15 research outputs found

    Abstract Fixpoint Computations with Numerical Acceleration Methods

    Get PDF
    Static analysis by abstract interpretation aims at automatically proving properties of computer programs. To do this, an over-approximation of program semantics, defined as the least fixpoint of a system of semantic equations, must be computed. To enforce the convergence of this computation, widening operator is used but it may lead to coarse results. We propose a new method to accelerate the computation of this fixpoint by using standard techniques of numerical analysis. Our goal is to automatically and dynamically adapt the widening operator in order to maintain precision

    Improving Strategies via SMT Solving

    Full text link
    We consider the problem of computing numerical invariants of programs by abstract interpretation. Our method eschews two traditional sources of imprecision: (i) the use of widening operators for enforcing convergence within a finite number of iterations (ii) the use of merge operations (often, convex hulls) at the merge points of the control flow graph. It instead computes the least inductive invariant expressible in the domain at a restricted set of program points, and analyzes the rest of the code en bloc. We emphasize that we compute this inductive invariant precisely. For that we extend the strategy improvement algorithm of [Gawlitza and Seidl, 2007]. If we applied their method directly, we would have to solve an exponentially sized system of abstract semantic equations, resulting in memory exhaustion. Instead, we keep the system implicit and discover strategy improvements using SAT modulo real linear arithmetic (SMT). For evaluating strategies we use linear programming. Our algorithm has low polynomial space complexity and performs for contrived examples in the worst case exponentially many strategy improvement steps; this is unsurprising, since we show that the associated abstract reachability problem is Pi-p-2-complete

    Enforcing Termination of Interprocedural Analysis

    Full text link
    Interprocedural analysis by means of partial tabulation of summary functions may not terminate when the same procedure is analyzed for infinitely many abstract calling contexts or when the abstract domain has infinite strictly ascending chains. As a remedy, we present a novel local solver for general abstract equation systems, be they monotonic or not, and prove that this solver fails to terminate only when infinitely many variables are encountered. We clarify in which sense the computed results are sound. Moreover, we show that interprocedural analysis performed by this novel local solver, is guaranteed to terminate for all non-recursive programs --- irrespective of whether the complete lattice is infinite or has infinite strictly ascending or descending chains

    Computing Invariants with Transformers: Experimental Scalability and Accuracy

    Get PDF
    International audienceUsing abstract interpretation, invariants are usually obtained by solving iteratively a system of equations linking preconditions according to program statements. However, it is also possible to abstract first the statements as transformers, and then propagate the preconditions using the transformers. The second approach is modular because procedures and loops can be abstracted once and for all, avoiding an iterative resolution over the call graph and all the control flow graphs. However, the transformer approach based on polyhedral abstract domains encurs two penalties: some invariant accuracy may be lost when computing transformers, and the execution time may increase exponentially because the dimension of a transformer is twice the dimension of a precondition. The purposes of this article are 1) to measure the benefits of the modular approach and its drawbacks in terms of execution time and accuracy using significant examples and a newly developed benchmark for loop invariant analysis, ALICe, 2) to present a new technique designed to reduce the accuracy loss when computing transformers, 3) to evaluate experimentally the accuracy gains this new technique and other previously discussed ones provide with ALICe test cases and 4) to compare the executions times and accuracies of different tools, ASPIC, ISL, PAGAI and PIPS. Our results suggest that the transformer-based approach used in PIPS, once improved with transformer lists, is as accurate as the other tools when dealing with the ALICe benchmark. Its modularity nevertheless leads to shorter execution times when dealing with nested loops and procedure calls found in real applications

    Invariant Generation through Strategy Iteration in Succinctly Represented Control Flow Graphs

    Full text link
    We consider the problem of computing numerical invariants of programs, for instance bounds on the values of numerical program variables. More specifically, we study the problem of performing static analysis by abstract interpretation using template linear constraint domains. Such invariants can be obtained by Kleene iterations that are, in order to guarantee termination, accelerated by widening operators. In many cases, however, applying this form of extrapolation leads to invariants that are weaker than the strongest inductive invariant that can be expressed within the abstract domain in use. Another well-known source of imprecision of traditional abstract interpretation techniques stems from their use of join operators at merge nodes in the control flow graph. The mentioned weaknesses may prevent these methods from proving safety properties. The technique we develop in this article addresses both of these issues: contrary to Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest inductive invariant that can be expressed within the template linear constraint domain in use. It also eschews join operators by distinguishing all paths of loop-free code segments. Formally speaking, our technique computes the least fixpoint within a given template linear constraint domain of a transition relation that is succinctly expressed as an existentially quantified linear real arithmetic formula. In contrast to previously published techniques that rely on quantifier elimination, our algorithm is proved to have optimal complexity: we prove that the decision problem associated with our fixpoint problem is in the second level of the polynomial-time hierarchy.Comment: 35 pages, conference version published at ESOP 2011, this version is a CoRR version of our submission to Logical Methods in Computer Scienc

    Transfer Function Synthesis without Quantifier Elimination

    Get PDF
    Traditionally, transfer functions have been designed manually for each operation in a program, instruction by instruction. In such a setting, a transfer function describes the semantics of a single instruction, detailing how a given abstract input state is mapped to an abstract output state. The net effect of a sequence of instructions, a basic block, can then be calculated by composing the transfer functions of the constituent instructions. However, precision can be improved by applying a single transfer function that captures the semantics of the block as a whole. Since blocks are program-dependent, this approach necessitates automation. There has thus been growing interest in computing transfer functions automatically, most notably using techniques based on quantifier elimination. Although conceptually elegant, quantifier elimination inevitably induces a computational bottleneck, which limits the applicability of these methods to small blocks. This paper contributes a method for calculating transfer functions that finesses quantifier elimination altogether, and can thus be seen as a response to this problem. The practicality of the method is demonstrated by generating transfer functions for input and output states that are described by linear template constraints, which include intervals and octagons.Comment: 37 pages, extended version of ESOP 2011 pape

    Enhancing the Compilation of Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

    Get PDF
    RR version = http://hal.inria.fr/hal-00780521/enInternational audienceIn this paper, we propose an enhancement of the compilation of synchronous programs with a combined numerical-Boolean abstraction. While our approach applies to synchronous dataflow languages in general, here, we consider the SIGNAL language for illustration. In the new abstraction, every signal in a program is associated with a pair of the form ( clock, value ), where clock is a Boolean function and value is a Boolean or numeric function. Given the performance level reached by recent progress in Satisfiability Modulo Theory (SMT), we use an SMT solver to reason on this abstraction. Through sample examples, we show how our solution is used to determine absence of reaction captured by empty clocks; mutual exclusion captured by two or more clocks whose associated signals never occur at the same time; or hierarchical control of component activations via clock inclusion. We also show that the analysis improves the quality of the code generated automatically by a compiler, e.g., a code with smaller footprint, or a code executed more efficiently thanks to optimizations enabled by the new abstraction. The implementation of the whole approach includes a translator of synchronous programs towards the standard input format of SMT solvers, and an ad hoc SMT solver that integrates advanced functionalities to cope with the issues of interest in this wor
    corecore