACM 28(3): 17–22. Available at: http://portal.acm.org/citation.cfm?doid=234867.234872
(accessed 25/10/16).

Zander C, Thomas L, Simon B, Murphy L, McCauley R, Hanks B, Fitzgerald S, Zander C, Thomas L,
Simon B, Murphy L, McCauley R, Hanks B and Fitzgerald S (2009) Learning styles. Proceedings of
the 14th annual ACM SIGCSE conference on Innovation and technology in computer science
education - ITiCSE ’09. New York, New York, USA: ACM Press, 223. Available at:
http://portal.acm.org/citation.cfm?doid=1562877.1562948 (accessed 25/10/16).

Zander C, Thomas L, Simon B, Murphy L, Ren, McCauley e, Hanks B and Fitzgerald S (2009)
Learning styles: novices decide. Proceedings of the 14th annual ACM SIGCSE conference on
Innovation and technology in computer science education. Paris, France: ACM.

Zingaro D, Petersen A and Craig M (2012) Stepping up to integrative questions on CS1 exams.
Proceedings of the 43rd ACM technical symposium on Computer Science Education. Raleigh, North
Carolina, USA: ACM.

Zualkernan IA, Allert J and Qadah GZ (2006) Learning styles of computer programming students: a
Middle Eastern and American comparison. Education, IEEE Transactions on 49(4): 443–450.

97

Appendices

98

Appendix 1: Literature on Learning Environments

E
as

e
of

 u
se

D
is

co
ve

ra
bi

lit
y

In
te

ra
ct

iv
e

fu
nc

tio
na

lit
ie

s

C
us

to
m

is
at

io
n

E
rr

or
 h

an
dl

in
g

A
ut

om
at

ed
 a

ss
es

sm
en

t a
nd

fe

ed
ba

ck

V
is

ua
lis

at
io

n

Im
pr

ov
in

g
pr

ob
le

m
 so

lv
in

g
te

ch
ni

qu
es

M
in

im
is

e
co

gn
iti

ve
 o

ve
rl

oa
d

C
ov

er
 c

or
e

pr
og

ra
m

m
in

g
co

nc
ep

ts

D
ep

en
de

nc
y

(Carbone et al 2000) x x

(Franzoni and Assar 2009) x x x x

(Kölling and Michael 2010) x x x x x

(Moons and De Backer 2013) x x x x

(Clark and Mayer 2016) x x x x x x

(Chong et al 2009b) x

(Fenwick et al 2013) x x x x x x

99

E
as

e
of

 u
se

D
is

co
ve

ra
bi

lit
y

In
te

ra
ct

iv
e

fu
nc

tio
na

lit
ie

s

C
us

to
m

is
at

io
n

E
rr

or
 h

an
dl

in
g

A
ut

om
at

ed
 a

ss
es

sm
en

t a
nd

fe

ed
ba

ck

V
is

ua
lis

at
io

n

Im
pr

ov
in

g
pr

ob
le

m
 so

lv
in

g
te

ch
ni

qu
es

M
in

im
is

e
co

gn
iti

ve
 o

ve
rl

oa
d

C
ov

er
 c

or
e

pr
og

ra
m

m
in

g
co

nc
ep

ts

D
ep

en
de

nc
y

(Korhonen et al 2013) x x x x x x x x

(Ruth Wilson et al 2009) x x x x x

(Guzdial 2003) x x x x x x x

100

Appendix 2: Comparison of Novice Environments (Functional Features)

Functional Features Alice BlueJ Jeliot3 RoboLab RAPTOR

Programming style

functional

procedural x x x

object oriented x

event based x

Programming
concepts

variables x x x x x

conditional statements x x x x x

for loops x x x x x

while loops x x x x x

methods x x x x x

pre conditions and post
conditions

 x x

Code
representation

text x x

pictures x x

flowchart x

animation x x x

Code construction

typing in code x x

assembly and
manipulation of graphic
objects

x x x x x

Understanding
programming
support

backstories x

debugging x x

examples

exercises

Syntax error
handling

direct syntax editing x

user friendly error
messages

 x x

limited selection of
options

 x

101

Appendix 3: PILeT Demo Session

Student interface

In order to use PILeT for the first time, students are required to create an account by registering with
the website by clicking on the register link (Figure A.1). The registration page asks the student to
submit a username, first name, last name, email, password, and course name. The course name is a
unique field to prevent other users who are not affiliated with the course from accessing it and is
provided by the instructor.

Figure A.1 PILeT Homepage

After logging in, a student land on the welcome page. This page compromises of two sections: a user
manual at the top followed by a table of content. The user manual contains an introduction to PILeT
along with information on how to use the different interactive features for new learners. The table of
content lists five chapters each covering a Python concept (variables and expressions, selection
statements, loops, functions and lists). Students have the freedom to jump between different chapters
in a non-chronological order, however they are advised to complete each chapter consecutively in the
user manual.

