18,268 research outputs found

    Combining Neural Language Models for WordSense Induction

    Full text link
    Word sense induction (WSI) is the problem of grouping occurrences of an ambiguous word according to the expressed sense of this word. Recently a new approach to this task was proposed, which generates possible substitutes for the ambiguous word in a particular context using neural language models, and then clusters sparse bag-of-words vectors built from these substitutes. In this work, we apply this approach to the Russian language and improve it in two ways. First, we propose methods of combining left and right contexts, resulting in better substitutes generated. Second, instead of fixed number of clusters for all ambiguous words we propose a technique for selecting individual number of clusters for each word. Our approach established new state-of-the-art level, improving current best results of WSI for the Russian language on two RUSSE 2018 datasets by a large margin.Comment: International Conference on Analysis of Images, Social Networks and Texts AIST 2019: Analysis of Images, Social Networks and Texts, pp 105-12

    Do Multi-Sense Embeddings Improve Natural Language Understanding?

    Full text link
    Learning a distinct representation for each sense of an ambiguous word could lead to more powerful and fine-grained models of vector-space representations. Yet while `multi-sense' methods have been proposed and tested on artificial word-similarity tasks, we don't know if they improve real natural language understanding tasks. In this paper we introduce a multi-sense embedding model based on Chinese Restaurant Processes that achieves state of the art performance on matching human word similarity judgments, and propose a pipelined architecture for incorporating multi-sense embeddings into language understanding. We then test the performance of our model on part-of-speech tagging, named entity recognition, sentiment analysis, semantic relation identification and semantic relatedness, controlling for embedding dimensionality. We find that multi-sense embeddings do improve performance on some tasks (part-of-speech tagging, semantic relation identification, semantic relatedness) but not on others (named entity recognition, various forms of sentiment analysis). We discuss how these differences may be caused by the different role of word sense information in each of the tasks. The results highlight the importance of testing embedding models in real applications

    Integrating Weakly Supervised Word Sense Disambiguation into Neural Machine Translation

    Full text link
    This paper demonstrates that word sense disambiguation (WSD) can improve neural machine translation (NMT) by widening the source context considered when modeling the senses of potentially ambiguous words. We first introduce three adaptive clustering algorithms for WSD, based on k-means, Chinese restaurant processes, and random walks, which are then applied to large word contexts represented in a low-rank space and evaluated on SemEval shared-task data. We then learn word vectors jointly with sense vectors defined by our best WSD method, within a state-of-the-art NMT system. We show that the concatenation of these vectors, and the use of a sense selection mechanism based on the weighted average of sense vectors, outperforms several baselines including sense-aware ones. This is demonstrated by translation on five language pairs. The improvements are above one BLEU point over strong NMT baselines, +4% accuracy over all ambiguous nouns and verbs, or +20% when scored manually over several challenging words.Comment: To appear in TAC

    Russian word sense induction by clustering averaged word embeddings

    Full text link
    The paper reports our participation in the shared task on word sense induction and disambiguation for the Russian language (RUSSE-2018). Our team was ranked 2nd for the wiki-wiki dataset (containing mostly homonyms) and 5th for the bts-rnc and active-dict datasets (containing mostly polysemous words) among all 19 participants. The method we employed was extremely naive. It implied representing contexts of ambiguous words as averaged word embedding vectors, using off-the-shelf pre-trained distributional models. Then, these vector representations were clustered with mainstream clustering techniques, thus producing the groups corresponding to the ambiguous word senses. As a side result, we show that word embedding models trained on small but balanced corpora can be superior to those trained on large but noisy data - not only in intrinsic evaluation, but also in downstream tasks like word sense induction.Comment: Proceedings of the 24rd International Conference on Computational Linguistics and Intellectual Technologies (Dialogue-2018

    The Meaning Factory at SemEval-2017 Task 9: Producing AMRs with Neural Semantic Parsing

    Get PDF
    We evaluate a semantic parser based on a character-based sequence-to-sequence model in the context of the SemEval-2017 shared task on semantic parsing for AMRs. With data augmentation, super characters, and POS-tagging we gain major improvements in performance compared to a baseline character-level model. Although we improve on previous character-based neural semantic parsing models, the overall accuracy is still lower than a state-of-the-art AMR parser. An ensemble combining our neural semantic parser with an existing, traditional parser, yields a small gain in performance.Comment: To appear in Proceedings of SemEval, 2017 (camera-ready

    Multimodal Grounding for Language Processing

    Get PDF
    This survey discusses how recent developments in multimodal processing facilitate conceptual grounding of language. We categorize the information flow in multimodal processing with respect to cognitive models of human information processing and analyze different methods for combining multimodal representations. Based on this methodological inventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks and the challenges that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for the compositional power of language.Comment: The paper has been published in the Proceedings of the 27 Conference of Computational Linguistics. Please refer to this version for citations: https://www.aclweb.org/anthology/papers/C/C18/C18-1197

    HHMM at SemEval-2019 Task 2: Unsupervised Frame Induction using Contextualized Word Embeddings

    Full text link
    We present our system for semantic frame induction that showed the best performance in Subtask B.1 and finished as the runner-up in Subtask A of the SemEval 2019 Task 2 on unsupervised semantic frame induction (QasemiZadeh et al., 2019). Our approach separates this task into two independent steps: verb clustering using word and their context embeddings and role labeling by combining these embeddings with syntactical features. A simple combination of these steps shows very competitive results and can be extended to process other datasets and languages.Comment: 5 pages, 3 tables, accepted at SemEval 201

    Limitations of Cross-Lingual Learning from Image Search

    Full text link
    Cross-lingual representation learning is an important step in making NLP scale to all the world's languages. Recent work on bilingual lexicon induction suggests that it is possible to learn cross-lingual representations of words based on similarities between images associated with these words. However, that work focused on the translation of selected nouns only. In our work, we investigate whether the meaning of other parts-of-speech, in particular adjectives and verbs, can be learned in the same way. We also experiment with combining the representations learned from visual data with embeddings learned from textual data. Our experiments across five language pairs indicate that previous work does not scale to the problem of learning cross-lingual representations beyond simple nouns
    • …
    corecore