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De schrijver werd door Océ Technologies B.V. in staat gesteld een onderzoek te verrichten dat mede aan dit
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Abstract

The digital graphical art printing market is rapidly developing, where wide-format Roll-To-Roll (RTR)
printing systems play an important role. To be competitive in this market, high production speed, high
product qualities, and large medium versatility are important requirements. A key factor in printing pro-
cess is the positioning of the print heads with respect to the medium. However, positioning accuracy and
speed are limited by so-called Medium Positioning Errors (MPEs) arising from step-wise medium transpo-
sitions after each print-pass. These errors cause misalignment of consecutive print-passes, which negatively
affects the print quality. There are several sources contributing to MPEs, such as rotating elements, which
results in multiple dominant periodic components. These periodic errors need to be compensated to achieve
the required positioning performance.

There are several approaches which can be taken to reduce the effects of MPEs. Pre-existing approaches
aim to i) reduce MPEs through improved redesign of the media handling, which is typically expensive
due to the required hardware components, or ii) conceal MPEs by using multiple overlapping print-passes,
which comes at the cost of production speed. A potential alternative to these approaches is to reduce MPEs
through active position control of the medium or print heads. Typical control approaches, such as feedback
control and feedforward control, cannot be applied, since the MPEs are not available in real-time. Instead,
the MPE measurements become available after a print-pass due to scanning and image processing. Hence,
their periodicity can be exploited through batch-wise learning control. Iterative Learning Control (ILC)
shows promising results on a wide-format printing system, however Repetitive Control (RC) is more suited
for handling continuously repeating disturbances. A repetitive controller enables to accurately reject pe-
riodic disturbances. To reject multiple periodic components in MPEs, in this research it is investigated to
combine multiple repetitive controllers in parallel or in so-called cascaded structure, i.e., multi-period RC.
Although these frameworks exist in literature, existing design procedures yield conservative results which
severely limit performance.

The aim of this thesis is to compensate for periodically recurring medium positioning errors by developing
a multi-period RC sequential design framework, that achieves high positioning accuracy and increased
productivity.

In multi-period RC, multiple repetitive controllers are connected in closed-loop, indicating that interac-
tions between the controllers are unavoidable. However, analysis of the resulting closed-loop system for
multi-period RC reveals the potential for sequentially designing the individual repetitive controllers. In this
way, each individual repetitive controller explicitly accounts for these interactions in the design. Often in
practice the interactions can be accurately measured, due to accurate Frequency Response Function (FRF)
measurements. An explicit sequential design procedure is developed in this research and validated on a
wide-format RTR printing system. It is confirmed that the approach results in less conservative designs in
comparison with existing design methods, and improves performance.

Experimental results on a wide-format RTR printing system demonstrate the potential of multi-period
RC for rejection of disturbances with multiple unrelated periods. Through sequential design of multiple
cascaded repetitive controllers, fast learning behavior and high positioning performance is achieved. These
results confirm the benefits of the developed approach, and illustrate its potential for increased printing
quality and production speed in industrial printing systems.
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Chapter 1

Introduction

1.1 Project Background: Industrial Wide-Format Roll-To-Roll Print-
ing Systems

The printing system is an important factor in various industries, contributing from small scale printings to
commercial banners, to store important documents or make large advertisements. The digital graphical art
printing market is rapidly developing. Nowadays, wide-format Roll-To-Roll (RTR) printing systems, as
depicted in Figure 1.1, play an important role in these markets. These wide-format RTR printing systems
can continuously print various media up to a width of several meters, resulting in high production speed.

To keep up with industrial requirements, i.e., high production speed, product quality, and medium versatil-
ity, the printing systems have been developed into highly complex motion systems. The printing accuracy
is up to micrometer level, to achieve high print qualities. However, the Medium Positioning Errors (MPEs)
are important limitations to achieve these print qualities.

Led-based UV system

Carriage

Medium positioning roll

Medium

x y

Figure 1.1: Océ Colorado wide-format Roll-To-Roll
(RTR) printing system.

Vacuum table

Medium

Carriage

Transport
direction

UV-system

Print heads

x

z y

x

y

Medium positioning roll

Gantry beam

Figure 1.2: Schematic top view of a wide-format
Roll-To-Roll (RTR) printing system.

A schematic top view of the wide-format RTR printing system is depicted in Figure 1.2. The print heads,
dropping the ink on the medium, are located inside the carriage. The carriage moves with a constant speed
along the lateral direction of the medium (y-direction). A movement of the carriage from left to right, or
vice versa, is called a print-pass. The carriage is attached to the gantry beam, which offers the required
motion freedom in longitudinal direction (x-direction). The medium is step-wise transported in between
print-passes, with a fixed step size in the x-direction, by rotation of the Medium Positioning Roll (MPR).
Medium transportation inevitably leads to positioning errors in the x-direction, which are called MPEs.

1



Chapter 1. Introduction

1.2 Problem: Medium Positioning Errors
MPEs strongly affect the print quality. These MPEs arise between the medium and the print heads, which
are mostly determined by,

1. inaccurate media steps performed by the MPR, e.g., [4]

2. structural errors induced by the media handling, such as friction from the printing surface and hys-
teresis [11], and

3. errors due to deformation of the medium, caused by changing temperature and humidity [27].

All these components contribute to misalignment of consecutive print-passes, depicted in Figure 1.3.

Medium

Print-pass

Carriage
turnx

y

T
ra
n
sp

o
rt

d
ir
e
c
ti
o
n

Figure 1.3: Visualization of Medium Positioning Errors (MPEs) on the medium. The dotted line indicates the carriage
trajectory relative to the medium, while the medium is transported in the x-direction.

Compensation of these MPEs, and thus improving print quality, is currently done by overlapping print-
passes [3]. Although overlap means improved print quality, the production speed significantly reduces.
Improving positioning accuracy of MPR is nowadays done by using expensive suspensions. Using less
expensive suspensions is desired for cost reduction, while maintaining high print qualities.

The challenge is that most contributions to the MPEs are often unknown and dependent on the medium,
time, and position. Although these particular described medium-dependent dynamics from [19] can be
modeled for a particular medium, the MPEs are different for every medium. Hence, modeling or calibration
of these MPEs is time-consuming. Furthermore, accurately positioning the carriage is affected by external
disturbances consisting of different frequencies. A Power Spectral Density (PSD) of an MPE measurement
is depicted in Figure 1.4 for a particular medium.

2 TU/e



Chapter 1. Introduction

Figure 1.4: Power Spectral Density (PSD) over the print-passes. The largest peak can be seen at 0.03182, which is
the frequency of the Medium Positioning Roll (MPR).

This figure is emphasized in Section 2.1, however a key observation is that multiple components at various
frequencies are contributing to the MPEs. Compensation of these periodic components contributing to the
MPEs is the main contribution to achieve high printing qualities, i.e., accurate alignment of each print-pass.

1.3 Control Problem
The print accuracy from a control perspective can roughly be divided into three contributions,

1. the ink droplet jetting accuracy [27],

2. the positioning accuracy of the medium, and

3. the positioning accuracy of the print heads.

The ink droplet jetting accuracy (1), is not considered part of this research. Accurate medium positioning
beneath the print heads (2), is performed by step-wise transportation of the MPR, depicted in Figure 1.2.
However, accurately positioning the medium is a difficult problem due to, e.g., medium-dependent and
nonlinear dynamics. Therefore, the aim is to achieve compensation of the MPEs, i.e., accurate alignment
of consecutive print-passes, by positioning the print heads in the x-direction (3). This is achieved by move-
ment of the gantry beam in the x-direction, depicted in Figure 1.2.

Compensation of the MPEs is done by using the MPEs as a ’disturbance’ for the yet undefined control
strategy in the control diagram, depicted in Figure 1.5. The remaining error is the difference between these
MPEs and the gantry position in the x-direction. This remaining error is used in this control strategy to
compute a compensating reference trajectory to be tracked by the closed-loop system, consisting of the
gantry beam and the stabilizing feedback controller.

StabilizingMPEs position
Remaining
error

controller
Gantry
beam

Scanner

GantryReference
trajectory

Figure 1.5: Block diagram of the control problem. The dashed block suggests a potential control strategy. The dashed
line indicates a different sample rate, i.e., discrete markers.
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Chapter 1. Introduction

The MPEs are measured through discrete markers on the medium [3], implying a different sample rate, as
indicated by the dashed line in Figure 1.5. After one horizontal row of markers is printed, they are mea-
sured by an image processing algorithm and upsampled, depicted by the ’scanner’ in Figure 1.5. Notice that
these marker measurements for each print-pass become available after the print-pass due to scanning and
image processing. This implies that the position of the medium with respect to the print heads cannot be
measured directly, which makes real-time feedback control unavailable. Furthermore, feedforward control
cannot be applied, since disturbances are not known in real-time.

Although the MPE measurements are not available in real-time, their periodicity can be exploited through
batch-wise learning control. Learning from previous errors can significantly improve the position per-
formance, due to the repetitive nature of the disturbances. Learning control does not require accurate
dynamical models or known signals in real-time, only that the disturbances are repetitive. Most common
learning control strategies are Iterative Learning Control (ILC) and Repetitive Control (RC). ILC is used
for discontinuous operation, while RC can be used for continuous operations [5]. In [19], ILC is exploited
on a wide-format printing system. Although promising results are shown for ILC, RC is more suited for
handling continuously repeating disturbances.

In [4], the potential of RC in time-domain is shown, however the theoretical foundations in time-domain
often results in large and complex system descriptions, not to mention stability analyses. Hence, it might be
more intuitive to address the control problem in frequency-domain RC, which is often preferred by control
engineers. In literature, RC in frequency-domain shows promising results, see, e.g., [1, 15, 22, 23].

As depicted in Figure 1.4, multiple components at various frequencies are present in the printing system.
Single-period RC, i.e., Standard RC, can only handle one periodic disturbance [4,10,15]. Addressing mul-
tiple periods with standard RC requires a Least Common Multiple (LCM), hence potential slow learning.
Thus, compensation of multiple unrelated periods is investigated by multi-period RC in frequency-domain.

Existing design solutions to compensate for disturbances with multiple periods by multi-period frequency-
domain RC is discussed in the next section.

1.4 Existing Design Solutions to Multi-Period Repetitive Control
Potential methods to reject disturbances with multiple unrelated periods by multi-period RC are inves-
tigated in [14]. It is suggested to combine multiple repetitive controllers in various structures. Three
different structures are given, i.e., the serial structure, the parallel structure and the cascaded structure.

From [14], it follows that the serial structure has difficulties regarding stability and shows insufficient
performance if stable at all. The parallel structure, has potential to reject disturbances with multiple unre-
lated periods. However, stability analysis and design procedures are not well established for this structure.
From [6, 16], it follows that independent designs are potentially conservative due to a prior unknown de-
signs in other loops, and shows slow learning as illustrated in this thesis. The cascaded structure has the
most favorable properties regarding stability and performance. Yet, design is unclear.

In [26], the cascaded structure is investigated in more detail. It is shown that by combining the repetitive
controller in cascaded form, disturbances of multiple periods can be rejected. Although promising results
are shown, the design of those repetitive controllers is not straightforward. In [26], it is suggested to design
a robust RC design against modeling errors, by using a multiplicative model uncertainty. However, this
might result in very conservative designs, since often in practice the modeling error is accurately known,
e.g., from Frequency Response Function (FRF) measurements.

These observations give rise to designing the repetitive controllers in a sequential manner, where modeling
errors are explicitly accounted for in sequential designs. Sequential design is commonly done in practice
for feedback control [13, 17, 21], yet its potential for RC is unexplored.

4 TU/e



Chapter 1. Introduction

1.5 Contributions
The latter results in the following research question:

How to sequentially design multiple repetitive controllers to achieve rejection of periodically recurring
medium positioning errors in wide-format roll-to-roll printing systems?

This research question is divided into the following research contributions:

1. Characterization of repetitive medium positioning errors in wide-format roll-to-roll printing systems.

2. Development of a sequential design approach for multi-period RC.

(a) Investigation of various control configurations for multiple repetitive controllers.

(b) Development of a sequential design procedure.

3. Validation of the developed sequential design approach by means of simulation, using a parametric
model of the gantry-beam in the x-direction.

4. Experimental validation of the developed sequential design approach for multi-period RC on a wide-
format roll-to-roll printing system.

1.6 Outline
This thesis is organized as follows. Chapter 2 describes the industrial wide-format RTR printing system and
the MPEs in more detail. Next, a single-period RC framework, i.e., standard RC, is discussed in Chapter
3, including a detailed background analysis, stability analysis, and design procedure. This knowledge is
extended towards sequential design for multi-period RC discussed in Chapter 4. Two different control
structures are presented, followed by stability analysis. The developed sequential design procedure is
presented and validated with simulations. In Chapter 5, the developed theory is validated on a wide-format
RTR printing system. Finally, a conclusion is drawn and recommendations for future work are presented
in Chapter 6.