Each chapter starts with a small introduction of the lessons’ objectives followed by embedded videos
to explain the topic and provide examples (Figure A.2). Textual paragraphs are located below the
videos together with images and figures as an alternative to the visual content in addition to source
code visualisation. Next to follow, and throughout the chapter, are small executable examples,
exercises, Parson’s Programming Puzzles and multiple choice questions. These interactive features
could be used on their own by students to learn programming in Python or to test their understanding
of concepts. Multiple choice questions and Parson’s Programming Puzzles are automatically assessed
whilst coding exercises are not. Once students save their submissions by clicking on the save button, a
copy of the source code is submitted to the instructor for marking and feedback. Finally built in
PowerPoint slides are embedded at the end of the chapter for revision purposes along with a multiple
choice question quiz.

102

Figure A.2 Conditional Statements in PILeT

103

Instructor interface

PILeT contains a separate interface that can be accessed through the homepage. Once the instructor
logs in with their credentials they land on the instructor’s dashboard page (Figure A.3). The page
consists of five links for the instructor to administer the Python course.

Figure A.3 Instructor's Dashboard in PILeT

1. List and grade assignment:
This page contains a record of all of the assignments and exercises that need to be graded in PILeT
(Figure A.4). Once an assignment is selected, the instructor is presented with a dashboard that lists all
of the students who submitted the assignment including the username, first name, last name,
timestamp (with date and time of submission), and source code. The instructor then grades the
assignment and provides feedback.

2. Assessment summary:
This page shows a summary of all of the assessments submitted by the student ordered by last name
including the grade.

3. Student activity summary:
Presents a page with a list of all the students registered with PILeT and the number of hours spent
using the website.

4. Show course logs:
The page keeps of a record of all of the students’ activities on PILeT. Every time a student clicks on
an interactive feature, the action is logged in this page along with a timestamp.

104

5. Take me to my course:
 Once clicked, the instructor lands on the welcome page with the table of content.

Figure A.4 Grading Assignments in PILeT

105

Appendix 4: Usability Heuristics

1

 Inform user of system status and offer feedback

Explanation: offer system feedback to users frequently, display the progress level of long tasks and
provide notification messages when a process is completed

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

2

 Speak in the user natural language

Explanation: use simple text to communicate with users, avoid technical jargon and use familiar
terms

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

106

3

 Allow easy navigation and reversal of actions

Explanation: make commands easily accessible, group related commands, and allow users to undo
and redo actions

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

4

 Strive for consistency across the system

Explanation: text format and graphics should be consistent within the system, this includes icons,
texts labels and dialog boxes. Additionally, buttons must perform the same tasks throughout the

system

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

107

5

 Design dialogue to yield closure and allow exists

Explanation: actions should follow a sequence (beginning, middle end). Allow users to cancel or
abort actions

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

6

 Prevent errors and offer simple error handling
Explanation: offer users the option to confirm selection before proceeding, eliminate error prone

situations and present errors in a simple language with suggested solutions

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

108

7

 Reduce cognitive load

Explanation: employ recognition methods for system instructions, make menu options visible to users
and use labels for buttons

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

8

 Provide shortcuts for repeated actions

Explanation: reduce number of user interaction with interface by using shortcuts and macros for
repetitive actions

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

109

9

 Use minimalistic design

Explanation: keep information to minimum, use user friendly text for all user groups (e.g. users with
dyslexia), employ colour and text size to highlight important ideas and use spacing between

paragraphs to divide sections

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

10

 Offer help at all times

Explanation: offer users assistance with all tasks when necessary and enable users to search for
problem solutions

Ease of fixing Evidence and comment:
 0. Very easy
 1. Easy
 2. Medium
 3. Hard
Severity rating:
 0. No problem
 1. Cosmetic problem only
 2. Minor usability problem
 3. Major usability problem
 4. Usability catastrophe

110

Appendix 5: Usability Problems

List of problems

1. Once a profile is created, the user cannot access the profile page again to change credentials (for
example password).

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

1 Once a profile is created, the user
cannot access the profile page again to
change credentials (for example
password).

3. Allow easy
navigation and
reversal of actions.

4 3

Description:

In order to use PILeT for the first time, users are required to create an account by registering with the
website. The registration page asks users to submit a username, first name, last name, email,
password, and course name. Once the registration process is completed, users cannot edit or change
any of the submitted information as that option does not exist. This problem violates usability
heuristic 3 which states that users should easily be allowed to reverse their action.

Evidence:

Figure 5.1 illustrates PILeT main page. The page contains the table of contents which lists the
programming concepts, the forward button that navigates the user automatically to the first chapter,
the search button that locate a specific concept, and the user profile button at the top right corner.
Once the button is clicked it does contain (edit user profile) as an option.

111

Figure A.5 PILeT Main Page with Missing Option

Solution:

Whilst it was challenging the fix this usability issue as it requires data retrieval and manipulation, the
problem was resolved by adding (edit user profile) option in the drop down menu and creating a (user
profile) page. And while the page allows the user to change their first name, last name, email and
password, it does not allow changing the username or the course name as this information is
associated with any submissions made by the user (for example coding exercises and quizzes).

