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Abstract

This paper presents an approach to categorize typical places in indoor environments using 3D

scans provided by a laser range finder. Examples of such places are offices, laboratories, or kitchens.

In our method, we combine the range and reflectance data from the laser scan for the final cate-

gorization of places. Range and reflectance images are transformed into histograms of local binary

patterns and combined into a single feature vector. This vector is later classified using support

vector machines. The results of the presented experiments demonstrate the capability of our tech-

nique to categorize indoor places with high accuracy. We also show that the combination of range

and reflectance information improves the final categorization results in comparison with a single

modality.

keywords: place categorization, laser scanner, range image, reflectance image

1 INTRODUCTION

An important capability for service robots acting and working indoors is their ability to categorize the

different places in which indoor environments are typically divided like for example corridors, laboratories

or kitchens. Service robots able to distinguish the previous indoor places, and able to assign them the

corresponding label, i.e. office or laboratory, will greatly improve their communication capabilities with

humans [1].

In the place categorization problem the robot takes one observation at some location and it assigns

this observation the label of the corresponding place. The corresponding labels represent general cat-

egories of places and not particular instances. That means that the robot assigns the same label to
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Figure 1: The top images depict a partial (left), and panoramic (right) range images in which darker

values indicate farther distances. The corresponding reflectance images are shown in the bottom with

darker values indicating lower reflectances. Images have been transformed into gray scale, and their

color curves have been manipulated for a better visualization.

different places that pertain to the same category. For example the service robot can assign the label

office to any office located in an building independently of its location, since all offices belong to the

same category. An advantage of place categorization is that a service robot can recognize new instances

of a known category even if this new instance was not seen before. That means that the robot can

assign the term office to new previously unseen offices.

The categorization of places constitutes an additional piece of information that allows a service robot

to improve its behavior in other high-level tasks. The categorical label assigned to a place can be used as

entry point to a knowledge database in which each place label has assigned some predetermined behavior.

For example, in the work presented in [2], the label corridor implies that this place leads to other offices

in the environment and thus it is a good candidate to start exploring. Moreover, in [3] a place recognized

as a corridor implies that the robot can move faster. In the previous works, the implicit information

about the different behaviors related to the label corridor are specified in the system beforehand. In

addition to behaviors, a system can also link to the labels information about typical objects found in

each place. This information can be used to improve the object searching task [4, 5]. A final application

of place categorization constitutes the high level representation of indoor environments by autonomous

robots [6, 7].

In this paper, we present an approach to categorize places in indoor environments using 3D scans

from a laser range finder installed on a mobile robot. Laser sensors provide highly accurate distance

measurements, and they also provide information about reflectance values at each measured point.

An important advantage of laser sensors over other sensor modalities is that the provided range and

reflectance data are robust under illumination changes. To the best of our knowledge this is the first

work which combines range and reflectance data from a laser range finder to categorize laser scans into

typical indoor places.

In our method we first divide the panoramic scans into a set of overlapping partial scans which are

categorized independently. Partial scans cover only a restricted field of view of approximately 10 degrees
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around the robot, whilst complete panoramic scans cover 360 degrees around the robot. Examples of

partial and panoramic scans are shown in Fig. 1. The final categorization for a panoramic scan can be

obtained by selecting the place with highest probability according to the categorization of the partial

scans.

Our categorization approach combines the range and reflectance information provided by a laser

scanner to categorize indoor places. Range and reflectance images are transformed into histograms of

local binary patterns (LBP) whose dimensionality is further reduced by applying a uniformity threshold.

The histograms resulting from each modality are then combined into a single feature vector, which is

categorized using support vector machines. In addition, we apply spatial pyramids to improve the

accuracy of the final classification. Since our method is supervised, the set of categories is predefined in

advance.

In this paper we present categorization results using both partial and panoramic scans for five

categories: corridor, kitchen, laboratory, study rooms, and offices. Using only partial scans we obtain an

average categorization accuracy of over 93%. This result demonstrates that we can categorize place with

high accuracy by taking a partial scan covering only 10 degrees around the robot. This capability can

be very advantageous in situations where the robot does not have enough time to register and analyze a

complete panoramic scan. In addition, we present categorization results of complete panoramic scans in

which we obtain an average accuracy of 96%. This accuracy increases to 100% in corridors, laboratories

and study rooms from our specific environment.