TU/e 5





Chapter 2

Experimental Setup

In this chapter, the experimental setup is described in more detail, and the MPEs are analyzed. In Chapter
5, the developed sequential design framework for multi-period RC is applied to the setup presented here.
The setup is an industrial wide-format RTR printing system from Océ Technologies.

The outline of this chapter is as follows. First, characterization of the repetitive MPEs is given, showing
that the MPEs are caused by multiple fundamental frequencies. Second, a detailed system description is
presented, to define the control objective and control variable. Finally, the plant and controller dynamics
are shown.

2.1 Characterization of Repetitive Medium Positioning Errors
In this section, the repetitive MPEs to be tracked by the gantry beam are investigated. A contribution to
MPEs, as mentioned in Section 1.2, are inaccurate media steps performed by the MPR. The resulting MPEs,
typically occurring in wide-format RTR printing systems, can roughly be divided into three components,
see, e.g., [19].

1. Translational: The radius of the MPR may deviate from the average over its circumference, i.e.,
ellipsoidal shape. This results in a translational position error with respect to the print heads, where
the medium is either translated too far or too little.

2. Rotational: The axle of the MPR is not exactly parallel with respect to the center-line of the suspen-
sion. This is called a wobble effect and results in a rotational position error with respect to the print
heads.

3. Parabolic: The suspension is bending due the weight of the MPR. This results in a parabolic position
error with respect to the print heads. Bending of the media roll contributes to this parabolic position
error as well. This position error is slowly changing according to the diameter of the media roll [3].

The MPEs show periodic behavior over consecutive print-passes. The period length depends on the cir-
cumference of the MPR and demanded steps size. An example measurement is depicted in Figure 2.1 on
the left hand-side, with period length 31 print-passes. The corresponding PSD is depicted on the right
hand-side. In this particular measurement, each discrete marker is printed with a four-pass mode, i.e., four
print-passes to complete the discrete marker.

7



Chapter 2. Experimental Setup

Figure 2.1: Error in the x-direction as a function of print-passes, measured at the right hand-side of the medium, see
2.2, and its corresponding Power Spectral Density (PSD).

The example measurement given in Figure 2.1 corresponds with the discrete markers on the right hand-side
of the medium, as marked in Figure 2.2 by the yellow oval shape. From each marker in this yellow oval
shape, an error in the x-direction is measured, which is shown in Figure 2.1 as function of the print-passes.
Notice that 220 markers are printed in this example, i.e., 7 full rotation of the MPR. Similar plots are ob-
tained from the other printed markers, e.g., shifting the yellow oval shape to the left set of markers.

From the PSD in Figure 2.1, it can already be observed that multiple frequencies are present in the system.
The largest peak corresponds with the frequency of the MPR, i.e., 0.03182 (≈ 31 print-passes). Although
Figure 2.1 is given in print-passes, the corresponding frequencies can be reconstructed to a time-domain
signal, as illustrated in Figure 2.3. Next, the printed marker measurements are illustrated for a wide-format
RTR printing system in Figure 2.2.

x

z y 1

2

3

p
ri
n
t-
p
a
ss

4

Figure 2.2: Illustration of the discrete markers for four print-passes on a wide-format Roll-To-Roll (RTR) printing
system. Each • represent a printed marker, and the dotted line is a reconstruction of the markers during
a print-pass. The yellow oval shape on the right hand-side corresponds with the measurement depicted in
Figure 2.1.

Each printed marker measurement, depicted in Figure 2.2, can be divided in the following sequence of
steps.

1. The markers are printed on the medium. Assume that one horizontal row of markers (•) are printed
in one print-pass from right to left in Figure 2.2.

2. The image processing algorithm on the carriage scans one horizontal row of markers for each print-
pass from left to right.

3. Next, a smooth curve is fitted through the marker measurement, depicted by the dotted line in Figure
2.2. This represents a time-domain reconstruction of an MPE, depicted in Figure 2.3.
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Chapter 2. Experimental Setup

4. The MPR performs a step-wise transportation of the medium, and the sequence is repeated.

In Figure 2.3 the reconstruction of the MPEs in x-direction of Figure 2.2 is shown for each horizontal line
of printed markers, i.e., each scan from left to right. The grey areas indicate where the actual printing takes
place, i.e., where the discrete markers are printed. The white areas in between indicates where the carriage
accelerates and decelerates to change direction, i.e., ’turns’, as depicted in Figure 2.4. This is also where a
fourth-order step signal is computed to connect each scan of the discrete markers.

Figure 2.3: Time-domain signal reconstructed from the discrete marker measurements in the x-direction. The grey
areas indicate where the printing takes place and the white areas represent a step of the gantry beam, to
connect each reconstruction of the marker measurements.

Figure 2.4: Reference trajectory of the carriage in y-direction. The grey areas indicate where the printing takes place
≈ 2.6 [s] and the white areas in between indicate the turning time of the carriage ≈ 0.4 [s].

In Figure 2.4 the reference trajectory of the carriage is illustrated. The carriage has a turning time of 0.4 [s]
and the print-pass length is (approximately) 3 [s]. During the print-passes, the MPEs, depicted in Figure
2.3, should be tracked by the gantry beam in the x-direction. The next section describes the system in more
detail.
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Chapter 2. Experimental Setup

2.2 System Description
A schematic side-view of the considered wide-format RTR printing system is given in Figure 2.5. The
printing system can be seen as two subsystems.

1. The gantry beam with carriage moving in the x-direction. The input of the gantry beam are voltages
to the DC motors, located on the left and right side of the gantry beam, and the outputs are encoders
on each side of the gantry beam, depicted in Figure 2.5.

2. The MPR transporting the medium beneath the print heads. The input is voltage to the DC motor
driving the MPR, and the output is measured with a rotary encoder, depicted in Figure 2.5.

Printing surface

Carriage

Print head

Medium

Medium positioning roll

Transport
direction

x

z

y

Encoder

Gantry beam

1

2
Encoder

Figure 2.5: Schematic side-view of the wide-format Roll-To-Roll (RTR) printing system.

As mentioned in Section 1.1, the MPR performs a step-wise transportation of the medium beneath the print
heads by rotating counterclockwise. This transportation of the medium results in MPEs with respect to
the print heads due to many causes, given in Section 1.2. The gantry beam should compensate for these
errors in the x-direction. Therefore, the reconstructed MPEs are used as a disturbance v to be tracked by
the gantry beam in the following control scheme, depicted in Figure 2.6. Where G denotes the dynamics
of the gantry beam in the x-direction, K denotes a stabilizing controller, and R an RC framework.

GKR
uv e y

T
Scanner

Figure 2.6: Control scheme of the gantry beam, where the aim is to minimize the error e. The scanner, scans and
reconstructs a time-domain signal on the sample frequency of the system.

The aim of this control scheme is to minimize the error e beneath the print heads in the x-direction. The
error in the y-direction is solved by timing the ink jetting droplets and is not within the scope of this thesis.
Therefore, the control variable is the position of the print heads in the x-direction, i.e., denoted by y. Hence,
compensation of the MPEs is achieved by computing a compensating reference trajectory u with the RC
framework. This is periodically updated by the RC framework and consequently tracked by the gantry
beam. Potential RC frameworks are discussed in the forthcoming chapters.
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Chapter 2. Experimental Setup

2.3 System Dynamics
The system dynamics and corresponding plant models are given in this section. The system dynamics of
the gantry beam in the x-direction, i.e., G, is identified by a frequency response measurement. White noise
is used as input Fx for the motors and the encoders on each side of the gantry beam are used as outputs,
i.e., collocated. From these two outputs, a transformation is applied to obtain the motion in the x-direction,
see, e.g., [4, 19]. This results in the FRF measurement from Fx to x, depicted in Figure 2.7 by G.
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Figure 2.7: Bode diagram of the plant G and plant model G(z).

The discrete-time plant model G(z) is obtained by fitting two modes of the system, i.e., 3.7 Hz and 130
Hz, and is discretized by using Zero-Order Hold (ZOH), resulting in a fourth-order transfer function given
by,

G(z) =
1.92 · 10−7z3 − 1.57 · 10−7z2 − 1.45 · 10−7z + 1.75 · 10−7

z4 − 3.26z3 + 4.37z2 − 2.96z + 0.85
. (2.1)

Remark 2.1. Notice that the FRF measurement, depicted in Figure 2.7, shows a resonance frequency at
70 Hz. This is obtained due to environmental circumstances, however not of importance for modeling.

The stabilizing feedback controller K(z) consists of an integrator, lead-lag filter and a second order low-
pass filter. Discretizing by using ZOH results in a fourth-order feedback controller given by,

K(z) =
1.86 · 104z4 + 1.52 · 103z3 − 3.87 · 104z2 + 9.8 · 102z + 1.76 · 104

z4 − 3.11z3 + 3.78z2 − 2.14z + 0.47
. (2.2)
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Figure 2.8: Bode diagram of the plant T and plant model T (z).

The stabilizing controller K(z) is implemented to obtain the complementary sensitivity function T =
GK(1 + GK)−1, depicted in Figure 2.8. The plant model T (z) is non-minimum phase and achieves a
closed-loop bandwidth of 24 Hz.

To conclude this chapter, the repetitive nature of the MPEs is exploited and the experimental setup is given
in detail. In the next chapter, the theory and design for standard RC are discussed, which forms the basis
to reject these repetitive MPEs.
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Chapter 3

Single-Period Repetitive Control

RC can achieve perfect disturbance rejection or reference tracking of an exogenous repetitive signal. This
is realized by the Internal Model Principle (IMP), which states that perfect asymptotic rejection or tracking
is achieved if an internal model of the input signal generator is included in the feedback loop.

In this chapter, the theory and design of standard RC is discussed in detail. The goal is to develop a
strong basis for multiple repetitive controllers and the corresponding structures, which are discussed in the
forthcoming chapters. The elaborations are done in frequency-domain, which is typically presented in lit-
erature as well [1, 12, 15]. Furthermore, the repetitive controller is connected by a feedback loop, since the
repetitive controller computes a reference trajectory for the closed-loop system, as discussed in Section 1.3.

First, the control setup is discussed where the fundamentals of RC are given. Additionally, the background
on the IMP is discussed, with applications on a standard feedback loop and RC. Furthermore, stability
of RC is explained in detail, which results in generic stability and design conditions. Finally, a design
procedure is given, where the learning filter, robustness filters, and learning gain are discussed.

3.1 Repetitive Control Setup
The practical control problem states that MPEs, mostly introduced by the MPR, should be followed by
the print heads in the x-direction. These MPEs are considered as a disturbance in the control problem.
Hence, focusing on RC design for a general disturbance v on a closed-loop system, results in the control
configuration depicted in Figure 3.1, where the repetitive controller R is connected in an extra feedback
loop.

GK
T

R
uv e y

Figure 3.1: Control configuration with repetitive controller in a feedback loop on the closed-loop system T .

The control configuration, depicted in Figure 3.1, consists of a discrete-time Linear Time-Invariant (LTI)
Single-Input Single-Output (SISO) system with G ∈ R(z) the plant, K ∈ R(z) the stabilizing feedback
controller, and R ∈ R(z) as the repetitive controller. The system T ∈ RH∞(z) is denoted by the com-
plementary sensitivity function, i.e., T = GK(1 + GK)−1. The aim is to minimize the tracking error e,
by updating input signal u, where after the output y of G follows the disturbance v. The disturbance v is a
periodic exogenous disturbance with period lengthN ∈ N, e.g., v(k) ∈ R with v(k+N) = v(k). Where k

13



Chapter 3. Single-Period Repetitive Control

denotes the discrete time variable and N the number of samples delay. Furthermore, the error propagation
e = v − y is given by,

e = (1 + TR)−1v = SRv, (3.1)

with SR ∈ R(z) as the modifying sensitivity function.

z−NQ L α
e u

R

Figure 3.2: Repetitive controller scheme.

The repetitive controller R, depicted in Figure 3.2, is given by,

R = (1− z−NQ)−1αLz−NQ. (3.2)

This repetitive controller consists of a memory loop, robustness filter Q ∈ RL∞(z), learning filter L ∈
RL∞(z), and learning gain α ∈ R. Note that R should be causal, and Q and L are allowed to have finite
preview. The necessary implementations of the filters and gains are discussed in forthcoming sections.

