13,694 research outputs found

    Representation and duality of the untyped lambda-calculus in nominal lattice and topological semantics, with a proof of topological completeness

    Get PDF
    We give a semantics for the lambda-calculus based on a topological duality theorem in nominal sets. A novel interpretation of lambda is given in terms of adjoints, and lambda-terms are interpreted absolutely as sets (no valuation is necessary)

    Functional versus lexical: a cognitive dichotomy

    Get PDF

    Probabilistic data flow analysis: a linear equational approach

    Get PDF
    Speculative optimisation relies on the estimation of the probabilities that certain properties of the control flow are fulfilled. Concrete or estimated branch probabilities can be used for searching and constructing advantageous speculative and bookkeeping transformations. We present a probabilistic extension of the classical equational approach to data-flow analysis that can be used to this purpose. More precisely, we show how the probabilistic information introduced in a control flow graph by branch prediction can be used to extract a system of linear equations from a program and present a method for calculating correct (numerical) solutions.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Topological Representation of Geometric Theories

    Full text link
    Using Butz and Moerdijk's topological groupoid representation of a topos with enough points, a `syntax-semantics' duality for geometric theories is constructed. The emphasis is on a logical presentation, starting with a description of the semantical topological groupoid of models and isomorphisms of a theory and a direct proof that this groupoid represents its classifying topos. Using this representation, a contravariant adjunction is constructed between theories and topological groupoids. The restriction of this adjunction yields a contravariant equivalence between theories with enough models and semantical groupoids. Technically a variant of the syntax-semantics duality constructed in [Awodey and Forssell, arXiv:1008.3145v1] for first-order logic, the construction here works for arbitrary geometric theories and uses a slice construction on the side of groupoids---reflecting the use of `indexed' models in the representation theorem---which in several respects simplifies the construction and allows for an intrinsic characterization of the semantic side.Comment: 32 pages. This is the first pre-print version, the final revised version can be found at http://onlinelibrary.wiley.com/doi/10.1002/malq.201100080/abstract (posting of which is not allowed by Wiley). Changes in v2: updated comment

    Semantics out of context: nominal absolute denotations for first-order logic and computation

    Full text link
    Call a semantics for a language with variables absolute when variables map to fixed entities in the denotation. That is, a semantics is absolute when the denotation of a variable a is a copy of itself in the denotation. We give a trio of lattice-based, sets-based, and algebraic absolute semantics to first-order logic. Possibly open predicates are directly interpreted as lattice elements / sets / algebra elements, subject to suitable interpretations of the connectives and quantifiers. In particular, universal quantification "forall a.phi" is interpreted using a new notion of "fresh-finite" limit and using a novel dual to substitution. The interest of this semantics is partly in the non-trivial and beautiful technical details, which also offer certain advantages over existing semantics---but also the fact that such semantics exist at all suggests a new way of looking at variables and the foundations of logic and computation, which may be well-suited to the demands of modern computer science
    • 

    corecore