22,140 research outputs found

    Improving Big Data Visual Analytics with Interactive Virtual Reality

    Full text link
    For decades, the growth and volume of digital data collection has made it challenging to digest large volumes of information and extract underlying structure. Coined 'Big Data', massive amounts of information has quite often been gathered inconsistently (e.g from many sources, of various forms, at different rates, etc.). These factors impede the practices of not only processing data, but also analyzing and displaying it in an efficient manner to the user. Many efforts have been completed in the data mining and visual analytics community to create effective ways to further improve analysis and achieve the knowledge desired for better understanding. Our approach for improved big data visual analytics is two-fold, focusing on both visualization and interaction. Given geo-tagged information, we are exploring the benefits of visualizing datasets in the original geospatial domain by utilizing a virtual reality platform. After running proven analytics on the data, we intend to represent the information in a more realistic 3D setting, where analysts can achieve an enhanced situational awareness and rely on familiar perceptions to draw in-depth conclusions on the dataset. In addition, developing a human-computer interface that responds to natural user actions and inputs creates a more intuitive environment. Tasks can be performed to manipulate the dataset and allow users to dive deeper upon request, adhering to desired demands and intentions. Due to the volume and popularity of social media, we developed a 3D tool visualizing Twitter on MIT's campus for analysis. Utilizing emerging technologies of today to create a fully immersive tool that promotes visualization and interaction can help ease the process of understanding and representing big data.Comment: 6 pages, 8 figures, 2015 IEEE High Performance Extreme Computing Conference (HPEC '15); corrected typo

    NON-PARAMETRIC STATISTICAL APPROACH TO CORRECT SATELLITE RAINFALL DATA IN NEAR-REAL-TIME FOR RAIN BASED FLOOD NOWCASTING

    Get PDF
    Floods resulting from intense rainfall are one of the most disastrous hazards in many regions of the world since they contribute greatly to personal injury and to property damage mainly as a result of their ability to strike with little warning. The possibility to give an alert about a flooding situation at least a few hours before helps greatly to reduce the damage. Therefore, scores of flood forecasting systems have been developed during the past few years mainly at country level and regional level. Flood forecasting systems based only on traditional methods such as return period of flooding situations or extreme rainfall events have failed on most occasions to forecast flooding situations accurately because of changes on territory in recent years by extensive infrastructure development, increased frequency of extreme rainfall events over recent decades, etc. Nowadays, flood nowcasting systems or early warning systems which run on real- time precipitation data are becoming more popular as they give reliable forecasts compared to traditional flood forecasting systems. However, these kinds of systems are often limited to developed countries as they need well distributed gauging station networks or sophisticated surface-based radar systems to collect real-time precipitation data. In most of the developing countries and in some developed countries also, precipitation data from available sparse gauging stations are inadequate for developing representative aerial samples needed by such systems. As satellites are able to provide a global coverage with a continuous temporal availability, currently the possibility of using satellite-based rainfall estimates in flood nowcasting systems is being highly investigated. To contribute to the world's requirement for flood early warning systems, ITHACA developed a global scale flood nowcasting system that runs on near-real-time satellite rainfall estimates. The system was developed in cooperation with United Nations World Food Programme (WFP), to support the preparedness phase of the WFP like humanitarian assistance agencies, mainly in less developed countries. The concept behind this early warning system is identifying critical rainfall events for each hydrological basin on the earth with past rainfall data and using them to identify floodable rainfall events with real time rainfall data. The individuation of critical rainfall events was done with a hydrological analysis using 3B42 rainfall data which is the most accurate product of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) dataset. These critical events have been stored in a database and when a rainfall event is found in real-time which is similar or exceeds the event in the database an alert is issued for the basin area. The most accurate product of TMPA (3B42) is derived by applying bias adjustments to real time rainfall estimates using rain gauge data, thus it is available for end-users 10-15 days after each calendar month. The real time product of TMPA (3B42RT) is released approximately 9 hours after real-time and lacks of such kind of bias adjustments using rain gauge data as rain gauge data are not available in real time. Therefore, to have reliable alerts it is very important to reduce the uncertainty of 3B42RT product before using it in the early warning system. For this purpose, a statistical approach was proposed to make near real- time bias adjustments for the near real time product of TMPA (3B42RT). In this approach the relationship between the bias adjusted rainfall data product (3B42) and the real-time rainfall data product (3B42RT) was analyzed on the basis of drainage basins for the period from January 2003 to December 2007, and correction factors were developed for each basin worldwide to perform near real-time bias adjusted product estimation from the real-time rainfall data product (3B42RT). The accuracy of the product was analyzed by comparing with gauge rainfall data from Bangladesh and it was found that the uncertainty of the product is less even than the most accurate product of TMPA dataset (3B42