The rest of this paper is organized as follows. After presenting related work in Sect. 2 we describe

our laser range finder sensor in Sect. 3. Our main method for place categorization is introduced in

Sect. 4. In Sect. 5 we describe the application of our multi-modal method to classify partial laser scans.

In Sect. 6 we present our approach to classify complete panoramic scans. Finally, in Sect. 7 we show

our experimental results.

2 Related Work

The problem of place categorization has been addressed by researches using different types of sensors.

For example, 2D laser scans are categorized into different indoor places in [8] by transforming each scan

into a vector of geometrical features that are fed into a supervised classifier. In [9], similar features

from 2D laser scans are used to classify locations in Voronoi Random Fields. Moreover, the work

in [10] is able to determined the place category for each beam in the scan using logistic regression

techniques. In comparison to these previous works we used 3D scans as observations which provides a

richer representation of the places and allows us to increase the number of categories to be recognized.

Other techniques categorize places using camera images only. For example, in [11] local and global

features from images taken by a wearable camera are classified using a hidden Markov model. Moreover,

the PLISS system introduced in [12] represents the images using a bag of words approach and it further

detects change-points in sequences of images. In [13] images representing different indoor places in office
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environments are categorized by combining multiple visual cues. Further works have applied local binary

patterns (LBPs) [14] to camera images for scene categorization. In [15], the CENTRIST descriptor is

applied to images to classify different scenes and objects. Color based CENTRIST is applied in [16]

by combining the values in HSV color space. Finally, in [17], histograms of oriented uniform LBPs are

extracted from images to categorize places indoors and outdoors. Finally, visual cues have been used in

combination with 2D laser to improve the final classification in [18]. However, visual images strongly

depend on illumination conditions while scans obtained with a laser range finder are more robust under

illumination changes. For this reason we use laser scans as main observations in our system.

Depth data have also been used to categorized places indoors. In [19], a set of global geometrical

features are extracted from 3D point clouds obtained using several Kinect cameras covering 360 degrees

around the robot. In comparison to this work we use a laser range finder which has a higher accuracy

and working range. Moreover, we use more categories and we are also able to classify partial scans

covering just 10 degrees around the robot.

Our work is close to [20], where a Kinect camera is used to categorize pairs of depth and gray

scale images into indoor places using histograms of local binary patterns. However, the working range

of the Kinect camera is very short. Moreover, the RGB images provided by the Kinect camera are

less robust to changes in illumination making this cue less reliable. In contrast, in this paper we use

laser range finders as main sensor since they are more stable under illumination changes. Moreover,

we combine range and reflectance data for the final categorization of places, and present a method to

classify complete panoramic scans by using the categorization of partial ones. We believe the results

presented in this paper are of great interest in the robotics community since a large number of robotics

applications use laser range finders as main sensor for indoor mapping and localization.

Finally, reflectance data from laser range finders has been applied to solve different tasks. For

instance, in [21] reflectance data is used as part of a trilateral filter for denoising range data. In [22]

laser reflectance data is used to localize a robot outdoors. Moreover, in [23] several techniques are

presented for 3D city modeling using range and reflectance data from laser range finders. To the best of

our knowledge our work is the first including reflectance data from a laser range finder for indoor place

categorization.

3 Range and Reflectance Sensor Data

In our approach we use a laser range finder (LRF) situated on a mobile robot as shown in Fig. 2. This

kind of sensor provides range data by measuring the round-trip time of a laser pulse reflected by an

object. Our specific sensor is a SICK LMS151 Laser with maximum range of 50 meters and angular

resolution of 0.25 degrees. The measurements have a systematic error of ±30mm with 1 sigma equal to

±12mm.

In our configuration, we rotate the laser around the vertical axis to obtain a complete panoramic

range image around the robot. In addition to range data, laser range finders can measure the strength of
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Figure 2: The left picture shows the robot used in our experiments. A white arrow indicates the laser

range finder used to take scans. The right picture presents a closer look at the laser range finder.

