578 research outputs found

    Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile Robots

    Full text link
    Safety is paramount for mobile robotic platforms such as self-driving cars and unmanned aerial vehicles. This work is devoted to a task that is indispensable for safety yet was largely overlooked in the past -- detecting obstacles that are of very thin structures, such as wires, cables and tree branches. This is a challenging problem, as thin objects can be problematic for active sensors such as lidar and sonar and even for stereo cameras. In this work, we propose to use video sequences for thin obstacle detection. We represent obstacles with edges in the video frames, and reconstruct them in 3D using efficient edge-based visual odometry techniques. We provide both a monocular camera solution and a stereo camera solution. The former incorporates Inertial Measurement Unit (IMU) data to solve scale ambiguity, while the latter enjoys a novel, purely vision-based solution. Experiments demonstrated that the proposed methods are fast and able to detect thin obstacles robustly and accurately under various conditions.Comment: Appeared at IEEE CVPR 2017 Workshop on Embedded Visio

    Near-field Perception for Low-Speed Vehicle Automation using Surround-view Fisheye Cameras

    Full text link
    Cameras are the primary sensor in automated driving systems. They provide high information density and are optimal for detecting road infrastructure cues laid out for human vision. Surround-view camera systems typically comprise of four fisheye cameras with 190{\deg}+ field of view covering the entire 360{\deg} around the vehicle focused on near-field sensing. They are the principal sensors for low-speed, high accuracy, and close-range sensing applications, such as automated parking, traffic jam assistance, and low-speed emergency braking. In this work, we provide a detailed survey of such vision systems, setting up the survey in the context of an architecture that can be decomposed into four modular components namely Recognition, Reconstruction, Relocalization, and Reorganization. We jointly call this the 4R Architecture. We discuss how each component accomplishes a specific aspect and provide a positional argument that they can be synergized to form a complete perception system for low-speed automation. We support this argument by presenting results from previous works and by presenting architecture proposals for such a system. Qualitative results are presented in the video at https://youtu.be/ae8bCOF77uY.Comment: Accepted for publication at IEEE Transactions on Intelligent Transportation System

    Towards System Agnostic Calibration of Optical See-Through Head-Mounted Displays for Augmented Reality

    Get PDF
    This dissertation examines the developments and progress of spatial calibration procedures for Optical See-Through (OST) Head-Mounted Display (HMD) devices for visual Augmented Reality (AR) applications. Rapid developments in commercial AR systems have created an explosion of OST device options for not only research and industrial purposes, but also the consumer market as well. This expansion in hardware availability is equally matched by a need for intuitive standardized calibration procedures that are not only easily completed by novice users, but which are also readily applicable across the largest range of hardware options. This demand for robust uniform calibration schemes is the driving motive behind the original contributions offered within this work. A review of prior surveys and canonical description for AR and OST display developments is provided before narrowing the contextual scope to the research questions evolving within the calibration domain. Both established and state of the art calibration techniques and their general implementations are explored, along with prior user study assessments and the prevailing evaluation metrics and practices employed within. The original contributions begin with a user study evaluation comparing and contrasting the accuracy and precision of an established manual calibration method against a state of the art semi-automatic technique. This is the first formal evaluation of any non-manual approach and provides insight into the current usability limitations of present techniques and the complexities of next generation methods yet to be solved. The second study investigates the viability of a user-centric approach to OST HMD calibration through novel adaptation of manual calibration to consumer level hardware. Additional contributions describe the development of a complete demonstration application incorporating user-centric methods, a novel strategy for visualizing both calibration results and registration error from the user’s perspective, as well as a robust intuitive presentation style for binocular manual calibration. The final study provides further investigation into the accuracy differences observed between user-centric and environment-centric methodologies. The dissertation concludes with a summarization of the contribution outcomes and their impact on existing AR systems and research endeavors, as well as a short look ahead into future extensions and paths that continued calibration research should explore