    I Am The Passenger: How Visual Motion Cues Can Influence Sickness For In-Car VR

    Get PDF
    This paper explores the use of VR Head Mounted Displays (HMDs) in-car and in-motion for the first time. Immersive HMDs are becoming everyday consumer items and, as they offer new possibilities for entertainment and productivity, people will want to use them during travel in, for example, autonomous cars. However, their use is confounded by motion sickness caused in-part by the restricted visual perception of motion conflicting with physically perceived vehicle motion (accelerations/rotations detected by the vestibular system). Whilst VR HMDs restrict visual perception of motion, they could also render it virtually, potentially alleviating sensory conflict. To study this problem, we conducted the first on-road and in motion study to systematically investigate the effects of various visual presentations of the real-world motion of a car on the sickness and immersion of VR HMD wearing passengers. We established new baselines for VR in-car motion sickness, and found that there is no one best presentation with respect to balancing sickness and immersion. Instead, user preferences suggest different solutions are required for differently susceptible users to provide usable VR in-car. This work provides formative insights for VR designers and an entry point for further research into enabling use of VR HMDs, and the rich experiences they offer, when travelling

    A noncontact ultrasonic platform for structural inspection

    Get PDF
    Miniature robotic vehicles are receiving increasing attention for use in nondestructive testing (NDE) due to their attractiveness in terms of cost, safety, and their accessibility to areas where manual inspection is not practical. Conventional ultrasonic inspection requires the provision of a suitable coupling liquid between the probe and the structure under test. This necessitates either an on board reservoir or umbilical providing a constant flow of coupling fluid, neither of which are practical for a fleet of miniature robotic inspection vehicles. Air-coupled ultrasound offers the possibility of couplant-free ultrasonic inspection. This paper describes the sensing methodology, hardware platform and algorithms used to integrate an air-coupled ultrasonic inspection payload into a miniature robotic vehicle platform. The work takes account of the robot's inherent positional uncertainty when constructing an image of the test specimen from aggregated sensor measurements. This paper concludes with the results of an automatic inspection of a aluminium sample

    6 Seconds of Sound and Vision: Creativity in Micro-Videos

    Full text link
    The notion of creativity, as opposed to related concepts such as beauty or interestingness, has not been studied from the perspective of automatic analysis of multimedia content. Meanwhile, short online videos shared on social media platforms, or micro-videos, have arisen as a new medium for creative expression. In this paper we study creative micro-videos in an effort to understand the features that make a video creative, and to address the problem of automatic detection of creative content. Defining creative videos as those that are novel and have aesthetic value, we conduct a crowdsourcing experiment to create a dataset of over 3,800 micro-videos labelled as creative and non-creative. We propose a set of computational features that we map to the components of our definition of creativity, and conduct an analysis to determine which of these features correlate most with creative video. Finally, we evaluate a supervised approach to automatically detect creative video, with promising results, showing that it is necessary to model both aesthetic value and novelty to achieve optimal classification accuracy.Comment: 8 pages, 1 figures, conference IEEE CVPR 201

    Wearable learning tools

    Get PDF
    In life people must learn whenever and wherever they experience something new. Until recently computing technology could not support such a notion, the constraints of size, power and cost kept computers under the classroom table, in the office or in the home. Recent advances in miniaturization have led to a growing field of research in ā€˜wearableā€™ computing. This paper looks at how such technologies can enhance computerā€mediated communications, with a focus upon collaborative working for learning. An experimental system, MetaPark, is discussed, which explores communications, data retrieval and recording, and navigation techniques within and across real and virtual environments. In order to realize the MetaPark concept, an underlying network architecture is described that supports the required communication model between static and mobile users. This infrastructure, the MUON framework, is offered as a solution to provide a seamless service that tracks user location, interfaces to contextual awareness agents, and provides transparent network service switching

    Mapping the information-coping trajectory of young people coping with long term illness: An evidence based approach

    Get PDF
    Purpose - Purpose: We explore the relationship between information and coping information from the experiences of young people coping with long term illness. Design/methodology/approach - Methodology: Situational Analysis was used as a methodological approach. It has roots in the Chicago Symbolic Interactionism School. Cartographic approaches enabled the analysis, mapping the complexities emerging from the data. Findings - Findings: As the young people became more informed about their health conditions, and gained knowledge and understanding both about their illnesses, their own bodies and boundaries, their confidence and capacity to cope increased. Gaining confidence, the young people often wanted to share their knowledge becoming information providers themselves. From the data we identified five positions on an information-coping trajectory (1) Information deficiency (2) Feeling ill-informed (3) Needing an injection of information (4) Having information health and (5) Becoming an information donor. Research limitations/implications - Research limitations/implications: The research was limited to an analysis of thirty narratives. The research contributes to information theory by mapping clearly the relationship between information and coping. Originality/value - Originality/value: The information theories in this study have originality and multi-disciplinary value in the management of health and illness, and information studies
    • ā€¦
    corecore