Figure 3: Partial scans in a panoramic image with gray areas indicating the overlapping area. Each

partial scan si has a resolution of 624 × 760 points. A complete panoramic scan has a resolution of

3753× 760 points.

the reflected laser pulse. This reflectance value indicates the intensity of the point on the target surface

under a single-frequency light source. We obtain a unique reflectance value for each laser beam which

means that the range image and the reflectance image obtained by a LRF are precisely and fundamentally

aligned. The bottom image of Fig. 1 shows the panoramic reflectance image corresponding to the top

panoramic range image in the same figure. In this work we do no apply any correction to the reflectance

values provided by the laser range finder.

In a further step, each panoramic scan is divided into overlapping sub-scans as shown in Fig 3. The

reason to divide each panoramic scan is twofold. First, we have a bigger number of training and test

scans for our experiments. Second, we want to test whether we can obtain good classification results

with partial scans only, since in some real situations the robot cannot spend much time waiting for a

complete panoramic scan.
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Figure 4: The left image presents a toy example with a center pixel (marked in bold) and the corre-

sponding 8-neighbors. The middle image presents the binary results after the comparisons. The right

image shows the resulting decimal value.

4 Histograms of Local Binary Patterns in Depth and Reflectance

Images for Partial Scans

As explained above, we take complete panoramic scans that are divided into partial ones. In this section,

we explain how to obtain histograms of local binary patterns (LBP) for depth and reflectance images

corresponding to each partial scan.

We store the range and reflectance measurements of each partial scan in the matrices D and R

respectively. The measurements in each matrix are ordered so that neighboring values in the matrices

correspond to real neighboring measurements in the environment. In this way the matrices D and R

can be treated as images in which each pixel contains the corresponding range and reflectance value.

In a second step we apply a local binary transformation to each matrix D and R as follows [14]. We

compare each value v(i) at position (xi, yi) in the matrix with each of the values v(j) corresponding to

the 8-neighboring pixels j ∈ N8(i) as shown in Fig. 4. Then for each comparison we obtain a binary

value bj ∈ {0, 1} indicating whether the value v(i) was bigger or smaller than the neighboring value v(j)

as

bj(i) =

 1, v(i) > v(j), with (j = 1, . . . , 8)

0, otherwise
. (1)

The resulting binary values are ordered clockwise starting on the value which is to the right to the

reference pixel v(i). The corresponding binary string is then transformed into a decimal value d in the

range [0, . . . , 255]. This decimal value d will be the new value for pixel i. An example of this process is

shown in Fig. 4. The local binary operator that we apply is equivalent to the LBP8,1 operator in [14]

with the solely difference that we do not interpolate values at the diagonals.

Finally, this transformation is applied to every pixel in the range and reflectance matrices obtaining

the transformed matrices DT and RT respectively. In a further step we represent each transformed

matrix into a histogram in which each bin indicates the frequency of appearance of each decimal value

d ∈ [0, . . . , 255]. Thus each histogram contains 256 bins. Following the ideas in [20], we further reduce

the dimensionality of each histogram by selecting bins according to a uniformity measurement U [14].

Each bin in a histogram represents a decimal value d which, in turn, corresponds to a binary string

(see Fig. 4). The uniformity measurement U(d) of a decimal value d indicates the number of transitions
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Figure 5: Spatial pyramid with 3 levels. Each partial image contains one histogram HL,i with level

L ∈ {0, 1, 2} and i ∈ {0, . . . , 2L × 2L − 1}.

between 0/1 values in its corresponding binary string and can be obtained as

U(i) = |b1(i)− b8(i)|+
7∑
j=1

|bj(i)− bj+1(i)| . (2)

As an example, U(236) = 4 as can be corroborated in Fig. 4.