Remark 3.1 (RC configuration with RC as add-on type [10,15]). Typically in literature the control config-
uration is given as in Figure 3.3. Here, the repetitive controller is connected by an add-on type controller.
However, from design perspective there is no difference in the control configuration (3.1) or (3.3).

T

G
e y

u

K

R

v

Figure 3.3: Control configuration with repetitive controller as add-on controller.

The tracking error of Figure 3.3 is given by,

e = (1 +GK(1 +R))−1v = SRSv, (3.3)

with S = (1+GK)−1 as the sensitivity function. Stability and design conditions are in both control config-
urations related to the modifying sensitivity function SR, assuming that S ∈ RH∞(z). Since the repetitive
controller should compute a reference trajectory for the closed-loop system, the control configuration in
Figure 3.1 is considered in this research.
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Chapter 3. Single-Period Repetitive Control

Figure 3.4: Magnitude of the modifying sensitivity function, with period length N = 20 samples. The learning filter
is chosen as L = T−1, the robustness filter as Q = 1, and learning gain as α = 1.

To conclude, an example of the modifying sensitivity function SR is depicted in Figure 3.4, where the
disturbance frequency is chosen as 50 Hz, i.e., the period length is N = 20 samples with sample frequency
1000 Hz. Here, it is clearly visible how the repetitive controller suppresses the considered disturbance
frequency and all its higher harmonics up to the Nyquist frequency. Note that disturbance rejection or
reference tracking is achieved at the expense of amplification of intermediate frequencies, due to Bode’s
sensitivity integral [23]. The fact that in Figure 3.4 the disturbance frequency and all higher harmonics are
suppressed is related to the IMP, which is explained in the next section.

3.2 Background: Internal Model Principle
In this section, the IMP is discussed, which is a fundamental concept for RC. This principle assures that
RC is capable of achieving perfect disturbance rejection or reference tracking of an exogenous repetitive
signal. First, the theoretical part of the IMP is discussed. Thereafter, the application on standard feedback
control and RC is given to show that this concept is very general. Finally, a simple example is given to
illustrate the effectiveness of the IMP, and thus RC.

Consider the closed-loop control configuration of a discrete-time LTI SISO system, depicted in Figure 3.5.

G e
y

K

v

Figure 3.5: Control configuration of a closed-loop system.

The error propagation e = v − y is defined as,

e = (I +GK)−1v = Sv, (3.4)

with S ∈ RH∞ the sensitivity function from the disturbance v to the error e. The control objective of
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Figure 3.5 is to achieve perfect asymptotic disturbance rejection, i.e.,

lim
t→∞

(v(t)− y(t)) = 0. (3.5)

Let the z-transformation of the discrete-time disturbance v(t) be given by,

V (z) =
Nv(z)

Dv,s(z)Dv,u(z)
. (3.6)

Where Nv(z) is known, Dv,s(z) is the polynomial with the stable poles, i.e., poles in D, and Dv,u(z)
the polynomial with the unstable poles, i.e., poles in E ∪ T. Assuming that V (z) is proper, results in the
following theorem.

Theorem 3.1 (Internal Model Principle [8,12]). If the disturbance v(t) has Dv,u(z) as the internal model,
then using a controller of the form,

K(z) =
1

Dv,u(z)

Nk(z)

Dk(z)
, (3.7)

in the standard one degree-of-freedom control configuration can asymptotically reject the effect of the
disturbance, if

1. the closed-loop system is asymptotically stable, and

2. no pole-zero cancellation of the internal model Dv,u(z) and G(z) are present.

Thus, the marginally stable poles of the repetitive disturbance signal, should be included in the denominator
of the controller K(z), such that these poles are canceled by the closed-loop transmission zeros in the
sensitivity transfer function [8].

Proof. Let the plant model G(z) be given by,

G(z) =
Ng(z)

Dg(z)
. (3.8)

Assume that no pole of the generating polynomialDv,u(z) is a zero of the plantG(z). Otherwise, pole-zero
cancellations would occur, causing internal instability. Let the z-transformation of the sensitivity function
(3.4) be given by,

S(z) = (I +G(z)K(z))−1 =
Dv,u(z)Nk(z)Ng(z)

Dv,u(z)Dk(z)Dg(z) +Nk(z)Ng(z)
. (3.9)

Now, rewriting the error propagation in z-domain results in,

E(z) = S(z)V (z) = S(z)
Nv(z)

Dv,s(z)Dv,u(z)
=
Nk(z)Ng(z)Nv(z)

Acl(z)

Dv,u(z)

Dv,s(z)Dv,u(z)
. (3.10)

In (3.10) can be seen that the unstable part of V (z), i.e., Dv,u(z), is canceled in the denominator of (3.10)
by including this part in the denominator of K(z). Now, all poles of V (z) in E ∪ T are canceled, which
yields the inverse z-transformation of E(z) as,

lim
t→∞

e(t) = 0, (3.11)

assuming that denominator of (3.9), i.e., Acl(z) = Dv,u(z)Dk(z)Dg(z) + Nk(z)Ng(z), has stable roots.
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3.2.1 Application to Feedback Control: Constant Signals
If the system is subjected to a constant disturbance signal, then the internal model is an integrator, depicted
in Figure 3.6.

v0 v

z
−1

Figure 3.6: Integrator.

A constant disturbance signal can be seen as a repetitive signal with period length N = 1 sample. If the
sequence v0(k) = v(0) is fed in Figure 3.6 then v(k) appears at the output. This z-transformation is then
given by,

V (z) =
z−1

1− z−1
V0(z) = Mi(z)V0(z), (3.12)

with the fractional clearly being an integrator. According to Theorem 3.1, the internal model of Mi(z),
i.e., the unstable part of the denominator of Mi(z), should be in the feedback controller K(z). This is the
reason that no steady state error occurs, in case of a step signal in an LTI feedback control system, if an
integrator is in the feedback controller [12].

3.2.2 Application to Repetitive Control: N-Periodic Signals
In case of N-periodic signals, the internal model is a Periodic Signal Generator (PSG), depicted in Figure
3.7. This PSG is basically a memory block and a positive feedback loop. The size of N is determined by
the disturbance frequency fd and the sample frequency fs, i.e., N = fs

fd
. Perfect rejection is possible if fd

is known and fixed.

z
−N

v0 v

Figure 3.7: Periodic Signal Generator (PSG).

Feeding the following periodic sequence v0(k) = v0(0), ..., v0(N − 1) in the memory loop of Figure 3.7,
results in a periodic signal v(k) at the output. The z-transformation is then given by,

V (z) =
z−N

1− z−N
V0(z) = Mr(z)V0(z), (3.13)

with Mr(z) having N poles uniformly distributed on the unit circle.

According to Theorem 3.1, the unstable part of the denominator polynomial of Mr(z) should be included
in the feedback controller K(z) in Figure 3.5, to achieve asymptotically disturbance rejection. Not only
is asymptotically disturbance rejection achieved for an exogenous repetitive signal with frequency fd, but
also for all higher harmonics up to the Nyquist frequency fs

2 . This can be seen by using z = ejωTs in (3.13),
with ω = 2πf and Ts = 1

fs
, i.e., the sample time. The denominator of (3.13) is zero for the frequencies

f being equal to fd and all higher harmonics, i.e., f = pfd, with p ∈ Z. This means infinite gain for the
disturbance frequency fd and for all higher harmonics. Note that infinite gain is also achieved for f = 0.
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Figure 3.8: Bode magnitude diagram of the memory loop with fd = 10 Hz, and fs = 1000 Hz.

In Figure 3.8 an example is depicted of a memory loop, with fs = 1000 Hz, and fd = 10 Hz. From this
figure, it is clear that high gain disturbance rejection or reference tracking for each signal with 10 Hz and
all higher harmonics is achieved. Furthermore, consider the following example, where the simplicity and
effectiveness of RC is visualized in time-domain.

Example 3.1. The control configuration in Figure 3.1 with the repetitive controller R as in Figure 3.2 are
used in this example. The disturbance frequency is chosen as 1 Hz, i.e., period length N = 1fs samples,
with fs = 1000 Hz. For simplicity let T = L−1 = 1, and no robustness filter, i.e., Q = 1. The learning
gain α equals 0.5 to illustrate the learning process.

Figure 3.9: Resulting signals of simple example.

The disturbance signal v is depicted in Figure 3.9 (middle), together with the error signal e (top) and the
input signal u (bottom), i.e., the output of the repetitive controller. Notice how the signal in the memory
loop, i.e., u, starts to look like the disturbance, and consequently, the error signal is suppressed in the
process.
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The learning filter L and learning gain α, depicted in Figure 3.2, are not part of the internal model. This
means that they do not influence the IMP. The robustness filter Q on the other hand does. It is part of the
memory loop, as depicted in Figure 3.2, which indicates that if Q 6= 1, the IMP is violated. This is true af-
ter the cut-off frequency, which indicates that the repetitive controller is not capable of perfect disturbance
rejection or reference tracking after and around the cut-off frequency.

Despite that, overall stability of the closed-loop system with the repetitive controller should be guaranteed.
From the internal model (3.13), it can already be observed that N unstable open-loop poles are added to
the closed-loop system, depending on the robustness filter Q. Hence, stability analysis is covered in the
next section.

3.3 Stability Analysis
To guarantee stability of the closed-loop system depicted in Figure 3.1, first the feedback controller K
should stabilize the plant G. Second, the repetitive controller should not destabilize the system. Hence,
stability of Figure 3.1 is guaranteed if all poles of SR are on the open unit disc. However, checking all the
pole locations of SR is inconvenient, especially if no (accurate) parametric model is available. Furthermore,
N can grow very large, which might introduces many poles on the unit circle, depending on the robustness
filter.

Factorization

The solution to avoid checking on all possible poles on the unit circle can be found by factorization of SR.
Using (3.2) in the modifying sensitivity function yields the following derivation,

SR = (1 + T (1− z−NQ)−1αLz−NQ)−1, (3.14)

=
(
(1− z−NQ+ αTLz−NQ)(1− z−NQ)−1

)−1
,

= (1− z−NQ)(1− (1− αTL)z−NQ)−1. (3.15)

This factorization is visually displayed as an equivalent error system, depicted in Figure 3.10. The first
factor of (3.15) only shifts the disturbance by N samples and subtracts this from the original disturbance,
which goes to zero if N equals the repetitive period of v.

e
1− αTL

v

z−NQ
z−NQ

Figure 3.10: Equivalent error system.

Stability theorem

Now, the Nyquist stability criterion can be applied on the second term of (3.15) [21]. With (1 − H(z))
as the return difference and H(z) = (1 − αTL)z−NQ as the loop-gain, results in the following Nyquist
stability theorem for RC.
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Im(z)

Re(z)

Figure 3.11: The Nyquist contour Γ consists of an inner circle with radius 1 and an outer circle with radius∞. This
contour is closed by two parallel lines form −1 to −∞ and vice versa, infinitely close to the real axis.
The smaller dotted circle is the unit circle T with radius 1.

Theorem 3.2 (Nyquist stability theorem for SISO RC). Consider the control configuration of Figure 3.1,
with R as in (3.2), suppose all poles of T , L, and Q are on the open unit disc, and assume no unstable
pole-zero cancellations between (1− z−NQ) and (1−H(z)) in (3.15). Then the closed-loop system (3.1)
is stable if and only if the image of (1− αTL)z−NQ

1. makes no encirclement of the point 1 + 0j, and

2. does not pass through the point 1 + 0j,

as z goes around the Nyquist contour Γ in Figure 3.11.

Remark 3.2. The importance of the factorization in (3.15) can be seen in Theorem 3.2. No open-loop
unstable poles are present in the loop-gain H(z). Which indicates that no encirclements of the point
1 + 0j for z going around the Nyquist contour Γ are required for stability, making Theorem 3.2 a practical
stability condition. Alternatively, applying the Nyquist stability criterion directly on SR = (1 + TR)−1,
with Q = 1 in (3.2) for the moment, yields N open-loop unstable poles on the unit circle for the loop-gain
TR. Consequently, the image of (1 + TR) should have N times counterclockwise encirclements of the
origin for z going around the Nyquist contour Γ. Hence, yielding no closed-loop poles outside the open
unit disc, i.e., Z = 0. In this case, the contour Γ should even be adapted. Now, semicircular indentations
into the unit circle should be made around the poles on the unit circle [7]. Hence, less practical.

Although Theorem 3.2 provides a necessary and sufficient stability condition, it does not guarantee stability
if the repetitive controller is implemented with different period length N . This, together with the fact that
Theorem 3.2 is still inconvenient for design, motivates the following lemma.

