62 research outputs found

    Communicating answer set programs

    Get PDF
    Answer set programming i s a form of declarative programming that has proven very successful in succinctly formulating and solving complex problems. Although mechanisms for representing and reasoning with the combined answer set programs of multiple agents have already been proposed, the actual gain in expressivity when adding communication has not been thoroughly studied. We show that allowing simple programs to talk to each other results in the same expressivity as adding negation-as-failure. Furthermore, we show that the ability to focus on one program in a network of simple programs results in the same expressivity as adding disjunction in the head of the rules

    Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription

    Full text link
    Circumscription is a representative example of a nonmonotonic reasoning inference technique. Circumscription has often been studied for first order theories, but its propositional version has also been the subject of extensive research, having been shown equivalent to extended closed world assumption (ECWA). Moreover, entailment in propositional circumscription is a well-known example of a decision problem in the second level of the polynomial hierarchy. This paper proposes a new Boolean Satisfiability (SAT)-based algorithm for entailment in propositional circumscription that explores the relationship of propositional circumscription to minimal models. The new algorithm is inspired by ideas commonly used in SAT-based model checking, namely counterexample guided abstraction refinement. In addition, the new algorithm is refined to compute the theory closure for generalized close world assumption (GCWA). Experimental results show that the new algorithm can solve problem instances that other solutions are unable to solve

    Integration of rules and ontologies with defeasible logic programming

    Get PDF
    The Semantic Web is a vision of the current Web where resources have exact meaning assigned in terms of ontologies, thus enabling agents to reason about them. As inconsistencies cannot be treated by standard reasoning approaches, we use Defeasible Logic Programming (DeLP) to reason with possibly inconsistent ontologies. In this article we show how to integrate rules and ontologies in the Semantic Web. We show how to use a possibly inconsistent set of rules represented by a DeLP program to reason on top of a set of (possibly inconsistent) ontologies.Presentado en el X Workshop Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI

    Anytime Computation of Cautious Consequences in Answer Set Programming

    Full text link
    Query answering in Answer Set Programming (ASP) is usually solved by computing (a subset of) the cautious consequences of a logic program. This task is computationally very hard, and there are programs for which computing cautious consequences is not viable in reasonable time. However, current ASP solvers produce the (whole) set of cautious consequences only at the end of their computation. This paper reports on strategies for computing cautious consequences, also introducing anytime algorithms able to produce sound answers during the computation.Comment: To appear in Theory and Practice of Logic Programmin

    Equality-friendly well-founded semantics and applications to description logics

    Get PDF
    We tackle the problem of defining a well-founded semantics (WFS) for Datalog rules with existentially quantified variables in their heads and nega- tions in their bodies. In particular, we provide a WFS for the recent Datalog± family of ontology languages, which covers several important description logics (DLs). To do so, we generalize Datalog± by non-stratified nonmonotonic nega- tion in rule bodies, and we define a WFS for this generalization via guarded fixed point logic. We refer to this approach as equality-friendly WFS, since it has the advantage that it does not make the unique name assumption (UNA); this brings it close to OWL and its profiles as well as typical DLs, which also do not make the UNA. We prove that for guarded Datalog± with negation under the equality- friendly WFS, conjunctive query answering is decidable, and we provide precise complexity results for this problem. From these results, we obtain precise defi- nitions of the standard WFS extensions of EL and of members of the DL-Lite family, as well as corresponding complexity results for query answering

    Stable Models of Formulas with Generalized Quantifiers (Preliminary Report)

    Get PDF
    Applications of answer set programming motivated various extensions of the stable model semantics, for instance, to allow aggregates or to facilitate interface with external ontology descriptions. We present a uniform, reductive view on these extensions by viewing them as special cases of formulas with generalized quantifiers. This is done by extending the first-order stable model semantics by Ferraris, Lee and Lifschitz to account for generalized quantifiers and then by reducing the individual extensions to this formalism
    corecore