2. The link to (Loops) chapter is broken

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

2 The link to (Loops) chapter and its
subsequent sections is broken

4. Strive for
consistency across the
system

4 2

Description:

Whilst trying to access different Python concepts, all of the evaluators realised that the link that
navigates the user to (Loops) chapter and its subsequent sections is broken (resulting in 404 Not
Found Error in the browser). This error violates usability heuristic 4 which states that buttons and
links should be consistent within the system, and must perform the same tasks throughout it. The

112

severity rating of this problem is rated 4 (usability catastrophe) because the task cannot be performed
by the user and as such the concept is inaccessible.

Evidence:

This problem happens once the user tries to click on the link.

Figure A.6 Broken Links

Solution:

After investigating the problem for a while, it was realised that during the development stage of
PILeT, there were two versions of the same concept, the old one named (Loop) and the other (Loops).
The former was used as a mock page which was deleted later, however, after completion of the
webpage (Loops), the old URL was not directing to the new page (Loops) but (Loop) instead. The
error was fixed by changing the pathway to the page.

3. There are dead and unnecessary buttons

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

3 There are dead and unnecessary
buttons

4. Strive for
consistency across the
system

3 1

Description

Four of the five evaluators (1, 2, 3, and 5) noticed that the user icon button in the homepage does not
perform any actions whilst on other pages the user can click on it to log out. Additionally, there is an
unnecessary forward button on (Lists) page which should be removed because the concept is the last
chapter in the interactive tool. This problem also violates usability heuristic 4 and is rated as (usability
catastrophe).

113

Evidence:

Below are two instances where the problem occurs.

Figure A.7 Dead Buttons in Homepage and Final Page

Solution:

The problem was easily fixed easily by deleting the button on both pages.

4. Instead of having the user manual as a separate section, make it compulsory and at the beginning
as most users are new users.

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

4 Instead of having the user manual as a
separate section, make it compulsory
and at the beginning as most users are
new users.

5. Design dialogue to
yield closure and allow
exists
7. Reduce cognitive
load

2 2

Description:

Evaluators 1 and 3, who have experience in online learning, felt that it was necessary for first time
visitors of PILeT, who are likely to be without any previous programming experience, to read the user
manual and try out the interactive features before learning about the concepts. This is especially true
for using the embedded code compiler which requires users to type, run, save and load the code in
addition to Codelens which visualises code execution.

Evidence:

As seen in Figure A.8, currently the user manual is a separate section that is not compulsory for user
to read. Instead, a caution message was used to highlight its importance.

114

Figure A.8 User Manual in Separate Section

Solution:

After the registration step, all users land on the (user manual) page instead of the (main page).
However, if the user has previous programming experience and is familiar with these features, an
option to skip the manual is included.

5. The confirm password field box is not immediately under the password field box.

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

5 The confirm password field box is not
immediately under the password field
box.

4. Strive for
consistency across the
system

2 1

Description:

In the registration page, users are required to type in a password and confirm their selection by writing
it again in the text field. However, both fields are separated by the (course name) text field.

115

Evidence:

Figure 5.5 shows the unnatural order of the text fields.

Figure A.9 Confirm Password Text Field Is Not After Password

Solution:

The (course name) text field was moved below (Confirm password).

6. There is no clear indication that the user is logged in

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

6 There is no clear indication that the
user is logged in

1. Inform user of
system status and offer
feedback

2 1

Description:

Whilst it was not diagnosed as a major usability problem, the evaluators felt it was necessary to
inform users of their status once they are logged in or registered as it is a common practice in UI (user
interface) design that creates familiarity and friendliness with the website.

Evidence:

As Figure A.10 shows, a user is logged in to PILeT, however the user’s identity is unknown.

116

Figure A.10 Unknown User Logged In

Solution:

The solution involved a simple interface fix; once the user successfully logs in, the username is
displayed at the top of the page with a small welcome message as follows (Welcome username!).

7. The option to log in is visible to already logged in users

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

7 The option to log in is visible to
already logged in users

1. Inform user of
system status and offer
feedback

2 1

Description:

This problem is in clear violation of usability heuristic 1: inform users of system status, as this option
should not be provided to already logged in users.

Evidence:

A logged in user can select the log in option.

117

Figure A.11 Log In Option For Logged In Users

Solution:

The option was removed from the drop down menu.

8. Users can see instructor’s page option, it should be separate and at the beginning

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

8 Users can see instructor’s page option,
it should be separate and at the
beginning

3. Allow easy
navigation and
reversal of actions

2 1

Description:

Evaluators 3, 4 and 5 suggested that instead of the instructor logging in twice (once through the
homepage and again using the link at PILeT main page), the process should be reduced to one step at
the homepage, and remove that option from the students’ interface.

Evidence:

A drop down menu is shown with instructor’s page link in a student interface.

118

Figure A.12 Instructor's Page Link Is Shown To All Users

Solution:

This option is now only available in the instructor’s interface and subsequently has been removed
from the students’ page.