Lemma 3.3. Under the assumptions of Theorem 3.2 and H(z) is strictly proper, the closed-loop system
(3.1) with R as in (3.2) is stable for all N ∈ N if

|(1− αT (ejω)L(ejω)))Q(ejω)| < 1 ∀ω ∈ [0, π]. (3.16)

Proof. First, if H(z) is strictly proper, which is typically the case for sufficiently large N , only the contour
around unit circle needs to be evaluated in Theorem 3.2. Since evaluation of the outer circle at∞ of the
Nyquist contour Γ, results in lim|z|→∞H(z) = 0, i.e., it never results in an encirclement of the point
1 + 0j. Furthermore, the parallel lines along the real axis of the Nyquist contour Γ, only results in behavior
of H(z) inside the unit circle along the real axis. Finally, note that |z−N | = 1 for z on the unit circle,
hence (3.16) implies stability for all N ∈ N. Consequently, using the small gain theorem [21], results in
(3.16).

Lemma 3.3 has a high level of practical usability, since it enables RC design independent ofN . Although it
is not necessary for stability, it makes visual verification of stability very useful and design more practical.
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3.4 Design Procedure
The learning filter, robustness filter, and learning gain each have different properties. In the following
sections is described how to design these filters and gain. First, a two-step design procedure is given for
single-period RC [10, 25].

Procedure 3.1 Frequency-domain single-period RC design

1. Given a parametric model of T , design L(z) as an approximate stable inverse, i.e., L(z) =
αT (z)−1, with learning gain 0 < α < 2.

2. Given a FRF of T , design Q(z) such that (3.16) holds.

3.4.1 Learning Filter
The learning filter is added to the memory loop to compensate for closed-loop behavior of Figure 3.1.
According to (3.16), ideally the learning filter should be the approximate inverse of the complementary
sensitivity function, i.e., L = T−1. This inversion is mostly approximated by a parametric model of T .
However, if T (z) is non-minimum phase, the resulting learning filter will have unstable poles. For this
reason, L(z) can be designed using the Zero Phase Error Tracking Controller (ZPETC) algorithm [25],
or alternative algorithms such as, Finite Impulse Response (FIR) models [24] and H∞-synthesis with
preview [2]. The learning filter is allowed to be non-causal, i.e., having finite preview, which is crucial
in compensation for the non-minimum phase zeros of T (z). Non-causality can be compensated in the
implementation, depicted in Figure 3.12. Now the causal filter is given by Lc = z−nLL [1].

α
e u

R

z−(N−nL−nQ)Qc Lc

z−nL

Figure 3.12: Repetitive controller scheme with non-causal filters.

3.4.2 Robustness Filter
The learning filter is based on the inverse of a parametric model of T . However, any mismatch between the
parametric model T (z) and real system T , might cause stability issues, especially at higher frequencies.
Therefore, the robustness filter Q(z) is introduced, which is designed as a low-pass filter with the cut-
off frequency dependent on the modeling error. As depicted in Figure 3.2, the robustness filter should not
influence the phase of the signal. This is why the filter is usually chosen as a zero-phase low-pass filter [15],
e.g., a non-causal zero-phase low-pass FIR filter. Any preview of the robustness filter can be compensated
in the implementation as depicted in Figure 3.12, with the causal filter as Qc = z−nQQ [1].

3.4.3 Learning Gain
Finally, the learning gain α is a trade-off between noise amplification, speed of convergence and robustness
against changing period lengths N [23]. A small α gives less intermediate disturbance amplification, since
it results in narrower notches of SR, however the controller becomes more sensitive to changing period
lengths. A larger α results in the opposite. According to 3.16, the learning gain should be chosen between
0 < α < 2. Lower or higher than 1 results in slower convergence. Even though stability is verified with
these boundaries, α ∈ (1, 2) is not recommendable. It only becomes less sensitive to change in period
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length, which is typically known in many systems. Moreover, it results in slower convergence and gives
more disturbance amplification of intermediate frequencies.

Remark 3.3. In this work it is assumed that the period length N is exactly known, however the controller
structure can be extended using multiple memory loops to deal with uncertain N , e.g., [22, 23].

To conclude this chapter, the theoretical foundations for RC are given. Those foundations are used in the
next chapter to develop a multi-period RC framework.
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Chapter 4

Multi-Period Repetitive Control:
Sequential Design

Multiple repetitive controllers are capable of perfect disturbance rejection or reference tracking of repeti-
tive signals with multiple periods. In many systems the disturbance consists of more than one fundamental
frequency, which is typically known a prior. In case of the printing system, as described in Chapter 2,
multiple frequencies contribute to the MPEs. In this case, single-period RC does not lead to sufficient
performance, e.g., very slow convergence. With multiple repetitive controllers, i.e., multi-period RC, each
repetitive controller corresponds with the fundamental frequencies present in the disturbance or reference
signal. This potentially enables an increase in performance, as is investigated in this chapter.

First, a motivation for multi-period RC is given. It is shown that single-period RC may lead to unacceptable
slow convergence. Second, various control architectures for multi-period RC are introduced, including the
parallel and the so-called cascaded structure. Third, analysis of closed-loop systems is given to show that
the cascaded structure has favorable properties for design and performance. Fourth, stability analysis is
given to guarantee stability of the closed-loop systems. Fifth, the sequential design procedure for multi-
period RC is presented. Furthermore, the sequential design procedure is discussed for the parallel structure,
to show that this is a special case of the cascaded structure. Finally, simulations are performed to confirm
the claims.

4.1 Motivation
Consider the following repetitive signals with different period lengths, i.e., N1 = 1fs, and N2 = 3.5fs.

e

t

N1

N2

Figure 4.1: Two repetitive signals with period lengths N1 = 1fs, and N2 = 3.5fs. Each vertical line indicates a
period of fs length.

In many applications, many periodic disturbances are present, where the frequencies can be unrelated.
Singe-period RC only achieves perfect disturbance rejection if the disturbance is periodic, assuming per-
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fect model knowledge. For example in Figure 4.1, the disturbance is periodic with 7, i.e., the Least Com-
mon Multiple (LCM) of 1 and 3.5. For arbitrary real period lengths, the LCM may be very large. This is
unacceptable in practice, since the memory and delay of the repetitive controller might grow very large,
resulting in undesirable slow learning and large memory space.

Multi-period RC addresses multiple frequencies, which means that the periodic disturbances do not need
to have an LCM to achieve disturbance rejection. Furthermore, in multi-period RC the memory length is
reduced significantly, since this is a summation of each memory length of the repetitive controller. In Figure
4.1, the total memory length isN1+N2 = 4.5fs. As a result, multi-period RC cannot only be implemented
with a lower memory space than single-period RC, but also provide faster learning than single-period RC.
This all motivates to elaborate further on multi-period RC.

4.2 Multi-Period Repetitive Control Setup
The aim of multi-period RC is to achieve perfect disturbance rejection or reference tracking for repetitive
signals with multiple periods. Different structures for multi-period RC are known, which are the cascaded
structure [15,26], the parallel structure [6,14,16], and serial structure [14]. In this section, the parallel and
cascaded structures are discussed, it is shown that parallel is a special case of cascaded. The serial structure
is omitted in the present work, since convergence can be slow and it is hard to stabilize, see, e.g., [14].

The idea in multi-period RC is to include multiple controllers Ri in the control loop, for all i = 1, 2, ..., n,
with n the number of individual repetitive controllers. Each individual repetitive controller has the same
structure as discussed in Section 3.1, which is depicted in Figure 4.2.

e Qi z−Ni Li αi
ui

Ri

Figure 4.2: Control scheme for each individual repetitive controller.

The filters L and Q, period lengths N , and gains α may be chosen differently for each i,

Ri = (1− z−NiQi)
−1αiLiz

−NiQi. (4.1)

The key difficulty in multi-period RC is the design of each Ri structure. This is closely linked to the
employed control structures discussed in the next section.
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4.2.1 Parallel Memory Loops
Consider the control configuration of a discrete-time LTI SISO system, depicted in Figure 4.3, where the
individual repetitive controllers are connected in parallel to the closed-loop feedback system.

e

v

yT
Rtot

R1

u1

Rn
un

z1

zn
PSG

i.c.
z−Ni

i.c.
z−N1

Figure 4.3: Control configuration for multi-period RC in the parallel structure with a Periodic Signal Generator
(PSG).

With T ∈ RH∞ as the complementary sensitivity, and Rtot ∈ R(z) as the total repetitive controller. The
Periodic Signal Generator (PSG) block, highlighted in Figure 4.5, constructs signals with multiple frequen-
cies according to the superposition principle, which states that the total repetitive signal is the summations
of all Ni-periodic signals. The internal model of the multi-periodic disturbance is copied into the feedback
loop by the parallel RC structure.

Now, let the error propagation e = v − y be given by,

e = (1 + TRtot)
−1v = SRtot

v, (4.2)

with SRtot as the modifying sensitivity. The total repetitive controllerRtot is a summation of the individual
repetitive controllers, i.e.,

Rtot =

n∑
i

Ri, (4.3)

for all i = 1, 2, ..., n.

Remark 4.1. Similar to single-period RC, also an add-on type repetitive controller configuration could be
used, as shown in Figure 3.3. In this case, the error propagation is given by,

e = (1 + T (1 +Rtot))
−1v = SRtotSv. (4.4)

However, the analysis and design choices are still based on SRtot
, assuming S ∈ RH∞.

An example of the modifying sensitivity function is given in Figure 4.4, with the disturbance frequencies
as 50 Hz and 83 Hz, i.e., N1 = 20 and N2 = 12 respectively with sample frequency 1000 Hz. Here it is
clearly visible, that the modifying sensitivity function consists of notches on each implemented frequency
and all its higher harmonics, indicating disturbance rejection for multiple frequencies.
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Figure 4.4: Magnitude of the modifying sensitivity function. The period lengths are N1 = 20 and N2 = 12 respec-
tively, the robustness filter is chosen as Qi = 1, and learning gains as α1 = α2 = 0.5, and Li = T−1.

Remark 4.2. In this particular example, the total memory length is 32, where the LCM is 60. This confirms
the potential of multi-period RC, regarding the memory space, in comparison with single-period RC.

4.2.2 Cascaded Memory Loops
Next, the cascaded structure is presented, where T̂ ∈ RH∞(z) is added as the parametric model of T .

e

v

yT
Rtot

R1

u1

PSG

T̂

Rn
zn un

z1

Figure 4.5: Control configuration for multi-period RC in the cascaded structure with a Periodic Signal Generator
(PSG).

Interpretation of the cascaded structure, i.e., the effect of including model T̂ , is as follows. Each individual
repetitive controller Ri, tries to reduces the error signal e. However, the control effort of Ri is hidden for
Ri+1, by reconstructing the effect of Ri on T through the plant model T̂ . This reconstruction is then added
to the original error signal, which ensures that Ri only suppresses the corresponding repetitive signal with
period length Ni, in case of T̂ = T . The remaining error is then left for the other repetitive controller to
suppress. As a result, the repetitive controllers do not react to each others control efforts.

Similar to (4.2), the modifying sensitivity function is given by,

SRtot
= (1 + TRtot)

−1. (4.5)
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Except, now the total repetitive controller is obtained as,

Rtot,i = Rtot,i−1 +Ri(1 + T̂Rtot,i−1), (4.6)

with Rtot = Rtot,n and Rtot,0 = 0, for all i = 1, 2, ..., n.

Example 4.1. If n = 2, then the total repetitive controller is given by,

Rtot,1 = 0 +R1(1 + T̂ · 0) = R1, (4.7)

Rtot,2 = Rtot,1 +R2(1 + T̂Rtot,1) = R1 +R2(1 + T̂R1), (4.8)

resulting in Rtot = Rtot,2.

Design and stability conditions of each individual repetitive controller in a multi-period RC setting are not
straightforward, especially with respect to model errors. The total repetitive controller Rtot consists of in-
teractions between each individual repetitive controller, depending on the model error T̂ 6= T . Independent
SISO design for each repetitive controller, i.e., (3.16), might lead to an unstable system, since the interac-
tions are ignored. Hence, analysis of the closed-loop system is presented next to deal with this interaction
component.

4.3 Analysis of Closed-Loop System
In this section, the analysis of the closed-loop system for multi-period RC in the cascaded structure is
presented, which is key in understanding the multi-period RC sequential design approach. Recall that the
closed-loop is just given by the modifying sensitivity function, in case of the control configuration depicted
in Figure 4.5. First, the analysis is presented, where after it is supported by an example.