After obtaining the uniformity measurement of the decimal value represented by each bin in the

histogram, we keep only the bins that represent decimal values whose uniformity measurement is equal

or below a certain threshold θ. If H is the histogram representation of a transformed image, then the

new reduced histogram is obtained as

H(θ) = {hd ∈ H | U(d) ≤ θ} , (3)

where hd indicates the bin in the histogram H for the LBP decimal value d. Lower values of θ result in

histograms with lower dimensionality. By changing the threshold θ we are selecting local binary patterns

with different uniformity, i.e. representing different local structures. According to previous works on

LBP [14], [20] features with low uniformity threshold usually correspond to more discriminative local

binary patterns. Another advantage of this selection is the reduction in the dimension of the final

feature vectors representing the scans. This reduction significantly decreases the time for training and

classifying. In the experimental section we will show results that indicate that lower values of θ provide

slightly better classification results while significantly reducing the size of the final feature vectors.

Finally, we apply this reduction to the histograms representing the range and reflectance data HD

and HR, and we obtain the corresponding reduced histograms HD(θ) and HR(θ) respectively.

In order to represent each range and reflectance matrix by a final feature vector we use an extra

step which consists of the application of spatial pyramids [24]. In this step we recursively divide each

matrix into smaller parts. We treat each matrix division as an independent matrix and calculate its

corresponding LBP histogram Hl,i, where l indicates the level and i identifies a partial image. An

example of this process is shown in Fig. 5. The final feature vector representing the complete original

matrix is obtained by concatenating the histograms of each local part in each level

~x = {{H0,0}, {H1,0, . . . H1,3}, . . . , {HL,0, ...,HL,2L×2L−1}}. (4)

Finally, by applying a particular uniformity threshold θ to each local histogram following (3), and

by concatenating them according to (4), we obtain the feature vectors ~xD(θ) and ~xR(θ) for the range
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and reflectance images respectively as

~xD(θ) = {{HD
0,0(θ)}, {HD

1,0(θ), . . . HD
1,3(θ)}, . . . , {HD

L,0(θ), ...,HD
L,2L×2L−1(θ)}} (5)

~xR(θ) = {{HR
0,0(θ)}, {HR

1,0(θ), . . . HR
1,3(θ)}, . . . , {HR

L,0(θ), ...,HR
L,2L×2L−1(θ)}} .

5 Multi-Modal Categorization of Partial Scans

In this paper, we combine two modalities, range and reflectance data, at the feature level. Thus, for

each pair of feature vectors ~xD(θ) and ~xR(θ) representing a partial scan in one particular place, a final

vector ~xP (θ) is obtained by their concatenation as

~xP (θ) = {~xD(θ), ~xR(θ)} . (6)

Once we have a final multi-modal feature vector ~xP (θ) for representing partial scans of indoor places

we use a support vector machine (SVM) [25, 26] for the final categorization. Support vector machines

take as input a set of n feature vectors ~xi together with their labels yi ∈ {1,−1}. The idea behind

SVMs is to find the hyperplane that maximizes the distance between the examples of the two classes

{1,−1}. This is done by finding a solution to the optimization problem

min
~w,b,ξ

C

n∑
i=1

ξi +
1

2
‖~w‖2 , (7)

subject to the condition

yi
(
~wTφ(~xi) + b

)
≥ 1− ξi , (8)

where ~w is the normal to the hyperplane, and ξi ≥ 0 are slack variables that measure the error in the

misclassification of ~xi. In addition, we use a radial basis function (RBF) kernel

K(~xi, ~xj) = exp
(
−γ‖~xi − ~xj‖2

)
, γ > 0 (9)

Multi-class classification is performed using the “one-against-one” approach [27]. In our experiments

we use the LIBSVM library [28]. Following the method in [29], the parameters C and γ are selected by

grid-search using cross-validation in the ranges C ∈ [2−5, . . . , 215] and γ ∈ [2−12, . . . , 23] with grid step

3 in both cases.

6 Categorization of Complete Panoramic Scans

In this section, we present a method to categorize complete panoramic scans using their corresponding

partial scans. In addition, we introduce a probabilistic representation over categories for each panoramic

scan.