9. There is no indication whether a user completed a chapter or progress level

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

9 Users are unaware of their progress
level or whether a chapter is completed

1. Inform user of
system status and offer
feedback

1 1

Description:

In most educational websites, users are informed of their progress level with the material by
displaying a breakdown of their marks, the number of exercises and quizzes solved, or completion
percentage out of a 100%. Currently, unless the user checks each chapter independently for the
attempted exercises, only the instructor knows which exercises were completed. This problem is in
breach of heuristic evaluation 1.

Evidence:

Figure A.13 displays PILeT main page. The progress level is nowhere to be seen.

119

Figure A.13 Progress Level Unknown For Logged In Users

Solution:

A shaded check mark has been added next to each chapter heading. Once the chapter is completed by
the user (completion is this case meaning all of the exercises have been completed regardless of the
correctness of the answer), the check mark turns green.

10. Some tooltips have the same text as the button making them redundant

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

10 Some tooltips have the same text as
the button making them redundant

9. Use minimalistic
design

1 0

Description:

The evaluators noticed that a couple of the buttons contain unnecessary tooltips as the tip is the exact
same text as the buttons. The buttons are: run, save, load, check me and reset.

Evidence:

Figure A.14 shows an example of the usability issue described; the text in the run button is exactly the
same as the tooltip.

120

Figure A.14 Button Text Same As Tooltip

Solution:

All of buttons in PILeT were inspected again and as a result, the unnecessary tooltips were removed.

11. Some concepts had a relatively larger number of material and exercises.

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

11 Some concepts had a relatively larger
number of material and exercises

9. Use minimalistic
design:

0 0

Description:

Both concepts (variables and expressions) and (functions) contained a large number of content for the
user to go through which might be challenging for novice learners.

Evidence:

The concept function contains 18 subsections.

121

Figure A.15 The Function Concept in PILeT

Solution:

In order to keep the information to a minimum, without compromising the quality of the content, the
concepts have been divided into a manageable number of sections and subsections. Adequate spacing
between paragraphs was used to divide sections, in addition to using colours to highlight important
ideas.

12. The word “caution” is a bit alarming

Number Usability Problem Usability Heuristic Severity
Rating

Ease of
Fixing
Rating

12 The word “caution” is a bit alarming 2. Speak in the user
natural language

0 0

Description:

Evaluator 3 commented that the word “caution” is a bit alarming. Suggest replacing it with “attention”

Evidence:

Figure A.16 shows the “caution” on PILeT main page.

122

Figure A.16 Caution Message In PILeT Main Page

Solution:

As a result of usability problem 4, the “caution message” was removed.

123

Appendix 6: Moderator Script

Welcome and Purpose

Thank you for agreeing to take part in PILeT evaluation. Today I am asking you to serve as an
evaluator of this website and to complete a set of scenarios. Our goal is to see how easy or difficult
you find the site to use and your overall impression of the interface. I will audio record your reactions
and opinions; so, I may ask you to clarify statements that you make from time to time. I will take
notes and observe your interaction with the site. If you agree to take part, please sign the consent form
and answer the questionnaire at the end of the evaluation.

During this session you will perform tasked scenarios whilst thinking out loud to understand your
thought process, I will not be able to offer any suggestions or hints. There may be times, however,
when I will ask you to explain why you said or did something. After you complete a scenario, please
notify me so I can ask you a question about the task. You also will be asked a series of questions
about your experience at the end of this session.

Things to Keep in Mind

 What we are doing today is all about how easy we have made it for people to use the site.
 There is no right or wrong answer. If you have any questions, comments or areas of

confusion while you are working, please let me know.
 If you ever feel that you are lost or cannot complete a scenario with the information that you

have been given, please let me know. I’ll ask you what you might do in a real-world setting
and then either put you on the right track or move you on to the next scenario.

 We will be recording this session for reference if needed. Your name will not be associated or
reported with data or findings from this evaluation. Please fill the consent form.

 Finally, as you use the site, please do so as you would at home or your office. I do ask that
when looking for information, you do so as quickly and as accurately as you can.

Do you have any questions before we begin?

124

Appendix 7: Consent Form

Study Title:

PILeT: Usability Study

Researcher Details:
Bedour Alshaigy, Research student (PhD)
12012361@brookes.ac.uk
Department of Computing and Communication Technologies, Turing Bldg.
Oxford Brookes University, Wheatley Campus, Wheatley, Oxford OX33 1HX
United Kingdom
 Please initial box

I confirm that I have read and understand the information sheet for the above
study and have had the opportunity to ask questions.

I understand that my participation is voluntary and that I am free to withdraw at
any time, without giving reason.

I agree to take part in the above study.

I agree that my data gathered in this study may be stored (after it has been
anonymised) in a specialist data centre and may be used for future research.

 Please tick box

 Yes No

I agree to the use of anonymised quotes in publications

Name of Participant Date Signature

Name of Researcher Date Signature

125

Appendix 8: Task Scenarios
Scenario 1:

You want to learn how to program in Python and you heard about PILeT, the link to the website was
given to you, how do you visit the website?

Task Pathway Estimated Time (min)
1 Go to www.obpilt.com > 1

Scenario 2:

You are a completely new user to the website and you would like to use it, how would you register?

