8 research outputs found

    A Hardware-in-Loop Simulation of DC Microgrid using Multi-Agent Systems

    Get PDF
    Smart-grid is a complex system that incorporates distributed control, communication, optimization, and management functions in addition to the legacy functions such as generation, storage, and control. The design and test of new smart-grid algorithms require an efficient simulator. Agent-based simulation platforms are the most popular tools that work well in the control and monitoring functionalities of the power electric network such as the microgrid. Most existing simulation tools necessitate either simulated or static data. In this paper, we propose a hardware-in-loop simulator for de-microgrid. The simulator reads the power generated by the PV panels and the battery SoC using Raspberry PI. A physical agent that runs on Raspberry PI sends the real-time data to a de-microgrid simulator that runs on a PC. As a proof of concept, we implemented a load-shedding algorithm using the proposed system

    Load-shedding techniques for microgrids: A comprehensive review

    Get PDF
    Abstract: The increasing interest in integrating renewable energies source has raised concerns about control operations. The presence of new energy sources, distributed storage, power electronic devices and communication links make a power system’s control and monitoring more complex and adaptive than ever before. Recently, the use of agent-based distributed control has seen to have a significant impact on the grid and microgrid controls. The load-shedding technique is among the features used to balance the power consumption in the power system upon less power production. Towards achieving these, different mechanisms, algorithms, challenges, and approaches have been developed and hence need to be reviewed and integrated from the system solution perspective. This research focuses on the review of the state-of-the-art load-shedding techniques, whereby the focus is on control algorithms, simulation platforms and integrations, and control devices for DC microgrid. The research also investigates open issues and challenges that need further investigations. The analyses reported in the paper upholds the importance of the distributed multi-agent system, MAS, in implementing distinct control operations including load-shedding. The effectiveness of the control operations using MAS rely on low-latency and secure communication links in which IoT has been branded as a promising technology for implementing distributed MAS.</p

    Agents and Robots for Reliable Engineered Autonomy:A Perspective from the Organisers of AREA 2020

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-05-13, pub-electronic 2021-05-14Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; Grant(s): EP/R026092, EP/R026173, EP/R026084, 694277Multi-agent systems, robotics and software engineering are large and active research areas with many applications in academia and industry. The First Workshop on Agents and Robots for reliable Engineered Autonomy (AREA), organised the first time in 2020, aims at encouraging cross-disciplinary collaborations and exchange of ideas among researchers working in these research areas. This paper presents a perspective of the organisers that aims at highlighting the latest research trends, future directions, challenges, and open problems. It also includes feedback from the discussions held during the AREA workshop. The goal of this perspective is to provide a high-level view of current research trends for researchers that aim at working in the intersection of these research areas

    Combining JADE and Repast for the Complex Simulation of Enterprise Value-Adding Networks

    No full text
    This paper describes how to combine the JADE agent platform with Repast-provided simulation functions for rapidly developing ail environment for the simulation of complex agent model. The main motivation collies from our requirements concerning the simulation of enterprise Value-Adding Networks, whose ultimate objective is to analyse management performance. JADE is useful for creating duel deploying a distributed agent; organisation modelling enterprise workflow model and supply chain network, as well as for system monitoring at the level of agents mid communications. Integrating dynamically human interaction during the simulation is relatively easy. Repast was developed is a. general purpose framework for agent based simulation with appropriate graphic interfaces. Their combination makes it, possible to construct complex model of multi-agent organisation whose execution states can be observed front users and the global simulation results can be used for performance analysis. Their extension and composition mechanisms are described using a. case study of a manufacturing enterprise

    Distributed Approaches to Supply Chain Simulation: A Review

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this recordThe field of Supply Chain Management (SCM) is experiencing rapid strides in the use of Industry 4.0 technologies and the conceptualization of new supply chain configurations for online retail, sustainable and green supply chains and the Circular Economy. Thus, there is an increasing impetus to use simulation techniques such as discrete-event simulation, agent-based simulation and hybrid simulation in the context of SCM. In conventional supply chain simulation, the underlying constituents of the system like manufacturing, distribution, retail and logistics processes are often modelled and executed as a single model. Unlike this conventional approach, a distributed supply chain simulation (DSCS) enables the coordinated execution of simulation models using specialist software. To understand the current state-of-the-art of DSCS, this paper presents a methodological review and categorization of literature in DSCS using a framework-based approach. Through a study of over 130 articles, we report on the motivation for using DSCS, the modelling techniques, the underlying distributed computing technologies and middleware, its advantages and a future agenda, as also limitations and trade-offs that may be associated with this approach. The increasing adoption of technologies like Internet-of-Things and Cloud Computing will ensure the availability of both data and models for distributed decision-making, and which is likely to enable data-driven DSCS of the future. This review aims to inform organizational stakeholders, simulation researchers and practitioners, distributed systems developers and software vendors, as to the current state of the art of DSCS, and which will inform the development of future DSCS using new applied computing approaches

    The impact of supply chain structures on performance.

