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Abstract

We evaluate a semantic parser based on
a character-based sequence-to-sequence
model in the context of the SemEval-
2017 shared task on semantic parsing
for AMRs. With data augmentation,
super characters, and POS-tagging we
gain major improvements in performance
compared to a baseline character-level
model. Although we improve on previ-
ous character-based neural semantic pars-
ing models, the overall accuracy is still
lower than a state-of-the-art AMR parser.
An ensemble combining our neural se-
mantic parser with an existing, traditional
parser, yields a small gain in performance.

1 Introduction

Traditional open-domain semantic parsers often
use statistical syntactic parsers to derive syntac-
tic structure on which to build a meaning repre-
sentation. Recently there have been interesting
attempts to view semantic parsing as a transla-
tion task, mapping a source language (here: En-
glish) to a target language (a logical form of some
kind). Dong and Lapata (2016) used sequence-to-
sequence and sequence-to-tree neural translation
models to produce logical forms from sentences,
while Barzdins and Gosko (2016) and Peng et al.
(2017) used a similar method to produce AMRs.
From a purely engineering point of view, these are
interesting attempts as complex models of the se-
mantic parsing process can be avoided. Yet little
is known about the performance and fine-tuning of
such parsers, and whether they can reach perfor-
mance of traditional semantic parsers, or whether
they could contribute to performance in an ensem-
ble setting.

In the context of SemEval-2017 Task 9 we aim

to shed more light on these questions. In particular
we participated in Subtask 1, Parsing Biomedical
Data, and work with parallel English-AMR train-
ing data comprising extracts of scientific articles
about cancer pathway discovery.

More specifically, our objectives are (1) try
to reproduce the results of Barzdins and Gosko
(2016), who used character-level models for neu-
ral semantic parsing; (2) improve on their re-
sults by employing several novel techniques; and
(3) combine the resulting neural semantic parser
with an existing off-the-shelf AMR parser to reach
state-of-the-art results.

2 Neural Semantic Parsing

2.1 Datasets

Our training set consists of the second LDC AMR
release (LDC2016E25) containing 39,620 AMRs,
as well as the training set of the bio AMR corpus
that contains 5,452 AMRs. As development and
test set we use the designated development and
test partition of the bio AMR corpus, both con-
taining 500 AMRs. HTML-tags are removed from
the sentences.

2.2 Basic Translation Model

We use a seq2seq neural translation model to
translate English sentences into AMRs. This is a
bi-LSTM model with added attention mechanism,
as described in Bahdanau et al. (2014). Similar to
Barzdins and Gosko (2016), but contrasting with
Peng et al. (2017), we train the model only on
character-level input. Model specifics are shown
in Table 1.

In a preprocessing step, we remove all vari-
ables from the AMR and duplicate co-referring
nodes. An example of this is shown in Figure
1. The variables and co-referring nodes are re-
stored after testing, using the restoring script from
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Parameter Value

Layers 1
Nodes 400
Buckets (510,510)
Epochs 25–35
Vocabulary 150–200
Learning rate 0.5
Decay factor 0.99
Gradient norm 5

Table 1: Model specifics for the seq2seq model.

Barzdins and Gosko (2016).1 Wikipedia links are
also removed from the training set, but get restored
in a separate Wikification post-processing step.

(require-01
:ARG0 (induce-01

:ARG1 (cell)
:ARG2 (migrate-01

:ARG0 cell))
:ARG1 (bind-01

:ARG1 (protein
:name (name :op1 "Crk"))

:ARG2 (protein
:name (name :op1 "CAS"))))

Figure 1: “Crk binding to CAS is required for the
induction of cell migration” - seq2seq tree repre-
sentation.

2.3 Improvements
In this section we describe the methods used to
improve the neural semantic parser.

Augmentation AMRs, as introduced by Ba-
narescu et al. (2013), are rooted, directed, labeled
graphs, in which the different nodes and triples are
unordered by definition. However, in our tree rep-
resentation of AMRs (see Figure 1), there is an
order of branches. This means that we are able to
permute this order into a more intuitive represen-
tation of the sentence, by matching the word order
using the AMR-sentence alignments. An example
of this method is shown in Figure 2.