The modifying sensitivity function (4.5) can be rewritten as the product of sensitivities with each having a
different equivalent plant T eq

i−1 and repetitive controller Ri, i.e.,

SRtot
= (1 + TRtot)

−1 =

n∏
i

(1 + T eq
i−1Ri)

−1, (4.9)

with Ri as in (4.1). Each individual sensitivity function corresponds to the loop gain of each individual
repetitive controller. The equivalent plant is the transfer function from un to zn, depicted in Figure 4.5,
i.e., what the repetitive controller ’sees’ as plant to be controlled. The equivalent plant is given by,

T eq
i = (1 + T eq

i−1Ri)
−1T eq

i−1(1 + T̂Ri), (4.10)

with T eq
0 = T , for all i = 1, 2, ..., n − 1. Each equivalent plant T eq

i includes all preceding repetitive
controllers R1, ..., Ri. The equivalent plant in (4.10) is given in a recursive form, the derivation is given in
Appendix A.

The modifying sensitivity function SRtot is the product of sequentially dependent factors. This motivates
the sequential design approach, presented in Section 4.5. Note that the sequential dependency is only ob-
tained if T̂ 6= T , i.e., if T̂ = T then T eq

i = T, ∀i.

If T̂ = T , then each repetitive controller is decoupled, i.e.,

SRtot =

n∏
i

(1 + TRi)
−1. (4.11)

This motivates why the cascaded structure is powerful in handling the interactions between each repetitive
controller. Now, each repetitive controller can be designed independently, meaning that the settling time
of the total repetitive controller is completely decoupled into the summations of the individual settling
times [26].

The results given in (4.9) and (4.10) are obtained from a recursive approach, given in Appendix A. There-
fore, it is visualized in the next section for the case n = 2 to gain more insight.
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4.3.1 Example: Two Cascaded Repetitive Controllers
The objective of this example is to illustrate (4.9) and (4.10) for n = 1 and n = 2. First, consider n = 1,
i.e., single-period RC. The control configuration is depicted in Figure 4.6 on the left hand-side, together
with a corresponding standard plant representation on the right hand-side.

ev

R1

u1 z1

e

v

yTR1

PSG

u1z1

−T1

−T1
P0

Figure 4.6: Left: Control configuration for single-period RC with R1. Right: Standard plant representation.

The dotted yellow block, depicted by P0, is the transformation matrix between the defined in- and outputs
of the standard plant. The defined inputs are, the disturbance v and output of the repetitive controller u1.
The outputs are, the error signal e and the input z1 for the repetitive controller.

The control objective of this standard plant representation is to designR1 such that the closed-loop system,
i.e., the transfer from v to e, is stable. The closed-loop transfer function from v to e is obtained by taking
the lower Linear Fractional Transformation (LFT) of P0 with respect to R1, i.e.,

SR = Fl(P0, R1) = 1− TR1(1 + TR1)−1, (4.12)

= (1 + TR1)−1, (4.13)

which is also known as the modifying sensitivity function SR. The plant seen by R1 is given by the lower
right corner of P0, i.e., the transfer from u1 to z1, which is −T . Notice that these are all familiar results
from single-period RC.

Now, consider multi-period RC, i.e., take n = 2. The control configuration is depicted in Figure 4.7 on
the left hand-side, together with the corresponding standard plant representation on the right hand-side,
assuming that the loop gain of R1 is closed.

ev

e

v

yTR1

PSG

T̂

u1z1

R2

z2

u2

u2 z2

R2

S1
−S1T

P1

Ŝ−1

1 S1
−Ŝ

−1

1
S1T

Figure 4.7: Left: Control configuration for multi-period RC with R1 and R2 in the cascaded structure. Right: Stan-
dard plant representation.

The same methodology is used for R2, which means that R2 is designed by the lower LFT of P1 with
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respect to R2. Now, the closed-loop transfer function SRtot , i.e., the transfer from v to e, is given by,

SRtot
= Fl(P1, R2) = S1 − S1TR1(1 + Ŝ−11 S1TR1)−1 + Ŝ−11 S1, (4.14)

= S1(1 + Ŝ−11 S1TR2)−1,

= (1 + TR1)−1(1 + (1 + TR1)−1(1 + T̂R1)T︸ ︷︷ ︸
T eq
1

R2)−1. (4.15)

with S1 = (1 + TR1)−1, and Ŝ−11 = (1 + T̂R1).

Remark 4.3. Generic expressions for Sn−1 and Ŝ−1n−1 are given in Appendix A. Note that for n = 1,
S0 = 1 and Ŝ−10 = 1.

Clearly, this modifying sensitivity function (4.15) is the product of the first sensitivity forR1 and the second
sensitivity for R2 with the equivalent plant containing all the interaction components. Notice that R1 must
be designed in order to design R2. This motivates a sequential design approach, i.e., design each repetitive
controller based on the previously designed ones.

Remark 4.4. Notice that if T̂ = T , then T eq
1 = T in (4.15). Indicating two completely decoupled

sensitivity functions.

4.4 Stability Analysis
The analysis of the closed-loop system in Section 4.3 showed that SRtot

is the product of sequentially de-
pendent factors. In this section, this sequential structure is exploited in view of stability analysis.

Stability of the closed-loop system, depicted in Figure 4.5, with n repetitive controllers in the cascaded
structure, can be verified as follows. Let Hi(z) = (1− αiT

eq
i−1Li)z

−NiQi.

Theorem 4.1 (Nyquist stability theorem for sequential design of multi-period RC). Consider the control
configuration in Figure 4.5, withRi as in (4.1), suppose all poles of T̂ , Li, Qi, and T eq

i−1 as in (4.10) are on
the open unit disc, and assume no unstable pole-zero cancellations between (1−z−NiQi) and (1−Hi(z))
in (4.9). Then the closed-loop system (4.9) is stable if and only if the image of (1− αiT

eq
i−1Li)z

−NiQi, for
all i = 1, 2, ..., n,

1. makes no encirclements of the point 1 + 0j, and

2. does not pass through the point 1 + 0j,

as z goes around the Nyquist contour Γ in Figure 3.11.

Proof. Factorization of (4.9), with the repetitive controller as in (4.1), yields the following derivation,

SRtot
=

n∏
i

(1− z−NiQi)

n∏
i

(
1− (1− αiT

eq
i−1Li)z

−NiQi

)−1
. (4.16)

The Nyquist stability criterion can be used on the products on the right hand-side of (4.16), with (1−Hi(z))
as the return difference and Hi(z) as the loop gain. Assuming that (1− z−NiQi) and (1−Hi(z)) do not
imply unstable pole-zero cancellations for all i = 1, 2, ..., n and all cross products for i > 1.
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Furthermore, Theorem 4.1 states that all poles of T eq
i−1, Li,Qi, and T̂ should lie on the open unit disc. This

can be achieved easily for every Li- and Qi-filter, and T̂ , since those are design choices. However, the
resulting equivalent plant T eq

i−1 has to be checked. Note that the equivalent plant (4.10) can be written as
(A.5), i.e.,

T eq
n−1 = Ŝ−1n−1Sn−1T, (4.17)

=

n∏
i

[
(1− z−NiQi)

−1(1− (1− αiT̂Li)z
−NiQi

)
(1− z−NiQi)

(
1− (1− αiT

eq
i−1Li)z

−NiQi

)−1]
T,

=

n∏
i

[ (
1− (1− αiT̂Li)z

−NiQi

)︸ ︷︷ ︸
1

(
1− (1− αiT

eq
i−1Li)z

−NiQi

)−1︸ ︷︷ ︸
2

)
]T. (4.18)

Consider the following observations.

1. Term 1 in (4.18) is stable, since Qi, Li, and T̂ are stable.

2. Term 2 in (4.18) is stable, due to preceding designs.

3. T is assumed to be stable.

Consequently, T eq
i−1 is stable for all i = 1, 2, ..., n.

Although Theorem 4.1 provides a necessary and sufficient stability condition for multi-period RC, it is
inconvenient for design purposes. Furthermore, if a different N is implemented, then it does not guarantee
stability. This motivates the following Lemma.

Lemma 4.2. Under assumption of Theorem 3.2 and Hi(z) is strictly proper, the closed-loop system (4.9)
with Ri as in (4.1) is stable for all N ∈ N if

|(1− αiT
eq
i−1(ejω)Li(e

jω))Qi(e
jω)| < 1 ∀i ∀ω ∈ [0, π]. (4.19)

Proof of Lemma 4.2 is equivalent with the proof of Lemma 3.3 given in Section 3.3. According to (4.19),
every loop can now be designed as a SISO design problem. Each of which is sequentially dependent on
each other. In this way, interaction is explicitly accounted for, since T eq contains all preceding repetitive
controllers and modeling errors. Hence, the following sequential design procedure is established.

4.5 Sequential Design Procedure
In this section, a sequential design procedure is given for multi-period RC. It is shown how sequential
design for multiple repetitive controllers results in generic design conditions for each individual repetitive
controller. Sequential design is commonly done in practice for feedback control [13, 17, 21], yet its poten-
tial for RC is unexplored.

In multi-period RC, the repetitive controllers are connected with other repetitive controllers, indicating
that interaction between the controllers is unavoidable. By means of sequential designing, the repetitive
controllers can be designed explicitly for interaction from preceding loops. Starting with designing the
first repetitive controller, i.e., single-period RC, and consequently closing this loop. Then, design the next
repetitive controller based on an equivalent plant, which includes all interaction from preceding loops, and
continue this procedure. In this way, each of the repetitive controllers explicitly accounts for modeling
errors in the previously designed loops.

The loop-closing order is an important factor, since it affects the resulting closed-loop system, and it deter-
mines performance due to previously designed loops. Iterative redesigns may hence be required, until the
total design satisfies the requirements, resulting in the following sequential design procedure.
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Procedure 4.1 Frequency-domain multi-period RC sequential design

Given a nonparametric model of T , perform the following sequence of steps.

1. Construct parametric model T̂ (z) according to T , and design Li(z) = T̂−1(z) for all i.

2. Choose the order in which the loops are designed.

3. Set the index i = 1, and perform the following steps.

(a) Construct T eq
i−1 according to (4.10).

(b) Given Li(z) and T eq
i−1, design Qi and αi according to (4.19) in Lemma 4.2.

(c) Until i = n, set i = i+ 1 and return to step 3a.

(d) If the resulting closed-loop system is unsatisfactory, reset i = 1, return to step 3a.

4. If the closed-loop system is unsatisfactory after iterations, return to 2. and change design order.

Procedure 4.1 has the following implications for design of Li,Qi, and αi for the cascaded structure.

4.5.1 Learning Filter
In Procedure 4.1, it is proposed to construct the learning filter based on parametric model T̂ , i.e., Li = T̂−1

for all i = 1, 2, ..., n. Notice however that (4.19) would suggest to design the learning filter based on T eq
i−1,

instead of T̂ . This choice is motivated next.

Parametric models of T eq
i−1 might be difficult to obtain, since

1. the model might result in high order, due to the modeling error T̂ 6= T , and

2. this equivalent plant might have non-minimum phase zeros depending on the previous robustness
filters Qi.

Hence, the learning filter is recommended to be kept the same for each repetitive controller, i.e., Li = T̂−1

for all i = 1, 2, ..., n. This is valid as long as T eq
i ≈ T ∀i, which is true for the cascaded structure if,

• T̂ = T , i.e., no modeling errors, then T eq
i = T ∀i, and

• if T̂ 6= T , then

– term 1 in (4.18) equals 1, if L = T̂−1 and αi = 1, and

– term 2 in (4.18) is (approximately) 1, if (4.19) is small,

resulting in T eq
i ≈ T ∀i, illustrated in Section 4.7.

This makes the sequential design approaches powerful, since no modeling errors are lost in the formulations
and designs choices. The non-causal learning filters are implemented as shown in Figure 3.12.

4.5.2 Robustness Filter
In the sequential design approach, the robustness filter is a key component to improve performance. Not
only is the robustness filter used for modeling errors T̂ 6= T , but also for the deliberately introduced
mismatch of Li 6= (T eq

i−1)−1 for i > 1. Notice that the introduced mismatch is typically small due
to previous designs, see Section 4.5.1. Thus, each robustness filter can explicitly be designed based on
previously designed repetitive controllers indicating that conservatism is reduced. Non-causal robustness
filters are implemented as shown in Figure 3.12.
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4.5.3 Learning Gain
According to (4.19), the learning gain should be chosen as 0 < αi < 2. Properties are discussed in Section
3.4.3.

4.5.4 Connections to Existing Approaches for Cascaded Structure
In [26], interaction from other loops is treated as uncertainty, and dealt with through conservative robust
design. This means that only one robustness filter would be designed based on T̂ . In comparison, the
sequential design approach explicitly accounts for these interactions in the design, since often in practice
they are accurately known, assuming an accurate FRF measurement. This potentially reduces conservatism
and improves performance.