Task Pathway Estimated Time (min)
2 Click Register > fill form using

credential > click Register
3

Scenario 3:

Imagine you are already familiar with the website and you don’t need to read the user manual, what
would you do?

Task Pathway Estimated Time (min)
3 Click Skip > 1

Scenario 4:

The website teaches several programming concepts. You want to learn about (Variables and
Expressions), what would you do?

Task Pathway Estimated Time (min)
4 Navigate to Variables and

Expression in the main page >
click link

> 1

Scenario 5:

You successfully managed to land on (Variables and Expressions) page and you noticed a couple of
embedded video, the videos explain the how to declare and use variables in Python. One of the videos
explains the use of (input statement), how would you watch it?

Task Pathway Estimated Time (min)
5 Press play > 1

126

Scenario 6:

You scrolled down the page to (ActiveCode 1) section and noticed a piece of embedded code in a box
(don’t worry about the syntax), you wanted to try it out to see the result of the execution, what would
you do?

Task Pathway Estimated Time (min)
6 Click Run button > 1

Scenario 7:

You want to change (edit) the code in the box to print(“Goodbye!”) and save the code, what would
you do? Delete the code then try loading and executing it, what would you do?

Task Pathway Estimated Time (min)
7 Type in code in ActiveCode

box > click Save button >
delete code > click Load button
> click on Run

5

Scenario 8:

You further scrolled down the page to (CodeLens1) and you noticed a piece of embedded code in it.
Codelens is a tool that visually executes the code step by step. You want to trace the execution of the
code. How would you do it?

Task Pathway Estimated Time (min)
8 Click Forward, back, first and

last buttons
2

Scenario 9:

On the same page you navigated to (Parson’s Programming Puzzles 1), you notice an exercise with
code blocks. The blocks are arranged in the wrong order. How would you rearrange the blocks to
resemble working code (don’t worry about the correction of the solution)?

Task Pathway Estimated Time (min)
9 Drag code block from the left

column to the right column >
click Check Me and Reset
buttons

2

127

Scenario 10:

You finally reach the quiz section of (Variables and Expressions) page, you want to answer the first
multiple choice question and want to check your answer. How would you do it?

Task Pathway Estimated Time (min)
10 Select a radio button option >

click Check Me button
> 1

Scenario 11:

Now you want to learn about (Selection Statements) in Python, it happens to be the next chapter, how
would you do it?

Task Pathway Estimated Time (min)
11 Click Forward symbol button at

the top of the page

Or:
Click on PILeT logo > navigate
to Selection Statements in the
main page > click link

2

Scenario 12:

Imagine you want to edit the user profile you created by changing the first name to Jack. How would
you do it?

Task Pathway Estimated Time (min)
12 Click user button at top right

corner > change first name >
click Save changes button

3

Scenario 13:

Now you want to learn about (Functions) in Python. How would you do it?

Task Pathway Estimated Time (min)
13 Click on PILeT logo > navigate

to Selection Statements in the
main page > click link

2

128

Scenario 14:

Finally you want to sign out of PILeT. How would you do it?

Task Pathway Estimated Time (min)
14 Click user button at top right

corner > click logout
> 1

129

Appendix 9: Post-test Questionnaire

On a scale from 1 to 5, where

1. Strongly disagree
2. Disagree
3. Neither agree nor disagree
4. Agree
5. Strongly agree

Please rate your agreement with each statement.

Number Statement Rating
1 The homepage is attractive.
2 The overall site is attractive.
3 The site's graphics are pleasing.
4 The site has a good balance of graphics versus text.
5 The colours used throughout the site are attractive.
6 The typography (lettering, headings, titles) is attractive.
7 The homepage's content makes me want to explore the site further.
8 It is easy to find my way around the site.
9 I can get to information quickly.
10 It is fun to explore the site.
11 It is easy to remember where to find things.
12 Information is layered effectively on different screens.
13 The homepage is attention-getting.
14 Information is easy to read.
15 Information is written in a style that suits me.
16 Screens have the right amount of information.
17 The site effectively communicates the company's identity.
18 The information is relevant to my professional needs.
19 The site is designed with me in mind.
20 The site's content interests me.
21 The site's content would keep me coming back.
22 The site has characteristics that make it especially appealing.
23 The site reflects progressive, leading edge design.
24 The site is exciting.
25 The site is well-suited to first-time visitors.
26 The site is well-suited to repeat visitors.
27 The site has a clear purpose.
28 I always felt I knew what it was possible to do next.
29 It is clear how screen elements (e.g., pop-ups, scrolling lists, menu

options, etc.) work.

30 My mistakes were easy to correct.

130

Appendix 10: Usability Metrics

Evaluator No:

Task
No.