This approach can also be used to augment
the training data, since we are now able generate
“new” AMR-sentence pairs that can be added to
our training set. However, due to the exponential
growth, there are often more than 1,000 different
AMR permutations for long sentences. We ran
multiple experiments to find the best way to use
this oversupply of data. Ultimately, we found that

1https://github.com/didzis/tensorflowAMR

(require-01
:ARG1 (bind-01

:ARG1 (protein
:name (name :op1 "Crk"))

:ARG2 (protein
:name (name :op1 "CAS"))))

:ARG0 (induce-01
:ARG1 (cell)
:ARG2 (migrate-01

:ARG0 cell))

Figure 2: “Crk binding to CAS is required for the
induction of cell migration” - seq2seq representa-
tion that best matches the word order.

it is most beneficial to “double” the training data
by adding the best matching AMR (based on word
order) to the existing data set.

Super characters We do not necessarily have to
restrict ourselves to using only individual charac-
ters as input. For example, the AMR relations (e.g.
:ARG0, :domain, :mod) can be seen as single
entities instead of a collection of characters. This
decreases the input length of the AMRs in feature
space, but increases the total vocabulary. We refer
to these entities as super characters. This way, we
essentially create a model that is a combination of
character and word level input.

POS-tagging Character-level models might still
be able to benefit from syntactic information, even
when this is added directly to the input structure.
Especially POS-tags can easily be added as fea-
tures to the input data, while also providing valu-
able information. For example, proper nouns in
a sentence often occur with the :name relation
in the corresponding AMR, while adjectives cor-
relate with the :mod relation. We append the
corresponding POS-tag to each word in the sen-
tence (using the C&C POS-tagger by Clark et al.
(2003)), creating a new super character for each
unique tag.

Post-processing In a post-processing step, first
the variables and co-referring nodes are restored.
We try to fix invalidly produced AMRs by apply-
ing a few simple heuristics, such as inserting spe-
cial characters (e.g. parentheses, quotes) or re-
moving unfinished edges. If the AMR is still in-
valid, we output a smart default AMR.2

We also remove all double nodes, i.e., relation-
concept pairs that occur more than once in a
branch of the AMR. This form of duplicate output
is a common problem with deep learning models,

2This was not necessary for the evaluation data.
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since the model does not keep track of what it has
already output. We refer to this method as prun-
ing.

Wikification Our Wikification method is based
on Bjerva et al. (2016), using Spotlight (Daiber
et al., 2013). They initially removed wiki links
from the input and then tried to restore them in the
output by simply adding a wiki link to the AMR
if it matches with the name in a :name relation.
Even though this approach worked well for the
LDC data, it did not work for the biomedical data.

This is mainly due to the fact that :name nodes
are not consistently annotated with a wiki link
in the gold biomedical data. 138 unique names
that had a corresponding wiki link at least once
in the gold data did not have this wiki link 100%
of the time. For example DNA occurred 86 times
as a :name in the gold data and was only anno-
tated with a wiki link in 69 cases, while ERK oc-
curred 228 times with only 3 annotated wiki links.
For this reason we opt for a safe Wikification ap-
proach: we only add wiki links to names that were
annotated with the same wiki link more than 50%
of the time in the gold data. Following our previ-
ous example, this means that DNA does still get a
wiki link, but ERK does not.

2.4 CAMR ensemble

As we know that our neural semantic parser is un-
likely to outperform a state-of-the-art AMR parser,
but is likely to complement it, our strategy is to use
an ensemble-based approach. The ensemble com-
prises the off-the-shelf parser CAMR (Wang et al.,
2015) and our neural semantic parser. The imple-
mentation of this ensemble is similar to Barzdins
and Gosko (2016), choosing the AMR that ob-
tains the highest pairwise Smatch (Cai and Knight,
2013) score when compared to the other AMRs
generated for a sentence. This method is de-
signed to ultimately choose the AMR with the
most prevalent relations and concepts.

We train CAMR models based on the biomedi-
cal data only, the LDC data only and the combina-
tion of both data sets. Since CAMR is nondeter-
ministic, we can also train multiple models on the
same data set. Ultimately, the best ensemble on
the test data consisted of three bio-only models,
two bio + LDC models and one LDC-only model.
This ensemble was used to parse the evaluation
set.