We apply our previous categorization method to each partial scan, and we construct a categorization

vector ~z representing the whole panoramic image as

~z = {C(s1), . . . .C(sN )} , (10)
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Figure 6: The left images correspond to panoramic range and reflectance data in a corridor environ-

ment. Darker values indicate farther distances and lower reflectances respectively. Both images have

been transformed into gray scale for a better visualization. The right image depicts the corresponding

probability distribution over places.

where C(si) is the categorization result of partial scan si, and N is the total number of partial scans.

Thus, the vector ~z is transformed into a probabilistic distribution over categories

~P (~z) = {P (labelj | ~z), . . . , P (labelM | ~z)} , (11)

where each labelj corresponds to one of our categories, i.e. label1 = Corridor, label2 = Kitchen,

label3 = Laboratory, label4 = Study Room, and label5 = Office. Finally, M is the total number of

categories, which is 5 in our case. The probability for a specific place P (labelj | ~z) is obtained as

P (labelj | ~z) =

∑N
i I(C(si) = labelj)

N
, (12)

where I(·) is the indicator function which returns 1 if the argument is true, and 0 otherwise. Finally,

the categorization of a panoramic scan S is given by the label with maximum probability

labelS = arg max
labelj

P (labelj | ~z), ∀ labelj . (13)

An example panoramic scan taken in a corridor together with its corresponding probability distribu-

tion is shown in Fig. 6. As we can appreciate the histogram indicates a higher probability for the label

corridor.

7 Experiments

In this section, we present results demonstrating that our system based on a laser range finder is able to

categorize places with high precision. We first introduce the dataset we use in our experiments. Then

we present results on the categorization of partial scans by comparing single and combined modalities.

Finally, we show results on complete panoramic scans.

9



7.1 Dataset of Indoor Places

For our experiments, we have created a dataset of different indoor places. This dataset is composed of

five indoor places: corridors, kitchens, laboratories, study rooms, and offices. At each place we took

15 panoramic 3D laser scans covering 360 degrees around the robot with laser positioned 95cm above

the floor. To take the panoramic scans we situated the robot in 15 different locations inside each place.

The locations were spatially distributed inside each place covering most of the possible situations. For

example we put the robot in the centre of each place, close to the corners, close to the doorways and

windows, etc. Some example of panoramic scans are shown in Fig. 1. Each panoramic scan has a

resolution of 3753× 760 points.

We further divide a panoramic scan into overlapping sub-scans of 624×760 points starting every 104

pixels (which corresponds to approx. 10 degrees) by following the steps presented in Sect. 6. Finally, our

dataset is composed of a total of 285 panoramic scans, and a total of 10545 partial scans. A summary

of our dataset together with some examples are shown in Fig. 7.

7.2 Categorization of Partial Scans

In the next experiments we apply our categorization approach as follows. We randomly select one place

from each category in our dataset, i.e. one corridor, one kitchen, one study room, one office, and one

laboratory. Then we use the partial scans of these places for testing purposes and use the rest of data

to train the classifier. In this way, the training data does not contain any scan of a place from the test

data. This approach allows us to test the generalization capabilities of our method on previously unseen

places. We repeat this process 10 times and average over final the categorization results.

In a first experiment we search for the level of spatial pyramids L and uniformity threshold θ which

provide the best classification results using combined range and reflectance feature vectors (Sect. 5).

For this experiment we have used a subset of the dataset presented in the previous section with the aim

of reduce the searching time. The results of this search are shown in Table 1. The values in this table

represent average correct categorization results over all place categories. We can see that we obtain best

overall results using the parameters L = 2 and θ = 4. Moreover, using a threshold of θ = 4 we reduced

in 22.6% the dimension of the final feature vector.

In the next experiment we have used the previous best parameters to classify the whole dataset.

The confusion matrix for this experiment is presented in Table 2. The worst result is obtained for the

category Kitchen. This is probably due to our dataset, which contains two different types of kitchens

with very different furniture distributions. Examples of such kitchens are shown in Fig. 8. One possible

solution can be two create two different kitchen sub-categories, however, in this paper we want to focus

on general classes.