4.6 Special Case: Sequential Design for Parallel Structure
In this section, the developed sequential design approach is applied to a parallel RC structure. The parallel
structure is a special case of the cascaded structure, in the sense that the block T̂ is removed from the
cascaded RC control structure, compare 4.3 and 4.5. Hence, the control effort from preceding repetitive
controllers Ri is not hidden for Ri+1 for all i = 1, 2, ..., n.

Consider the same control configuration as 4.3, with the equivalent standard plant representation on the
right hand-side, depicted in Figure 4.8. Recall that the definition of Sn−1 is given in Appendix A.
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Figure 4.8: Left: Control configuration for multi-period RC in parallel structure, Right: Standard plant representation.

All results from Sections 4.3 till 4.5 can be applied here as well, only without the presence of T̂ in the
control structure. The equivalent plant is now given by,

T eq
n−1 = Sn−1T, (4.20)

or in a recursive form as,
T eq
i = (1 + T eq

i−1Ri)
−1T eq

i−1, (4.21)

with T eq
0 = T , for all i = 1, 2, ..., n − 1. Comparing (4.21) with (4.10), i.e., the equivalent plant for the

parallel structure, shows that the term (1 + T̂Ri) is absent. This implies that T eq may significantly deviate
from T , which complicates filter designs. This is addressed in the next subsection.

4.6.1 Filter Design
Procedure 4.1 can be used in the parallel structure, however the contribution of the filters and gains is much
more involved, especially the robustness filter and learning gain. According to (4.20) and (4.21), T eq may
significantly deviate from T , since the open-loop unstable poles are not canceled by Ŝn−1, i.e., T̂ is not
present in the parallel structure. Therefore, designing the learning filters as Li = (T eq

i−1)−1 is not suitable,
since parametric model of T eq

i−1 might be difficult to obtain. In addition to issues 1 and 2 in Section 4.5.1,
a third issues is defined:
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3. the delay terms z−Ni in the previous repetitive controllers might lead to very high order of T eq
i−1.

Hence, the learning filters are still kept the same for each repetitive controller, i.e., Li = T̂−1.

Now, the robustness filter addresses the model mismatch T̂ 6= T and Li 6= (T eq
i−1)−1 for i > 1, which is

similar to the cascaded structure. However, since the deviation of T eq
i−1 and T for i > 1 is much more than

in the cascaded structure, due to 1,2, and 3, explicitly designing the robustness filter is possibly not enough,
illustrated in Section 5.2.1.

4.6.2 Connections to Existing Approaches
In [16], it is suggested that the learning gain for the parallel structure should satisfy the following theorem.

Theorem 4.3. Assume that the individual RC loops are stable, i.e.,

|(1− αiT (ejω)L(ejω))Qn(ejω)| < 1 ∀i ∀ω ∈ [0, π], (4.22)

then the overall closed-loop system shown in Figure 4.3 is asymptotically stable if the control gains αi,
satisfy the following inequality for all i = 1, 2, ..., n.

0 <

n∑
i=1

αi < 2. (4.23)

In [16], the filters are designed independently, i.e., the same filters are obtained for each loop with the
learning gains satisfying Theorem 4.3. The price that is paid for this simple design is that the learning
gains have to be chosen small, see (4.23). This typically results in slow learning of the closed-loop system,
which may be undesirable. This is in contrast with the sequential design procedure, where the learning
filter and robustness filter can explicitly be designed for interaction from previously design RC loops. As
a key difference, the sequential design procedure allows for the learning gain αi = 1∀i, which potentially
improves performance.

4.7 Simulations: Sequential Design Procedure
In this section, simulations are performed to validate the standard design procedure, i.e., Procedure 3.1,
and the sequential design procedure, i.e., Procedure 4.1. The resulting designs choices are presented in
Table 4.1. In Chapter 5, these design procedures are investigated in more detail for the experimental setup.
For simulations, the comparison is made between one memory loop (single-period RC), and two memory
loops, respectively the parallel and cascaded structures (multi-period RC). The simulations serve to

• illustrate the benefit of multiple memory loops,

• illustrate the interaction in the parallel structure, and

• compare the convergence speed of the three different structures.

4.7.1 Disturbance Signal
The disturbance signal used in simulations is depicted in Figure 4.9. This signal corresponds to the real
disturbance, as described in Section 2.1. The grey areas indicate where the printing takes place. Further-
more, each print-pass is defined byN = 1000 samples and the sampling time is 0.001 [s]. This disturbance
signal consists of,

• a sine wave of period length N1 = 143 samples, i.e., ≈ 7 Hz. With amplitude 0.01 [mm], and

• a fourth-order forward-backward signal with two positive and two negative steps. Each step is 0.1
[mm] and the length is one print-pass, i.e., this signal is periodic with N2 = 4000 samples.
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The LCM of these two signals is Nl = 572000, i.e., 572 [s].

Figure 4.9: The disturbance signal for simulations, consisting of a four-order forward-backward signal and a sine
wave.

The two different period lengths are used in the parallel and cascaded structure, i.e., N1 = 143 and N2 =
4000. For single-period RC, the LCM is used, i.e., Nl = 572000.

4.7.2 Parametric Models
The design procedures requires a parametric model of the system T , which is described by the comple-
mentary sensitivity function T (z) consisting of a plant model G(z), and a stabilizing feedback controller
K(z). Both G(z) and K(z) are given in Section 2.3. For simulations purposes, a plant model Ĝ(z) is
designed, to simulate the modeling error. This plant model Ĝ(z) is based on the same system, however
with less damping. The same feedback controller K(z) is used, resulting in T̂ (z). The Bode diagram of
the models T (z) and T̂ (z) are given in Figures 4.10 and 4.11.

Figure 4.10: Bode diagram of T , T̂ , and T eq
1,c for the cascaded structure.
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Figure 4.11: Bode diagram of T , T̂ , and T eq
1,p for the parallel structure.

Two memory loops implies one equivalent plant, for both the cascaded and parallel structure. The equiva-
lent plants are depicted in Figures 4.10 and 4.11, respectively.

• The cascaded equivalent plant, depicted in Figure 4.10, is very similar to the original plant. Only
minor mismatch is obtained, since the effect of the preceding repetitive is not entirely canceled in
4.10 due to the simulated modeling error, i.e., T̂ 6= T .

• This is in contrast with the parallel structure, depicted in Figure 4.11, where the notches on 7 Hz and
all higher harmonics are present in the equivalent plant. They are not canceled in (4.20), since T̂ is
not present in the parallel structure. This already indicates the amount of interaction in the second
repetitive controller.

For both equivalent plants, it is clearly visible that the first robustness filter, given in Table 4.1, determines
the frequencies until T eq

1 6= T , in this case 110 Hz.

The design choices for each individual repetitive controller are given in Table 4.1, with fc,i the cut-off
frequency for each robustness filter. The robustness filters are designed as a 50th order zero-phase low-
pass FIR filter. Both learning filters are designed through stable inversion of T̂ by the ZEPTC algorithm.

Table 4.1: Repetitive controller designs.

fc,1 [Hz] fc,2 [Hz] α1 [-] α2 [-]
Single-period RC design
(Procedure 3.1) 110 − 1 −

Sequential design: Parallel
(Procedure 4.1) 110 90 0.5 0.5

Sequential design: Cascaded
(Procedure 4.1) 110 90 1 1

Remark 4.5. The differences between the cut-off frequencies and the learning gains are explained in
Chapter 5.
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4.7.3 Tracking Error
The tracking errors for single-period RC, parallel RC, and cascaded RC are depicted in Figure 4.12, to-
gether with the disturbance signal. The system is simulated for 580 print-passes. In Figure 4.13 the
normalized 2-norm of the disturbance, single-period RC, parallel RC, and cascaded RC are depicted. The
convergence speed is normalized over one period N1. The corresponding print-passes are depicted at the
top x-axis.

Figure 4.12: Comparison of the disturbance, and the tracking error for single-period RC, parallel RC, and cascaded
RC as function of time [s]. The figure is compressed to demonstrate the final tracking error. The left zoom
plot shows the early learning behavior of multi-period RC. The right zoom plot shows the remaining error
after 573 [s].

Figure 4.13: Comparison of the normalized 2-norm of the disturbance, and the tracking error for single-period RC,
parallel RC, and cascaded RC as function of the period N1. The top axis shows the corresponding
print-passes. This figure is compressed to demonstrate the slow convergence speed of parallel RC and
single-period RC. The left zoom plot shows early learning behavior of multi-period RC.
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From Figure 4.12, it is clearly visible that each RC structure reduces the tracking error. However, some
different observations can be made regarding the structures.

• First, single-period RC achieves disturbance rejection for period length Nl = 572000 samples, i.e.,
after 572 print-passes. The error is not perfectly rejected due to T̂ 6= T , depicted in the right zoom
plot of Figure 4.12. It takes a few RC updates to achieve the asymptotic error, with this modeling
error. Hence, single-period RC results in very slow convergence, which confirms the benefit of
multiple memory loops.

• The parallel structure starts to learn after N1 = 147 samples, depicted in the left zoom plot in
Figure 4.12. However, the interaction between the individual repetitive controllers in the parallel
structure results in very slow convergence, demonstrated in Section 4.7.4. The tracking error is still
not converged after 580 [s].

• The cascaded structure also learns after N1 = 147 samples. Including the parametric model T̂
reduces the interaction significantly, resulting in fast convergence. The tracking error is (approxi-
mately) zero after ≈ 4 print-passes.

Figure 4.13 shows that in 580 print-passes.

• The tracking error is reduced from roughly O(10−1) to O(10−4), and to O(10−3) after 572 print-
passes for parallel RC and single-period RC, respectively. Confirming the slow convergence of
single-period RC and parallel RC.

• The tracking error is reduced from roughly O(10−1) to O(10−6) after 17 print-passes for the cas-
caded structure. The asymptotic error is achieved in four RC updates due to the modeling error.

4.7.4 Interaction Analysis
The best way to understand the interaction between the individual repetitive controller in both structures,
and the effect of the parametric model T̂ in the cascaded structure, is to simulate the process. In Figure
4.14, the disturbance and the tracking errors seen by each individual repetitive controller for the parallel
structure and cascaded structure are depicted. Recall, these input signal are defined as z1 and z2 in Figures
4.3 and 4.5.
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Figure 4.14: The disturbance and tracking error seen by the individual repetitive controllers in parallel RC and cas-
caded RC are depicted. The top left figure shows z1, and the top right z2, for cascaded RC, i.e., depicted
in Figure 4.5. The bottom figures shows the error signal, i.e., z1 and z2 in Figure 4.3, for parallel RC,
which are equivalent.

The following observations are made regarding the interaction between the two individual repetitive con-
trollers.

• In parallel RC, i.e., bottom two figures, the control effort of the repetitive controller acting on N1 =
147 is clearly visible in 0−4 [s]. The shortest period lengthN1 = 147 samples is rejected within the
a couple short period lengths. Afterwards, this repetitive controller is basically acting as an integrator,
meaning that the constant part of the disturbance signal is suppressed, resulting in the shark teeth.
Hence, the input signal (z2) for the repetitive controller acting on N2 = 4000 samples, depicted in
the lower right corner of Figure 4.14, is disturbed by the repetitive controller acting on N1 = 147
samples, i.e., this signal is not periodic with N2 = 4000 samples. This interaction between the
individual repetitive controllers in the parallel structure results in slow convergence.

• In case of cascaded RC, the control effort of the repetitive controller acting on N1 = 147 samples
is still present in z1, depicted in the top left corner in Figure 4.14. However, this control effort is
hidden from the repetitive controller acting on N2 = 4000 samples, by including the model T̂ in
the structure. Therefore, the input signal (z2) for this repetitive controller, depicted in the top right
corner of Figure 4.14, is just the disturbance signal. This results in fast convergence, since this signal
is periodic with N2 = 4000.

Consequently, the cascaded structure show promising results regarding interaction reduction between the
individual repetitive controllers and fast convergence speed. In the next chapter, this is investigated on the
experimental setup.
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Chapter 5

Experimental Application to a
Wide-Format Roll-To-Roll Printing
System

In this chapter, the developed theoretical framework for multi-period RC design is experimentally validated
on the wide-format Roll-To-Roll (RTR) printing system, as introduced in Chapter 2. The experimental
results confirm that,

• the sequential design procedure results to be less conservative and increases the performance, com-
pared to pre-existing design approaches [16, 26],

• the multi-period RC framework achieves rejection of exogenous disturbances consisting of multiple
unrelated periods, and

• the cascaded structure gives most promising results, with respect to reducing interaction, conver-
gence speed, and asymptotic performance.