Success Rate Task Time Error Rate Satisfaction Comments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

131

Appendix 11: Post-test Questionnaire Results

Figure A.17 Evaluator 1 Responses

Figure A.18 Evaluator 2 Responses

0

1

2

3

4

5
1

2
3

4

5

6

7

8

9

10

11

12

13
14

15
16

17
18

19

20

21

22

23

24

25

26

27

28
29

30

Evaluator 1

0

1

2

3

4

5
1

2
3

4

5

6

7

8

9

10

11

12

13
14

15
16

17
18

19

20

21

22

23

24

25

26

27

28
29

30

Evaluator 2

132

Figure A.19 Evaluator 3 Responses

Figure A.20 Evaluator 4 Responses

0

1

2

3

4

5
1

2
3

4

5

6

7

8

9

10

11

12

13
14

15
16

17
18

19

20

21

22

23

24

25

26

27

28
29

30

Evaluator 3

0

1

2

3

4

5
1

2
3

4

5

6

7

8

9

10

11

12

13
14

15
16

17
18

19

20

21

22

23

24

25

26

27

28
29

30

Evaluator 4

133

Figure A.21 Evaluator 5 Responses

Figure A.22 All Responses Superimposed

0

1

2

3

4

5
1

2
3

4

5

6

7

8

9

10

11

12

13
14

15
16

17
18

19

20

21

22

23

24

25

26

27

28
29

30

Evaluator 5

0

1

2

3

4

5
1

2
3

4

5

6

7

8

9

10

11

12

13
14

15
16

17
18

19

20

21

22

23

24

25

26

27

28
29

30

All Responses

134

Appendix 12: Consent Form

Study Title:

PILeT and CS Circles: Usability Study

Researcher Details:
Bedour Alshaigy, Research student (PhD)
12012361@brookes.ac.uk
Department of Computing and Communication Technologies, Turing Bldg.
Oxford Brookes University, Wheatley Campus, Wheatley, Oxford OX33 1HX
United Kingdom
 Please initial box

I confirm that I have read and understand the information sheet for the above
study and have had the opportunity to ask questions.

I understand that my participation is voluntary and that I am free to withdraw at
any time, without giving reason.

I agree to take part in the above study.

I agree that my data gathered in this study may be stored (after it has been
anonymised) in a specialist data centre and may be used for future research.

 Please tick box

 Yes No

I agree to the use of anonymised quotes in publications

Name of Participant Date Signature

Name of Researcher Date Signature

135

Appendix 13: Usability Survey

On a scale from 1 to 5, where

1. Strongly disagree
2. Disagree
3. Neither agree nor disagree
4. Agree
5. Strongly agree

Please rate your agreement with each statement.

A. Navigation Design

Number Statement CS Circles
Rating

PILeT
Rating

1 I found it easy to navigate [website name here].
2 It was easy to know which page I was on and what

other pages I visited.

3 It was easy to locate certain pages of [website name
here]

B. Page Layout

Number Statement CS Circles
Rating

PILeT
Rating

1 I am happy with the amount of information on the
page.

2 I am happy with the arrangement of the interactive
features.

3 I am happy with the table of content.

C. Content Design

Number Statement CS Circles
Rating

PILeT
Rating

1 I found the font easy to read.
2 I found the page of acceptable length.
3 I found the page legible.
4 I liked the typographical aspects of the page.
5 I found it easy to scan through the page.
6 I liked the colours of the page.

136

For the final question, please circle the right answer.

D. Interactive Features

Number Statement CS Circles PILeT
1 I knew the purpose of Console Yes No ActiveCode Yes No
2 I found the feature useful Console Yes No ActiveCode Yes No
3 I knew the purpose of Codelens Yes No CodeLens Yes No
4 I found the feature useful Codelens Yes No CodeLens Yes No
5 I knew the purpose of Code

scrambler
Yes No Parson’s

Programming
Puzzles

Yes No

6 I found the feature useful Code
scrambler

Yes No Parson’s
Programming
Puzzles

Yes No

137

Appendix 14: System Usability Scale

On a scale from 1 to 5, where

6. Strongly disagree
7. Disagree
8. Neither agree nor disagree
9. Agree
10. Strongly agree

Please rate your agreement with each statement.

Number Statement Rating
1 I think that I would like to use this system frequently.
2 I found the system unnecessarily complex.
3 I thought the system was easy to use.
4 I think that I would need the support of a technical person to be able to sue

the system.

5 I found the various functions in this system were well integrated.
6 I thought there was too much inconsistency in this system.
7 I would imagine that most people would learn to use this system very

quickly

8 I found the system cumbersome to use.
9 I felt very confident using the system.
10 I needed to learn a lot of things before I could get going with this system.

138

Appendix 15: SUS Questionnaire Results for CS Circles

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score
1 3 2 5 1 4 3 4 4 5 1 75
2 3 2 3 2 3 3 3 3 4 3 57.5
3 3 3 4 1 4 1 3 4 4 3 65
4 4 2 3 2 5 3 2 3 4 1 67.5
5 4 2 3 2 3 3 3 3 4 1 65
6 2 2 4 1 3 2 4 4 3 2 62.5
7 1 4 2 3 3 3 2 4 3 3 35
8 1 5 1 3 2 4 1 3 1 5 15
9 2 3 3 4 2 5 4 4 2 3 35