    Inverse rendering for scene reconstruction in general environments

    Get PDF
    Demand for high-quality 3D content has been exploding recently, owing to the advances in 3D displays and 3D printing. However, due to insufficient 3D content, the potential of 3D display and printing technology has not been realized to its full extent. Techniques for capturing the real world, which are able to generate 3D models from captured images or videos, are a hot research topic in computer graphics and computer vision. Despite significant progress, many methods are still highly constrained and require lots of prerequisites to succeed. Marker-less performance capture is one such dynamic scene reconstruction technique that is still confined to studio environments. The requirements involved, such as the need for a multi-view camera setup, specially engineered lighting or green-screen backgrounds, prevent these methods from being widely used by the film industry or even by ordinary consumers. In the area of scene reconstruction from images or videos, this thesis proposes new techniques that succeed in general environments, even using as few as two cameras. Contributions are made in terms of reducing the constraints of marker-less performance capture on lighting, background and the required number of cameras. The primary theoretical contribution lies in the investigation of light transport mechanisms for high-quality 3D reconstruction in general environments. Several steps are taken to approach the goal of scene reconstruction in general environments. At first, the concept of employing inverse rendering for scene reconstruction is demonstrated on static scenes, where a high-quality multi-view 3D reconstruction method under general unknown illumination is developed. Then, this concept is extended to dynamic scene reconstruction from multi-view video, where detailed 3D models of dynamic scenes can be captured under general and even varying lighting, and in front of a general scene background without a green screen. Finally, efforts are made to reduce the number of cameras employed. New performance capture methods using as few as two cameras are proposed to capture high-quality 3D geometry in general environments, even outdoors.Die Nachfrage nach qualitativ hochwertigen 3D Modellen ist in letzter Zeit, bedingt durch den technologischen Fortschritt bei 3D-Wieder-gabegeräten und -Druckern, stark angestiegen. Allerdings konnten diese Technologien wegen mangelnder Inhalte nicht ihr volles Potential entwickeln. Methoden zur Erfassung der realen Welt, welche 3D-Modelle aus Bildern oder Videos generieren, sind daher ein brandaktuelles Forschungsthema im Bereich Computergrafik und Bildverstehen. Trotz erheblichen Fortschritts in dieser Richtung sind viele Methoden noch stark eingeschränkt und benötigen viele Voraussetzungen um erfolgreich zu sein. Markerloses Performance Capturing ist ein solches Verfahren, das dynamische Szenen rekonstruiert, aber noch auf Studio-Umgebungen beschränkt ist. Die spezifischen Anforderung solcher Verfahren, wie zum Beispiel einen Mehrkameraaufbau, maßgeschneiderte, kontrollierte Beleuchtung oder Greenscreen-Hintergründe verhindern die Verbreitung dieser Verfahren in der Filmindustrie und besonders bei Endbenutzern. Im Bereich der Szenenrekonstruktion aus Bildern oder Videos schlägt diese Dissertation neue Methoden vor, welche in beliebigen Umgebungen und auch mit nur wenigen (zwei) Kameras funktionieren. Dazu werden Schritte unternommen, um die Einschränkungen bisheriger Verfahren des markerlosen Performance Capturings im Hinblick auf Beleuchtung, Hintergründe und die erforderliche Anzahl von Kameras zu verringern. Der wichtigste theoretische Beitrag liegt in der Untersuchung von Licht-Transportmechanismen für hochwertige 3D-Rekonstruktionen in beliebigen Umgebungen. Dabei werden mehrere Schritte unternommen, um das Ziel der Szenenrekonstruktion in beliebigen Umgebungen anzugehen. Zunächst wird die Anwendung von inversem Rendering auf die Rekonstruktion von statischen Szenen dargelegt, indem ein hochwertiges 3D-Rekonstruktionsverfahren aus Mehransichtsaufnahmen unter beliebiger, unbekannter Beleuchtung entwickelt wird. Dann wird dieses Konzept auf die dynamische Szenenrekonstruktion basierend auf Mehransichtsvideos erweitert, wobei detaillierte 3D-Modelle von dynamischen Szenen unter beliebiger und auch veränderlicher Beleuchtung vor einem allgemeinen Hintergrund ohne Greenscreen erfasst werden. Schließlich werden Anstrengungen unternommen die Anzahl der eingesetzten Kameras zu reduzieren. Dazu werden neue Verfahren des Performance Capturings, unter Verwendung von lediglich zwei Kameras vorgeschlagen, um hochwertige 3D-Geometrie im beliebigen Umgebungen, sowie im Freien, zu erfassen

    GO-SLAM: Global Optimization for Consistent 3D Instant Reconstruction

    Full text link
    Neural implicit representations have recently demonstrated compelling results on dense Simultaneous Localization And Mapping (SLAM) but suffer from the accumulation of errors in camera tracking and distortion in the reconstruction. Purposely, we present GO-SLAM, a deep-learning-based dense visual SLAM framework globally optimizing poses and 3D reconstruction in real-time. Robust pose estimation is at its core, supported by efficient loop closing and online full bundle adjustment, which optimize per frame by utilizing the learned global geometry of the complete history of input frames. Simultaneously, we update the implicit and continuous surface representation on-the-fly to ensure global consistency of 3D reconstruction. Results on various synthetic and real-world datasets demonstrate that GO-SLAM outperforms state-of-the-art approaches at tracking robustness and reconstruction accuracy. Furthermore, GO-SLAM is versatile and can run with monocular, stereo, and RGB-D input.Comment: ICCV 2023. Code: https://github.com/youmi-zym/GO-SLAM - Project Page: https://youmi-zym.github.io/projects/GO-SLAM
    corecore