3 Results and Discussion

3.1 Results on Test Set
Table 2 shows the results of all improvement meth-
ods tested in isolation on the test set of the biomed-
ical data. Augmenting the data only helps very
slightly, while the super characters are responsi-
ble for the largest increase in performance. This
shows that we do not necessarily have to use only
character or word level input in our models, but
that a combination of the two might be optimal.
The best result was obtained by combining the dif-
ferent methods. This model was then used to parse
the evaluation data. Table 3 shows the results of
retraining CAMR on different data sets, as well as
an ensemble of those models. Adding our seq2seq
model to the ensemble only yielded a very small
gain in performance.

Feature F-score Increase

Baseline 0.422
Pruning 0.425 0.7%
Wikification 0.423 0.2%
Augmentation 0.424 0.5%
Super characters 0.481 14.0%
POS-tagging 0.436 3.3%

All combined 0.504 19.4%

Table 2: Results of the different seq2seq models
on the test set of the biomedical data.

F-score

CAMR retrained on LDC 0.399
CAMR retrained on bio 0.585
CAMR retrained on LDC + bio 0.582

Ensemble CAMR 0.588
Ensemble CAMR + seq2seq 0.589

Table 3: Results of retraining CAMR and results
of best ensemble models, tested on the biomedical
test data.

3.2 Official Results
In Table 4 we see the detailed results of the best
seq2seq model and best ensemble on the evalua-
tion data, using the scripts from Damonte et al.
(2017).3 While CAMR has similar scores on the

3Unofficial score for seq2seq negation; due to a mistake,
all :polarity nodes were removed in the official submis-
sion. This had no influence on the final F-score.
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test data, the score of the seq2seq model decreases
by 0.04. It is interesting to note that seq2seq scores
equally well without word sense disambiguation,
while there is no separate module that handles this.

Setting seq2seq Ensemble

Smatch 0.460 0.576
Unlabeled 0.504 0.623
No WSD 0.463 0.579
Named Entities 0.512 0.576
Wikification 0.458 0.396
Negation 0.141 0.244
Concepts 0.630 0.759
Reentrancies 0.290 0.352
SRL 0.427 0.543

Table 4: Official results on the evaluation set for
both the ensemble and the seq-to-seq neural se-
mantic parser.

Figure 3: Comparison of CAMR and our seq-to-
seq model for different sentence lengths.

3.3 Comparison with CAMR
Although CAMR outperformed our neural seman-
tic parser by a large margin, the seq-to-seq model
did produce a better AMR for 108 out of the 500
evaluation AMRs, based on Smatch score. If the
CAMR + seq2seq ensemble was somehow able to
always choose the best AMR, it obtains an F-score
of 0.601, an increase of 2.2% instead of the cur-
rent 0.2%. This suggests that the current method
of combining neural semantic parsers with exist-
ing parsers is far from optimal, but that the neural
methods do provide complementary information.
A different way to incorporate this information

would be to pick the most suitable parser based
on the input sentence. A classifier that exploits the
characteristics of the sentence could be trained to
assign a parser to each individual (to be parsed)
sentence.

Figure 3 shows the performance of the neu-
ral semantic parser and the CAMR ensemble per
maximum sentence length. We see that seq-to-seq
can keep up with CAMR for very short sentences,
but is clearly outperformed on longer sentences.
As the sentences get longer, the difference in per-
formance gets bigger, but not much.

4 Conclusion and Future Work

We were able to reproduce the results of the
character-level models for neural semantic pars-
ing as proposed by Barzdins and Gosko (2016).
Moreover, we showed improvement on their ba-
sic setting by using data-augmentation, part-of-
speech as additional input, and using super charac-
ters. The latter setting showed that a combination
of character and word level input might be opti-
mal for neural semantic parsers. Despite these en-
hancements, the resulting AMR parser is still out-
performed by more traditional, off-the-shelf AMR
parsers. Adding our neural semantic parser to an
ensemble including CAMR (Wang et al., 2015), a
dependency-based parser, yielded no noteworthy
improvements on the overall performance.

Do these results indicate that neural semantic
parsers will never be competitive with more tra-
ditional statistical parsers? We don’t think so. We
have the feeling that we have just scratched the
surface of possibilities that neural semantic pars-
ing can offer us, and how they possibly can com-
plement parsers using different strategies. In fu-
ture work we will explore these.
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