10 1 2 2 4 3 3 1 3 1 4 30
11 2 3 2 3 2 2 2 3 3 3 42.5
12 2 3 3 4 2 2 2 3 3 2 45
13 2 3 3 3 3 2 3 2 2 2 52.5
14 3 2 4 2 4 3 4 3 4 1 70
15 2 3 3 5 2 4 2 2 3 4 35
16 4 2 4 2 4 2 2 2 3 4 62.5
17 2 3 3 2 3 3 1 3 2 3 42.5
18 1 3 3 1 3 3 2 5 3 4 40
19 1 1 1 1 1 1 1 1 1 1 50
20 3 3 4 1 3 4 3 5 3 2 52.5
21 1 4 2 3 2 4 2 4 1 4 22.5
22 1 4 1 3 2 3 1 2 2 3 30
23 2 2 2 3 2 2 2 3 2 3 42.5
24 1 3 2 2 2 3 2 5 1 4 27.5

Total

1122.5
AVG 46.7

139

Appendix 16: SUS Questionnaire Results for PILeT

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score
1 4 4 4 3 3 5 4 2 5 3 57.5
2 5 1 5 1 5 1 5 1 5 1 100
3 4 4 3 1 5 3 4 3 3 1 67.5
4 5 1 5 1 5 1 5 1 5 1 100
5 1 5 4 1 2 4 2 5 3 1 40
6 5 5 5 5 5 5 5 5 5 5 50
7 5 1 5 1 4 3 5 2 5 3 85
8 4 2 4 5 4 2 1 1 3 4 55
9 5 1 5 1 5 1 5 1 5 1 100

10 5 3 4 2 3 3 3 3 5 3 65
11 2 2 3 2 2 2 1 2 2 1 52.5
12 3 3 3 3 3 3 3 3 3 3 50
13 5 1 5 1 5 1 5 1 5 1 100
14 3 3 3 3 3 3 3 3 4 4 50
15 5 5 5 1 4 1 4 2 4 1 80
16 5 1 4 1 4 1 5 1 5 1 95
17 4 1 5 1 4 3 5 2 5 3 82.5
18 4 3 4 3 3 3 4 3 4 3 60
19 4 2 5 1 5 3 2 2 5 2 77.5
20 2 2 5 1 4 2 4 3 3 2 70
21 2 3 3 2 3 2 2 3 3 2 52.5
22 4 2 4 1 5 2 4 2 4 2 80
23 4 1 5 1 5 3 5 2 5 3 85
24 5 2 5 2 3 3 5 2 4 2 77.5
25 4 2 5 1 5 3 2 2 5 2 77.5

Total

1810
AVG 72.4

140

Appendix 17: Selection Statements Quiz

Please answer the following questions:

Q1. Write a program that asks the user for their age. If they are 18 or over then display the message
“Congratulations, you are allowed to vote”, otherwise display the message “Sorry, you are not old
enough to vote”. (2 marks)

Q2. Write a program that reads a temperature in Celsius and prints the state of water whether it is
liquid, solid, or gaseous at that temperature at sea level. (2 marks)

Q3. Write a program that reads a numerical mark and translates into a grade. Here you have the
grades: (2 marks)

Grade A: mark >= 70
Grade B+: 60 <= mark <= 69
Grade B: 50 <= mark <= 59
Grade C: 40 <= mark <= 49
Grade Resit: 30 <= mark <= 39
Grade Fail: mark

Mark out of 6:

141

Appendix 18: Loops Quiz

Please answer the following questions:

Q1. Print the statement (I love Python) 5 times using a for loop. (2 marks)

Q2. Print the statement (I love Python) 5 times using a while loop. (2 marks)

Q3. Use a for loop to print the sum of 5 numbers beginning from 5. (2 marks)

Q4. Use a while loop to print the sum of 5 numbers beginning from 5. (2 marks)

Mark out of 8:

142

Appendix 19: Results Part 1

Selection Statements Results

Participant No Control Group CS Circles PILeT
1 6 3 6
2 6 6 6
3 6 1 6
4 6 6 6
5 6 2 4
6 5 3 6
7 6 1 2
8 6 3 6
9 6 6 6

10 6 4 6
11 3 3
12 3 0
13 4 6
14 3 6
15 3 3
16 3 4
17 4 6
18 4 4
19 3 3

Loops Results

Participant No Control Group CS Circles PILeT
1 7 6 6
2 8 0 7
3 6 0 8
4 4 0 5
5 7 0 5
6 4 0 6
7 4 0 7
8 2 0 6
9 6 0 6

10 5 6 4
11 2 4
12 4
13 8
14 4

143

Appendix 20: Index of Learning Styles Questionnaire

Circle "a" or "b" to indicate your answer to every question. Please choose only one answer
for each question. If both "a" and "b" seem to apply to you, choose the one that applies more
frequently.

