56,767 research outputs found

    Categorization of indoor places by combining local binary pattern histograms of range and reflectance data from laser range finders

    Get PDF
    This paper presents an approach to categorize typical places in indoor environments using 3D scans provided by a laser range finder. Examples of such places are offices, laboratories, or kitchens. In our method, we combine the range and reflectance data from the laser scan for the final categorization of places. Range and reflectance images are transformed into histograms of local binary patterns and combined into a single feature vector. This vector is later classified using support vector machines. The results of the presented experiments demonstrate the capability of our technique to categorize indoor places with high accuracy. We also show that the combination of range and reflectance information improves the final categorization results in comparison with a single modality

    Recent Developments In Monolithic Phase-Locked Semiconductor Laser Arrays

    Get PDF
    Coherent combination of the power of several semiconductor lasers fabricated on the same substrate has been the subject of an intense research effort in recent years, the main motivation being to obtain higher power levels than those available from a single laser in a stable radiation pattern. Best results reported so far include 2.6 Watts cw emitted power and less than 10 far-field angle (in the array plane) in arrays where all the lasers are electrically connected in parallel. A different type of coherent array, where each element has a separate contact, has been recently demonstrated. While requiring the more complex two-level metallization technology, applying a separate contact to each laser provides an additional degree of freedom in the design and the operation of monolithic arrays. The separate contacts can be employed to tailor the near-field and far-field distributions and to compensate for device-to-device nonuniformities. Furthermore, the control of the currents of the array elements allows the performance of a variety of other functions, such as beam scanning, spectral mode control, wavelength tuning and control of the mutual coherence between array elements

    High-precision Absolute Distance Measurement using Dual-Laser Frequency Scanned Interferometry Under Realistic Conditions

    Full text link
    In this paper, we report on new high-precision absolute distance measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distances were determined by counting the interference fringes produced while scanning the frequencies of the two chopped lasers. High-finesse Fabry-Perot interferometers were used to determine frequency changes during scanning. Dual lasers with oppositely scanning directions, combined with a multi-distance-measurement technique previously reported, were used to cancel drift errors and to suppress vibration effects and interference fringe uncertainties. Under realistic conditions, a precision about 0.2 microns was achieved for a distance of 0.41 meters.Comment: 14 pages, 5 figures, submitted to Applied Optic

    Hybrid dispersion laser scanner.

    Get PDF
    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points
    corecore