16 research outputs found

    Combining ILC and repetitive control to handle repeating, event-triggered disturbances in precision inkjet printing

    No full text
    \u3cp\u3eLearning and repetitive control are powerful instruments in handling recurring disturbances. Repetitive control properly handles constantly repeating variations, while iterative learning control is well-equipped when it comes to handling event triggered deviations. Neither controller is well equipped to adequately deal with repetitive disturbances, which are only present during limited, but varying, periods of time. These are often seen in precision handling systems such as production inkjet printers. This paper combines ILC and RC using a structure which originated in multi-period repetitive control. It is shown that this enables full suppression of the repeating event-triggered disturbances. The approach is successfully demonstrated in an illustrative simulation, as well as by using experimental data from a precision inkjet printing setup.\u3c/p\u3

    Combining ILC and repetitive control to handle repeating, event-triggered disturbances in precision inkjet printing

    No full text
    Learning and repetitive control are powerful instruments in handling recurring disturbances. Repetitive control properly handles constantly repeating variations, while iterative learning control is well-equipped when it comes to handling event triggered deviations. Neither controller is well equipped to adequately deal with repetitive disturbances, which are only present during limited, but varying, periods of time. These are often seen in precision handling systems such as production inkjet printers. This paper combines ILC and RC using a structure which originated in multi-period repetitive control. It is shown that this enables full suppression of the repeating event-triggered disturbances. The approach is successfully demonstrated in an illustrative simulation, as well as by using experimental data from a precision inkjet printing setup

    Putting reaction-diffusion systems into port-Hamiltonian framework

    Get PDF
    Reaction-diffusion systems model the evolution of the constituents distributed in space under the influence of chemical reactions and diffusion [6], [10]. These systems arise naturally in chemistry [5], but can also be used to model dynamical processes beyond the realm of chemistry such as biology, ecology, geology, and physics. In this paper, by adopting the viewpoint of port-controlled Hamiltonian systems [7] we cast reaction-diffusion systems into the portHamiltonian framework. Aside from offering conceptually a clear geometric interpretation formalized by a Stokes-Dirac structure [8], a port-Hamiltonian perspective allows to treat these dissipative systems as interconnected and thus makes their analysis, both quantitative and qualitative, more accessible from a modern dynamical systems and control theory point of view. This modeling approach permits us to draw immediately some conclusions regarding passivity and stability of reaction-diffusion systems. It is well-known that adding diffusion to the reaction system can generate behaviors absent in the ode case. This primarily pertains to the problem of diffusion-driven instability which constitutes the basis of Turing’s mechanism for pattern formation [11], [5]. Here the treatment of reaction-diffusion systems as dissipative distributed portHamiltonian systems could prove to be instrumental in supply of the results on absorbing sets, the existence of the maximal attractor and stability analysis. Furthermore, by adopting a discrete differential geometrybased approach [9] and discretizing the reaction-diffusion system in port-Hamiltonian form, apart from preserving a geometric structure, a compartmental model analogous to the standard one [1], [2] is obtaine

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    Non-covalent interactions in organotin(IV) derivatives of 5,7-ditertbutyl- and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine as recognition motifs in crystalline self- assembly and their in vitro antistaphylococcal activity

    Get PDF
    Non-covalent interactions are known to play a key role in biological compounds due to their stabilization of the tertiary and quaternary structure of proteins [1]. Ligands similar to purine rings, such as triazolo pyrimidine ones, are very versatile in their interactions with metals and can act as model systems for natural bio-inorganic compounds [2]. A considerable series (twelve novel compounds are reported) of 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) and 5,7-diphenyl- 1,2,4-triazolo[1,5-a]pyrimidine (dptp) were synthesized and investigated by FT-IR and 119Sn M\uf6ssbauer in the solid state and by 1H and 13C NMR spectroscopy, in solution [3]. The X-ray crystal and molecular structures of Et2SnCl2(dbtp)2 and Ph2SnCl2(EtOH)2(dptp)2 were described, in this latter pyrimidine molecules are not directly bound to the metal center but strictly H-bonded, through N(3), to the -OH group of the ethanol moieties. The network of hydrogen bonding and aromatic interactions involving pyrimidine and phenyl rings in both complexes drives their self-assembly. Noncovalent interactions involving aromatic rings are key processes in both chemical and biological recognition, contributing to overall complex stability and forming recognition motifs. It is noteworthy that in Ph2SnCl2(EtOH)2(dptp)2 \u3c0\u2013\u3c0 stacking interactions between pairs of antiparallel triazolopyrimidine rings mimick basepair interactions physiologically occurring in DNA (Fig.1). M\uf6ssbauer spectra suggest for Et2SnCl2(dbtp)2 a distorted octahedral structure, with C-Sn-C bond angles lower than 180\ub0. The estimated angle for Et2SnCl2(dbtp)2 is virtually identical to that determined by X-ray diffraction. Ph2SnCl2(EtOH)2(dptp)2 is characterized by an essentially linear C-Sn-C fragment according to the X-ray all-trans structure. The compounds were screened for their in vitro antibacterial activity on a group of reference staphylococcal strains susceptible or resistant to methicillin and against two reference Gramnegative pathogens [4] . We tested the biological activity of all the specimen against a group of staphylococcal reference strains (S. aureus ATCC 25923, S. aureus ATCC 29213, methicillin resistant S. aureus 43866 and S. epidermidis RP62A) along with Gram-negative pathogens (P. aeruginosa ATCC9027 and E. coli ATCC25922). Ph2SnCl2(EtOH)2(dptp)2 showed good antibacterial activity with a MIC value of 5 \u3bcg mL-1 against S. aureus ATCC29213 and also resulted active against methicillin resistant S. epidermidis RP62A
    corecore