1. I understand something better after I
(a) try it out.
(b) think it through.
2. I would rather be considered
(a) realistic.
(b) innovative.
3. When I think about what I did yesterday, I am most likely to get
(a) a picture.
(b) words.
4. I tend to
(a) understand details of a subject but may be fuzzy about its overall structure.
(b) understand the overall structure but may be fuzzy about details.
5. When I am learning something new, it helps me to
(a) talk about it.
(b) think about it.
6. If I were a teacher, I would rather teach a course
(a) that deals with facts and real life situations.
(b) that deals with ideas and theories.
7. I prefer to get new information in
(a) pictures, diagrams, graphs, or maps.
(b) written directions or verbal information.
8. Once I understand
(a) all the parts, I understand the whole thing.
(b) the whole thing, I see how the parts fit.
9. In a study group working on difficult material, I am more likely to
(a) jump in and contribute ideas.
(b) sit back and listen.
10. I find it easier
(a) to learn facts.
(b) to learn concepts.
11. In a book with lots of pictures and charts, I am likely to
(a) look over the pictures and charts carefully.
(b) focus on the written text.
12. When I solve math problems
(a) I usually work my way to the solutions one step at a time.
(b) I often just see the solutions but then have to struggle to figure out the steps to get to them.
13. In classes I have taken
(a) I have usually gotten to know many of the students.
(b) I have rarely gotten to know many of the students.

144

14. In reading nonfiction, I prefer
(a) something that teaches me new facts or tells me how to do something.
(b) something that gives me new ideas to think about.
15. I like teachers
(a) who put a lot of diagrams on the board.
(b) who spend a lot of time explaining.
16. When I'm analyzing a story or a novel
(a) I think of the incidents and try to put them together to figure out the themes.
(b) I just know what the themes are when I finish reading and then I have to go back and find the
incidents that demonstrate them.
17. When I start a homework problem, I am more likely to
(a) start working on the solution immediately.
(b) try to fully understand the problem first.
18. I prefer the idea of
(a) certainty.
(b) theory.
19. I remember best
(a) what I see.
(b) what I hear.
20. It is more important to me that an instructor
(a) lay out the material in clear sequential steps.
(b) give me an overall picture and relate the material to other subjects.
21. I prefer to study
(a) in a study group.
(b) alone.
22. I am more likely to be considered
(a) careful about the details of my work.
(b) creative about how to do my work.
23. When I get directions to a new place, I prefer
(a) a map.
(b) written instructions.
24. I learn
(a) at a fairly regular pace. If I study hard, I'll "get it."
(b) in fits and starts. I'll be totally confused and then suddenly it all "clicks."
25. I would rather first
(a) try things out.
(b) think about how I'm going to do it.
26. When I am reading for enjoyment, I like writers to
(a) clearly say what they mean.
(b) say things in creative, interesting ways.
27. When I see a diagram or sketch in class, I am most likely to remember
(a) the picture.
(b) what the instructor said about it.
28. When considering a body of information, I am more likely to
(a) focus on details and miss the big picture.
(b) try to understand the big picture before getting into the details.
29. I more easily remember
(a) something I have done.

145

(b) something I have thought a lot about.
30. When I have to perform a task, I prefer to
(a) master one way of doing it.
(b) come up with new ways of doing it.
31. When someone is showing me data, I prefer
(a) charts or graphs.
(b) text summarizing the results.
32. When writing a paper, I am more likely to
(a) work on (think about or write) the beginning of the paper and progress forward.
(b) work on (think about or write) different parts of the paper and then order them.
33. When I have to work on a group project, I first want to
(a) have "group brainstorming" where everyone contributes ideas.
(b) brainstorm individually and then come together as a group to compare ideas.
34. I consider it higher praise to call someone
(a) sensible.
(b) imaginative.
35. When I meet people at a party, I am more likely to remember
(a) what they looked like.
(b) what they said about themselves.
36. When I am learning a new subject, I prefer to
(a) stay focused on that subject, learning as much about it as I can.
(b) try to make connections between that subject and related subjects
37. I am more likely to be considered
(a) outgoing.
(b) reserved.
38. I prefer courses that emphasize
(a) concrete material (facts, data).
(b) abstract material (concepts, theories).
39. For entertainment, I would rather
(a) watch television.
(b) read a book.
40. Some teachers start their lectures with an outline of what they will cover. Such outlines are
(a) somewhat helpful to me.
(b) very helpful to me.
41. The idea of doing homework in groups, with one grade for the entire group,
(a) appeals to me.
(b) does not appeal to me.
42. When I am doing long calculations,
(a) I tend to repeat all my steps and check my work carefully.
(b) I find checking my work tiresome and have to force myself to do it.
43. I tend to picture places I have been
(a) easily and fairly accurately.
(b) with difficulty and without much detail.
44. When solving problems in a group, I would be more likely to
(a) think of the steps in the solution process.
(b) think of possible consequences or applications of the solution in a wide range of areas.

146

Appendix 21: Results Part 2

Selection Statements Results

Participant No Control Group PILeT
1 6 6
2 6 6
3 4 6
4 5 6
5 4 4
6 5 6
7 4 5
8 6 6
9 6 6
10 6 6
11 2 4
12 5 6

Loops Results

Participant No Control Group PILeT
1 7 8
2 8 7
3 6 8
4 4 6
5 7 7
6 4 6
7 4 7
8 2 7
9 6 6
10 5 8
11 4 8
12 6 8
13 8

147