Finally, in Table 3 we present a comparison of categorization results when using single and combined

modalities. In this table, we show the average correct classification over all place categories. We can see

that the average categorization rate improves when combining modalities.
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corridor 1 (15,555) corridor 2 (15,555) corridor 3 (15,555) corridor 4 (15,555)

kitchen 1 (15,555) kitchen 2 (15,555) kitchen 3 (15,555) kitchen 4 (15,555)

Laboratory 1 (15,555) Laboratory 2 (15,555) Laboratory 3 (15,555) Laboratory 4 (15,555)

Study Room 1 (15,555) Study Room 2 (15,555) Study Room 3 (15,555) Study Room 4 (15,555)

Office 1 (15,555) Office 2 (15,555) Office 3 (15,555)

Figure 7: Summary of the data contained in our dataset. Each cell contains one example of range and

corresponding reflectance image obtained in a particular place. The images have been converted into

gray scale for better visualization purposes. Darker colors indicate farther places and lower reflectances

respectively. Under the images we find the name of the place and, in brackets, the number of panoramic

scans taken in that place and the total number of partial scans after dividing all corresponding panoramic

scans.

7.3 Categorization of Complete Panoramic Scans

As explained in Sect. 6, we divide the panoramic scans into partial ones. Then we categorize each

partial scan si and obtain a categorization vector ~z representing the panoramic image (see Sect. 6). To

test the categorization of complete scans we have applied the previous method to the panoramic scans

corresponding to the 10 test sets of Sect. 7.2. For each test set, we have categorized the complete scans

corresponding to each place and we have averaged over the 10 sets. The resulting confusion matrix is

presented in Table 4. Using complete panoramic scans improve the classification in all places as we can

see by comparing Table 4 and Table 2. In our specific environment, we reach perfect recognitions in

corridors, laboratories, and study rooms by using complete panoramic scans.
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Table 1: Categorization for different L and θ parameters using a combination of range and reflectance

data.

% L=0 L=1 L=2

θ = 2 83.70± 14.43 86.32± 14.16 89.06± 12.88

θ = 4 88.19± 14.31 91.78± 13.09 93.46± 10.59

θ = 6 88.27± 14.47 91.78± 12.04 93.05± 10.68

θ = 8 88.11± 14.75 91.76± 12.14 92.95± 10.69

Table 2: Confusion matrix for the categorization of places using L = 2 and θ = 4 and a combination of

range and reflectance data.

% Corridor Kitchen Laboratory Study Room Office

Corridor 99.37± 0.85 0.31± 0.79 0.07± 0.17 0.00± 0.00 0.25± 0.52

Kitchen 4.11± 9.27 77.20± 40.54 0.13± 0.27 1.23± 2.62 17.33± 32.23

Laboratory 0.31± 0.53 0.00± 0.00 99.33± 1.27 0.00± 0.00 0.36± 0.76

Study Room 0.00± 0.00 0.09± 0.28 0.00± 0.00 99.91± 0.28 0.00± 0.00

Office 0.56± 0.80 6.22± 9.21 0.05± 0.17 0.00± 0.00 93.17± 9.89

8 Conclusion

In this paper, we have presented a novel approach for place categorization in indoor environments by

combining distance and reflectance measurements from a laser range finder. For each modality, we

calculate the corresponding histogram of local binary patterns and we additionally reduce the dimen-

sionality of each histogram using a uniformity criterion. The results of our experiments show that we

can classify complete panoramic scans with high reliability. We also have shown that we can obtain high

classification rates with individual partial scans. Finally, our experiments indicate that the combination

of both modalities, distance and reflectance information, improve the final categorization of laser scans.

As future work, we want to study the application of new integration methods and modalities for

place categorization. Moreover, we want to increase the size of our data set by including more categories.

Finally, we plan to study the effect that specific locations where the observation can have in the final

classification results. In this way we can analyze which positions inside the rooms are more advantageous

to obtain a better confidence in the classification results.
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Figure 8: The two different types of kitchens in our dataset.

Table 3: Comparison of results between single and combined modalities with L = 2 and θ = 4.

range reflectance range + reflectance

91.88± 9.19 91.36± 8.47 93.79± 10.56
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