The outline of this chapter is as follows. First, two case studies are presented, to validate the developed
theory. Second, multi-period RC designs are made, where the difference between sequential and indepen-
dent design is shown. Third, the experimental results for both case studies are presented. Finally, some
concluding remarks are given.

5.1 Case Studies
In this section, two different case studies are presented, i.e., two different disturbance signals consisting
of multiple periods, to validate the developed theory. The reference trajectory of the carriage, presented
in Section 2.1, is used. In which case, each print-pass corresponds to N = 2999 samples, i.e., ≈ 3 [s],
with the sampling time as Ts = 0.001 [s]. The experimental setup that is used, is without media handling.
Meaning that the discrete marker measurements, as described in Section 2.1, are not available. This is why
an external disturbance signal is created in the system to simulate the marker measurements. The two case
studies describe the following situations.

Study 1: The first study has two contributions namely,

• it represents the actual reconstructed MPEs in the printing system, and

• the considered disturbance periods have a relatively small LCM, thus single-period RC can be used.
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Study 2: The second study also has two contributions namely,

• potential benefits of the sequential design procedure are explored, since a higher frequency is used
in the disturbance signal, and

• a relatively large LCM is obtained, to validate the application of multi-period RC.

In each case, the disturbance signal consists of two periodic signals, with period lengths given in Table 5.1.

Table 5.1: Periods lengths in samples for each case study.

N1 N2 Nl

Case study 1 4499 11996 35988
Case study 2 477 11996 5722092

Figure 5.1: Disturbance signal for case study 1. The grey areas indicate where the printing takes place.

The disturbance signal for case study 1 is depicted in Figure 5.1, for 12 print-passes, i.e., ≈ 36 [s]. The
grey areas indicate where the printing takes place, discussed in Section 2.1. As described in Section 2.1, the
MPEs consists of multiple components, i.e., translation, rotation, and parabolic. The translation component
is represented by a fourth-order step signal. This step consists of ≈ 0.5 [mm] and period length N2 =
11996 samples, i.e., periodic with 4 print-passes. It is deliberately chosen to be periodic with 4 print-
passes for experimental time, although the real MPEs are periodic with ≈ 31 print-passes. The rotational
and parabolic components are represented by a sine wave of period length N1 = 4499 samples. The
frequencies, normalized by each print-pass, are 1

4 Hz and 2
3 Hz respectively. Furthermore, this signal has

an LCM of Nl = 35988 samples, i.e., 12 print-passes.
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Figure 5.2: Disturbance signal for case study 2. The grey areas indicate where the printing takes place.

The disturbance signal for case study 2, depicted in Figure 5.2, is given for 5 print-passes, i.e., ≈ 15
[s]. The disturbance still consists of the translation component, with the same specifications as given
above. However, the sine wave is chosen as N1 = 477 samples, i.e., ≈ 2π Hz. The LCM is obtained as
Nl = 5722092 samples, i.e., 1908 print-passes. Next, the multi-period RC designs are presented.

5.2 Multi-Period Repetitive Control Designs
In this section, the sequential design procedure, i.e., Procedure 4.1, is executed and compared with existing
design results, e.g., [6, 16, 26], for case study 2. The following two cases are investigated.

• In Section 5.2.1, the sequential design procedure is executed for the cascaded and parallel structure,
i.e., Procedure 4.1 for the RC control configuration in Figures 4.3 and 4.5. The objective is to illus-
trate the benefits of the cascaded structure with respect to robustness filter design. In this procedure,
the learning gains are kept the same, i.e., α = 1, as an initial design choice.

• In Section 5.2.2 the sequential design procedure for the parallel structure is compared with indepen-
dent parallel design, see, e.g., [6, 16]. Now, Theorem 4.3 is combined with the sequential design
procedure, to show that sequentially designing is potentially less conservative.

5.2.1 Sequential Design for Cascaded Structure and Parallel Structure
In this section, the sequential design procedure is followed step by step. The design conditions are visually
displayed for the cascaded and parallel structures, to support the design choices. The resulting cut-off
frequencies are depicted in Table 5.1. Every robustness filter is designed as a 50th order zero-phase low-
pass FIR filter.

Table 5.1: Cut-off frequencies for sequential cascaded and parallel design with α = 1.

fc,1 [Hz] fc,2 [Hz]
Sequential parallel design
(Procedure 4.1) 35 0.1

Sequential cascaded design
(Procedure 4.1) 35 45
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1. The first step is designing the parametric model, i.e., T̂ , which is just the plant model T (z), given
in Section 2.3. Since T̂ is non-minimum phase, the learning filter is obtained by stable inversion,
i.e., ZPETC algorithm. Furthermore, the learning filter is kept the same for each individual repetitive
controller in both structures, i.e., L1 = L2, as suggested in Section 4.5.1.

2. The second step is the loop-closing order. The choice of order can be influenced by a couple consid-
erations.

• The first consideration is the power corresponding to each disturbance frequency. If the contri-
bution of one frequency and their harmonics is dominant, then possibly better performance can
be achieved to start with closing this loop first.

• The second consideration is starting with closing the loop with the largest disturbance fre-
quency. This results in the fewer mismatches in the equivalent plant, meaning that the perfor-
mance for the second loop is maintained.

For the remaining of this design procedure, the latter consideration is used.

3. The next step is to design the robustness filters for each structure. The design steps for both structures
are given simultaneously, however the differences are clearly depicted.

In both structures, the first design problem is just single-period RC, with T eq
0 = T . By means of

(4.19), the robustness filter can be designed, as depicted in Figure 5.3. Condition (4.19) is depicted
with and without robustness filter and α = 1 in this figure. Clearly, (4.19) is violated after ≈ 30 Hz,
which means that the cut-off frequency of the first robustness filter, for both structures, is chosen as
fc,1 = 35 Hz.
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Figure 5.3: Bode magnitude diagram for (4.19), with and without the robustness filter.

Next the equivalent plants, T eq
1,c for cascaded and T eq

1,p for parallel, are depicted in Figures 5.4 and
5.5 respectively.
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Figure 5.4: Bode diagram of the plant T , the plant model T̂ , and the equivalent plant T eq
1,c for the cascaded structure.

Figure 5.5: Bode diagram of the plant T , the plant model T̂ , and the equivalent plant T eq
1,p for the parallel structure.

The following observations are made with respect to the equivalent plants.

• The equivalent plant for the cascaded structure, depicted in Figure 5.4, is very similar to the
original plant. The effect of including T̂ is clearly visible, since no notches from the first
repetitive controller are present. Before the cut-off frequency some minor mismatches are
obtained, since T̂ 6= T , however this verifies that L2 = (T eq

1,c)
−1 is unnecessary. Any mismatch

can easily be encountered with the robustness filter design.

• Yet, the parallel structure shows much more mismatch before the cut-off frequency, depicted
in Figure 5.5. In this case, the notches on ≈ 2π Hz and its higher harmonics, introduced by
the first repetitive controller, are present in this equivalent plant, since they are not canceled
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in (4.20). This is one of the reasons that it is not suitable to choose the second learning filter
as L2 = (T eq

1,p)−1. Furthermore, amplification of intermediate frequencies is obtained, due to
Bode’s sensitivity integral. Thus, the robustness filter should encounter not only T̂ 6= T , but
much more mismatch with respect to L2 6= (T eq

1,p)−1.
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Figure 5.6: Bode magnitude diagram for condition (4.19), with and without the robustness filter for the cascaded
structure.
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Figure 5.7: Bode magnitude diagram for condition (4.19), with and without the robustness filter for the parallel struc-
ture.

Both equivalent plants are used in (4.19) to design the next robustness filter. This is depicted in
Figures 5.6 and 5.7, with and without the second robustness filter, resulting in the following obser-
vations.

• In case of the cascaded structure, depicted in Figure 5.6, the first violation of (4.19) is still
present at ≈ 30 Hz, as expected. However, due to the previous robustness filter, the cut-off
frequency of this robustness filter can be increased to 45 Hz. This increases the performance in
the second loop.
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• Condition (4.19) for the parallel structure, depicted in Figure 5.7, is clearly different. The
condition is already violated between 1−10 Hz, due to the fact that L2 6= (T eq

1,p)−1. Therefore,
the cut-off frequency of the robustness filter should be chosen as fc,2 = 0.1 Hz, to satisfy
(4.19). Implying no performance for the second loop.

• Alternatively, a band-pass filter might be used, to satisfy (4.19) in Figure 5.7. The band of the
band-pass filter should be placed in the region where it will not violate (4.19), e.g., between
10 Hz and 20 Hz in Figure 5.7. Although (4.19) can be satisfied, it still restricts performance
at lower frequencies. In case of the second case study, the second repetitive controller acts on
N2 = 11996 samples, i.e., 1

4 Hz, thus minor/no performance will be obtained for the second
loop.

From this design procedure, the following observations are made between the cascaded and parallel struc-
ture.

• Sequentially designing the robustness filters for the cascaded structure, results in a less conservative
approach, since all preceding repetitive controllers are used in the design. The second cut-off fre-
quency is increased, which results in more performance for the second loop. This is in contrast with
an independent design approach, see, e.g., [26], where only one robustness filter for all loops would
be designed based on T̂ , as discussed in Section 4.5.4. This results in less performance in subsequent
loops. Hence, this illustrates the potential of sequential design with respect to the cascaded structure.

• The results indicate that sequential design for parallel structure is potentially very restrictive in the
case α = 1. The second cut-off frequency for a zero-phase low-pass filter is very low, implying
no performance. A band-pass filter might be used, however this restrict the performance at lower
frequencies as well.

Consequently, sequentially designing the cascaded structure has most favorable properties if αi = 1∀i.
However, to compare the benefits of sequential parallel designs with existing parallel designs, the learning
gains should satisfy Theorem 4.3, as suggested in [6, 16]. Combining this knowledge with the sequential
design procedure is compared with the independent parallel design of [6, 16] in the next section.

5.2.2 Independent Design vs Sequential Design
Designing the filters and gains for the parallel structure, based on Theorem 4.3, is investigated next. First,
the independent parallel design is shortly explained. Thereafter, the sequential parallel design procedure is
executed.

All design results are depicted in Table 5.2. The learning gains are motivated by Theorem 4.3, i.e., 0 <∑
αi < 2. The initial choice is

∑
αi = 1, which means that the learning gains initial values are 0.5, for

n = 2. The robustness filters are designed as a 50th order zero-phase low-pass FIR filter.

Table 5.2: Cut-off frequencies and learning gains for the parallel structures.

fc,1 [Hz] fc,2 [Hz] α1,p α2,p

Independent parallel design
(Section 4.6.2) 55 55 0.5 0.5

Sequential parallel design
(Procedure 4.1) 55 61 0.5 0.5

Independent parallel design is based on Procedure 3.1 with Theorem 4.3. In other words, the learning
filters, robustness filters, and learning gains are all based on plant model T̂ , which results in the same filters
and gains for each individual repetitive controller in the parallel structure. This design is similar to step 3,
i.e., Figure 5.8, in the sequential design procedure, illustrated next. The resulting design choices are given
in Table 5.2.
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The sequential parallel design procedure is given in the following sequence of steps.

1. The same parametric model T̂ , i.e., T (z) given in Section 2.1, and learning filter from Section 5.2.1
are used.

2. The same loop-closing order from Section 5.2.1 is used, i.e., starting with closing the loop for period
length N1 = 477 samples.

3. In Figure 5.8, condition (4.19) is depicted with and without robustness filter, and α1,p = 0.5. Viola-
tion is obtained at 60 Hz, meaning that the first cut-off frequency is obtained as fc,1 = 55 Hz. Notice
that this cut-off frequency is 20 Hz higher than in Section 5.2.1. This already illustrates the influence
of the learning gains, since a lower asymptotic error can be achieved with this cut-off frequency.
However, this comes at the cost of convergence speed.
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Figure 5.8: Bode magnitude diagram for (4.19), with and without the robustness filter, and α1,p = 0.5.

By designing the robustness filter with fc,1 = 55, the following equivalent plant is obtained, depicted
in Figure 5.9. Now, the notches at 2π Hz and their harmonics are present till 55 Hz. However, notice
that amplification of intermediate frequencies is reduced with the learning gain as α1,p = 0.5. Using
this equivalent plant in (4.19), results in Figure 5.10.
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Figure 5.9: Bode diagram of the plant T , the plant model T̂ , and the equivalent plant T eq
1,p for the parallel structure.
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Figure 5.10: Bode magnitude diagram for condition (4.19), with and without the robustness filter for the parallel
structure, and α2,p = 0.5.