    Get PDF
    La Tesis analiza el impacto que tiene la estructura de las redes de suministro sobre su rendimiento, concretamente sobre el “efecto látigo” o efecto bullwhip. Para ello se desarrolla una arquitectura basada en la metodología de los sistemas multi-agente, que permite el modelado de sistemas complejos. Dicha arquitectura es implementada en un software dando lugar a un simulador de redes de suministro llamado SCOPE, que permite el modelado y simulación de una amplia variedad de configuraciones de redes de suministro. SCOPE es utilizado para investigar una de las suposiciones más comunes en el campo del modelado de redes de suministro: el uso de estructuras muy sencillas en forma serial generalmente con muy pocas fases funcionales y pocos nodos. Para determinar el impacto de la estructura de la red sobre el efecto bullwhip se utiliza una estructura más compleja y más acorde con las estructuras de redes de suministro reales: la red divergente. Se realizan tres experimentos: (i) análisis comparativo del efecto bullwhip entre la red divergente y la serial; (ii) análisis comparativo de la eficacia de dos técnicas muy conocidas para la limitación del efecto bullwhip entre la red divergente y la serial; (iii) determinación de los parámetros estructurales de la red de suministro divergente y análisis estadístico para determinar si dichos parámetros estructurales impactan sobre el efecto bullwhip. Los resultados obtenidos revelan que todos los parámetros estructurales analizados impactan significativamente sobre efecto bullwhip. Además, en caso de un impulso inesperado en la demanda, el impacto de la red de suministro en el efecto bullwhip es mayor. Las técnicas para limitación del efecto bullwhip son también efectivas en redes de suministro divergentes, consiguiendo además un aumento de su robustez ante cambios bruscos inesperados en la demanda

    An Agent-based Approach for Improving the Performance of Distributed Business Processes in Maritime Port Community

    Get PDF
    In the recent years, the concept of “port community” has been adopted by the maritime transport industry in order to achieve a higher degree of coordination and cooperation amongst organizations involved in the transfer of goods through the port area. The business processes of the port community supply chain form a complicated process which involves several process steps, multiple actors, and numerous information exchanges. One of the widely used applications of ICT in ports is the Port Community System (PCS) which is implemented in ports in order to reduce paperwork and to facilitate the information flow related to port operations and cargo clearance. However, existing PCSs are limited in functionalities that facilitate the management and coordination of material, financial, and information flows within the port community supply chain. This research programme addresses the use of agent technology to introduce business process management functionalities, which are vital for port communities, aiming to the enhancement of the performance of the port community supply chain. The investigation begins with an examination of the current state in view of the business perspective and the technical perspective. The business perspective focuses on understanding the nature of the port community, its main characteristics, and its problems. Accordingly, a number of requirements are identified as essential amendments to information systems in seaports. On the other hand, the technical perspective focuses on technologies that are convenient for solving problems in business process management within port communities. The research focuses on three technologies; the workflow technology, agent technology, and service orientation. An analysis of information systems across port communities enables an examination of the current PCSs with regard to their coordination and workflow management capabilities. The most important finding of this analysis is that the performance of the business processes, and in particular the performance of the port community supply chain, is not in the scope of the examined PCSs. Accordingly, the Agent-Based Middleware for Port Community Management (ABMPCM) is proposed as an approach for providing essential functionalities that would facilitate collaborative planning and business process management. As a core component of the ABMPCM, the Collaborative Planning Facility (CPF) is described in further details. A CPF prototype has been developed as an agent-based system for the domain of inland transport of containers to demonstrate its practical effectiveness. To evaluate the practical application of the CPF, a simulation environment is introduced in order to facilitate the evaluation process. The research started with the definition of a multi-agent simulation framework for port community supply chain. Then, a prototype has been implemented and employed for the evaluation of the CPF. The results of the simulation experiments demonstrate that our agent-based approach effectively enhances the performance of business process in the port community

    Agents and Robots for Reliable Engineered Autonomy

    Get PDF
    This book contains the contributions of the Special Issue entitled "Agents and Robots for Reliable Engineered Autonomy". The Special Issue was based on the successful first edition of the "Workshop on Agents and Robots for reliable Engineered Autonomy" (AREA 2020), co-located with the 24th European Conference on Artificial Intelligence (ECAI 2020). The aim was to bring together researchers from autonomous agents, as well as software engineering and robotics communities, as combining knowledge from these three research areas may lead to innovative approaches that solve complex problems related to the verification and validation of autonomous robotic systems
    corecore