63,394 research outputs found

    Specializing for predicting obesity and its co-morbidities

    Get PDF
    AbstractWe present specializing, a method for combining classifiers for multi-class classification. Specializing trains one specialist classifier per class and utilizes each specialist to distinguish that class from all others in a one-versus-all manner. It then supplements the specialist classifiers with a catch-all classifier that performs multi-class classification across all classes. We refer to the resulting combined classifier as a specializing classifier.We develop specializing to classify 16 diseases based on discharge summaries. For each discharge summary, we aim to predict whether each disease is present, absent, or questionable in the patient, or unmentioned in the discharge summary. We treat the classification of each disease as an independent multi-class classification task. For each disease, we develop one specialist classifier for each of the present, absent, questionable, and unmentioned classes; we supplement these specialist classifiers with a catch-all classifier that encompasses all of the classes for that disease. We evaluate specializing on each of the 16 diseases and show that it improves significantly over voting and stacking when used for multi-class classification on our data

    Aggregation of classifiers: a justifiable information granularity approach.

    Get PDF
    In this paper, we introduced a new approach of combining multiple classifiers in a heterogeneous ensemble system. Instead of using numerical membership values when combining, we constructed interval membership values for each class prediction from the meta-data of observation by using the concept of information granule. In the proposed method, the uncertainty (diversity) of the predictions produced by the base classifiers is quantified by the interval-based information granules. The decision model is then generated by considering both bound and length of the intervals. Extensive experimentation using the UCI datasets has demonstrated the superior performance of our algorithm over other algorithms including six fixed combining methods, one trainable combining method, AdaBoost, bagging, and random subspace

    Semantic tagging of French medical entities using distant learning

    Get PDF
    In this paper we present a semantic tagger aiming to detect relevant entities in French medical documents and tagging them with their appropriate semantic class. These experiments has been carried out in the framework of CLEF2015 eHealth contest that proposes a tagset of ten classes from UMLS taxonomy. The system presented uses a set of binary classifiers, and a combination mechanisms for combining the results of the classifiers. Learning the classifiers is performed using two widely used knowledge source, one domain restricted and the other is a domain independent resource.Peer ReviewedPostprint (published version

    Evolving interval-based representation for multiple classifier fusion.

    Get PDF
    Designing an ensemble of classifiers is one of the popular research topics in machine learning since it can give better results than using each constituent member. Furthermore, the performance of ensemble can be improved using selection or adaptation. In the former, the optimal set of base classifiers, meta-classifier, original features, or meta-data is selected to obtain a better ensemble than using the entire classifiers and features. In the latter, the base classifiers or combining algorithms working on the outputs of the base classifiers are made to adapt to a particular problem. The adaptation here means that the parameters of these algorithms are trained to be optimal for each problem. In this study, we propose a novel evolving combining algorithm using the adaptation approach for the ensemble systems. Instead of using numerical value when computing the representation for each class, we propose to use the interval-based representation for the class. The optimal value of the representation is found through Particle Swarm Optimization. During classification, a test instance is assigned to the class with the interval-based representation that is closest to the base classifiers’ prediction. Experiments conducted on a number of popular dataset confirmed that the proposed method is better than the well-known ensemble systems using Decision Template and Sum Rule as combiner, L2-loss Linear Support Vector Machine, Multiple Layer Neural Network, and the ensemble selection methods based on GA-Meta-data, META-DES, and ACO

    Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition : a fuzzy rough set approach

    Get PDF
    Class imbalance occurs when data elements are unevenly distributed among classes, which poses a challenge for classifiers. The core focus of the research community has been on binary-class imbalance, although there is a recent trend toward the general case of multi-class imbalanced data. The IFROWANN method, a classifier based on fuzzy rough set theory, stands out for its performance in two-class imbalanced problems. In this paper, we consider its extension to multi-class data by combining it with one-versus-one decomposition. The latter transforms a multi-class problem into two-class sub-problems. Binary classifiers are applied to these sub-problems, after which their outcomes are aggregated into one prediction. We enhance the integration of IFROWANN in the decomposition scheme in two steps. Firstly, we propose an adaptive weight setting for the binary classifier, addressing the varying characteristics of the sub-problems. We call this modified classifier IFROWANN-WIR. Second, we develop a new dynamic aggregation method called WV–FROST that combines the predictions of the binary classifiers with the global class affinity before making a final decision. In a meticulous experimental study, we show that our complete proposal outperforms the state-of-the-art on a wide range of multi-class imbalanced datasets

    Academic performance prediction based on voting technique

    Get PDF
    Student's grade has always been critical issues that occur quite often in universities providing high learning education. Currently there are many techniques to predict student's grade. In this paper we compare the accuracy of data mining methods to classifying students in order to predicting student's class grade. These predictions are more useful for identifying weak students and assisting management to take remedial measures at early stages to produce excellent graduate that will graduate at least with second class upper. Firstly we examine single classifiers accuracy on our data set and choose the best one and then ensembles it with a weak classifier to produce simple voting method. We present results show that combining different classifiers outperformed other single classifiers for predicting student performance
    corecore