In sharp contrast with Figure 5.7, violation is obtained at ≈ 65 Hz. The first learning gain, i.e.,
α1,p = 0.5, causes reduction of intermediate frequencies in equivalent plant. Hence, the inverted
notches in Figure 5.10 are no longer violating condition (4.19). This continues for the next equivalent
plant, as long as Theorem 4.3 is satisfied. The second cut-off frequency is now designed as fc,2 = 61
Hz.

From these design procedures the following observations are made.

• In the independent parallel design, the filters and gains are all based on the model T , which results
in the same filters and gains for each individual repetitive controller. This results in less performance
of the total RC setup. In practice, each filter could be tuned for performance on experimental results,
however this is unsatisfactory and time consuming.
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• The sequential parallel design procedure, specifically designs for each individual repetitive con-
troller, which results in a less conservative approach. Furthermore, specific increase in performance
can be achieved with respect to the disturbances.

• In both designs, the achieved cut-off frequencies are higher than in the sequential parallel design of
Section 5.2.1. This indicates the design freedom between the learning gain and robustness filter, i.e.,
between convergence speed and asymptotic error.

Consequently, the sequential parallel design is less conservative and results in improved performance with
respect to independent parallel design.

Remark 5.1. The sequential design procedure is an iterative procedure. In practice, choosing some cut-off
frequency deliberately lower for one loop, results in more performance in the next loop. For instance in
Section 5.2.1, the first cut-off frequency could have been chosen higher, for instance 45 Hz. However,
this influences the next robustness filter, to have a cut-off frequency less than 40 Hz, resulting in less
performance in this loop. This also supports the importance of loop-closing order.

5.2.3 Concluding Remarks
In both sections, an illustration is given for the added value of the sequential design procedure for the
parallel and cascaded structure. The following concluding remarks are applicable.

• The sequential design procedure for the cascaded structure can be used to design the robustness filters
and learning gains. Modeling errors are included in the descriptions, meaning that the approach is
less conservative.

• Sequentially design for the parallel structure can be achieved with prior knowledge on the learning
gains, based on Theorem 4.3. Also for this structure it is less conservative than existing design
results.

• In both designs, the number of individual repetitive controllers is n = 2. In theory, an unlimited
number of individual repetitive controllers could be used and designed. However, notice that in the
parallel structure the convergence speed becomes very restrictive if n increases, due to Theorem 4.3.
This again shows the benefit of the cascaded structure for increasing n, since these learning gains are
independent of n.

The design procedures are presented for the second case study, however similar steps are performed for the
first case study. The final cut-off frequencies and learning gains that are used for experimental validation
in both case studies are depicted in Table 5.3. The robustness filter is designed a as 50th order zero-phase
low-pass FIR filter.

Table 5.3: Cut-off frequencies and learning gains used for the experimental results.

fc,1 [Hz] fc,2 [Hz] α1,p α2,p

Single-period RC
(Procedure 3.1) 35 - 1 -

Sequential cascaded design
(Procedure 4.1) 35 45 1 1

Sequential parallel design
(Procedure 4.1) 55 61 0.5 0.5

5.3 Experimental Results
The tracking errors for both the case studies are given in this section. Single-period RC, parallel RC, and
cascaded RC are implemented on the experimental setup, with Table 5.3 as the design choices. It is shown
that each structure performs as expected. Yet, in both studies the cascaded structure has the most favorable
results. The total experimental time for both case studies is 174 [s], i.e., 58 print-passes.
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5.3.1 Tracking Error: Study 1
In Figure 5.11, the tracking error for single-period RC, parallel RC, and cascaded RC is depicted, together
with the external disturbance signal. In Figure 5.12, the zoom plot is depicted after 153 [s], i.e., 51 print-
passes. Single-period RC is implemented for the LCM of the disturbance signal, i.e., the period is Nl =
35988 samples. For the individual repetitive controllers in the parallel and cascaded structures, the period
lengths N1 = 4499 and N2 = 11996 samples are used.

Figure 5.11: Comparison of the disturbance, and the tracking error for
single-period RC, parallel RC, and cascaded RC as function
of time [s].

Figure 5.12: Zoom plot the tracking
error for single-period RC,
parallel RC, and cascaded
RC.

Figure 5.13: Comparison of the normalized 2-norm over the print-passes, of the disturbance and the tracking error
for single-period RC, parallel RC, and cascaded RC as function of print-passes. The zoom plot shows
the early learning behavior of multi-period RC.

The following observations from Figure 5.11 are made regarding the different structures.

• Single-period RC is (approximately) zero after 12 print-passes. However, it is likely that in many
systems the LCM is not obtained within an acceptable time period. Hence, motivating multi-period
RC.

• The parallel structure shows much interaction between the individual repetitive controllers, as il-
lustrated in Section 4.7.4, resulting in slow convergence. Despite the fact that learning behavior
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is obtained after 1.5 print-pass. The asymptotic tracking error is still not obtained after 154 [s],
depicted in Figure 5.12.

• The cascaded structure learns after 1.5 print-pass as well. It rejects the second period (N2 = 11996)
afterwards, implying (approximately) zero tracking error afterN1+N2 periods, i.e., 5.5 print-passes.
In Figure 5.12, the resulting error only shows the remaining measurement noise.

In Figure 5.13 the normalized 2-norm is depicted for each structure. The error norm is normalized over
one print-pass, i.e., N = 2999 samples. The following observations are made from this figure.

• Multi-period RC achieve earlier learning behavior, as depicted in the zoom plot of Figure 5.13.

• Due to the modeling error T̂ 6= T , cascaded RC and single-period RC, achieve the asymptotic error
in two steps. Cascaded RC achieves the asymptotic error in 12 print-passes and single-period RC in
24 print-passes. Both reducing the error from O(100) to O(10−3).

• The parallel structure does not reach the asymptotic error within the experimental time. It reduced
the error to O(10−2).

In Figure 5.14 the Power Spectral Density (PSD) for the disturbance and tracking error of the cascaded
structure is depicted. The lower frequent range, including periods N1 = 4499 and N2 = 11996, are
suppressed by the cascaded structure.

Figure 5.14: Power Spectral Density (PSD) of the disturbance and tracking error of cascaded RC.

5.3.2 Tracking Error: Study 2
In Figure 5.15, the tracking error of all RC structures is depicted, together with the disturbance signal.
The corresponding zoom plot for the cascaded and parallel structure is depicted in Figure 5.16 after 123
[s], i.e., 41 print-passes. The individual repetitive controllers for the cascaded and parallel structures are
implemented for the period lengths N1 = 477 and N2 = 11996 samples. In this study, the single-period
RC is implemented for the fourth-order step signal with period lengthN2 = 11996 samples, since the LCM
is Nl = 5722092 samples, i.e., 1908 print-passes. In practice, it is unrealistic to implement this LCM for
single-period RC, since it requires a large memory space, and the speed of convergence is very slow, i.e.,
each repetitive update is 1908 print-passes.
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Figure 5.15: Comparison of the disturbance, and the tracking error for
single-period RC, parallel RC, and cascaded RC as function
of time [s].

Figure 5.16: Zoom plot the tracking
error for parallel RC, and
cascaded RC.

Figure 5.17: Comparison of the normalized 2-norm, of the disturbance and the tracking error for single-period RC,
parallel RC, and cascaded RC as function of the period N1. The top x-axis show the corresponding
print-passes. The zoom plot show the early learning behavior of multi-period RC.

The following observation from Figure 5.15 can be made regarding the tracking error for each structure.

• First, single-period RC achieves disturbance rejection for period length N2 = 11996 samples, i.e.,
after 4 print-passes. However, the remaining error (≈ 2π Hz) cannot be perfectly rejected. This
indicates the benefit of multiple memory loops.

• The parallel structure achieves fast learning, depicted in the zoom plot in Figure 5.15. It starts with
reducing the disturbance frequency of≈ 2π Hz afterN1 = 477 samples. Furthermore, the integrator
action, i.e., ’shark teeth’, is clearly visible. This results in slow convergence of the tracking error for
the parallel structure, as described in Section 4.7.4.

• Fast learning is also achieved for the cascaded structure. Yet, the integrator action from the repetitive
controller is also present here. However, the tracking error is (approximately) zero after N1 + N2

period lengths, due to T̂ in the model structure. In Figure 5.16, only the measurement noise is left
for the cascaded structure.

Remark 5.2. In case of single-period RC, the amplitude of the sine wave is still reduced. Although the
sine wave is ’aperiodic’ with the memory length, the repetitive controller still ’sees’ the signal, meaning
that it tries to reject it anyway.
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The normalized 2-norm is depicted in Figure 5.17. In this case study, the normalization is done over the
shortest period, i.e., N1 = 477 samples, to demonstrate the fast learning behavior of multi-period RC.
From this figure the following observations are made.

• Early learning behavior is achieved for multi-period RC. The convergence speed for rejecting the
shortest period length N1 = 477, is faster for cascaded RC then parallel RC, due to the learning
gains, depicted in the zoom plot of Figure 5.16. However, both structures achieve the asymptotic
error in the first few periods for this period length.

• Despite that, the overall tracking error norm achieves the asymptotic error in 52 periods, i.e., ≈ 25
[s], for the cascaded structure. The parallel structure is not able to reach the asymptotic error within
the experimental time.

• The errors are reduced from O(100) to, O(10−1) for single-period RC, O(10−2) for parallel RC,
and O(10−3) for cascaded RC.

5.4 Concluding Remarks
Applying the theory to the wide-format RTR printing system and demonstrating the sequential design
procedure, results in the following concluding remarks.

• The sequential design procedure is demonstrated for the cascaded and parallel structure and com-
pared with existing independent designs. It can be shown that the sequential design procedure is less
conservative in both structures in comparison with independent designs.

• Experimental validation is not executed for each different design for each structure. It can be con-
cluded from the designs itself, that higher cut-off frequencies, with the same learning gains, achieve
improved performance.

• The validation of the various RC structures showed that multi-period RC has favorable properties
over single-period RC, especially the cascaded structure. Usually, the LCM is very high, which
means that single-period RC is not suitable. Furthermore, the parallel structure showed much inter-
action between the individual repetitive controller, implying the benefit of including T̂ in the model
structure, i.e., cascaded RC. Notice that the convergence speed of the parallel structure is increased
if the gap between the disturbance frequencies is lower.
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Chapter 6

Conclusions and Recommendations

The research question of this thesis is defined as,

How to sequentially design multiple repetitive controllers to achieve rejection of periodically recurring
medium positioning errors in wide-format roll-to-roll printing systems?

The following conclusions are based on the defined contributions in Section 1.5.

6.1 Conclusions
Characterization of repetitive medium positioning errors in wide-format roll-to-roll printing systems.

In Chapter 2, the Medium Positioning Errors (MPEs) are analyzed, and a detailed system description
is presented. First, characterization of the repetitive MPEs showed three components coming from the
Medium Positioning Roll (MPR), i.e., translational, rotational, and parabolic. These components consists
of repetitive behavior, with the frequency corresponding to one full rotation of the MPR. Furthermore, the
marker measurements showed more contributions to the MPEs from external disturbances, causing multi-
ple components at higher frequencies. These components are reconstructed in a time-domain signal, and
consequently used to track with the gantry-beam in the x-direction.

Development of a sequential design approach for multi-period RC.

The theory and design procedures for standard RC, given in Chapter 3, are extended towards multi-period
RC in Chapter 4. Two multi-period RC structures are shown, i.e., the parallel and cascaded structure, where
the cascaded structure showed most potential to reject exogenous disturbances with multiple unrelated pe-
riods. Analyses of the closed-loop system and stability revealed the potential for sequential design for RC.
Subsequently, a sequential design approach is developed, with an explicit consecutive design procedure.
It is shown that this procedure reduces conservatism and increases performance for both multi-period RC
structures with respect to pre-existing design approaches.

Validation of the developed sequential design approach by means of simulation, using a parametric model
of the gantry-beam in the x-direction.

Chapter 4 is concluded with simulation results for a parametric model of the gantry-beam in the x-direction.
It is shown that the equivalent plant for the cascaded structure was very similar to the original plant, while
the equivalent plant for the parallel structure clearly showed the influence of the preceding repetitive con-
trollers. Furthermore, the simulations confirm the benefits of multiple repetitive controllers, since dis-
turbance with multiple unrelated periods are rejected by both structures. The following conclusion from
simulation results can be drawn for each RC framework regarding performance:
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• Single-period RC showed slow convergence when the Least Common Multiple (LCM) of the dis-
turbance periods is relatively high. Notice that this is usually the case in many systems, which may
result in unacceptable performance.

• Parallel RC results in slow convergence due to interaction between the individual repetitive con-
trollers.

• The convergence speed and asymptotic error of the cascaded structure showed the most potential.

Furthermore, an interaction analysis for both structures is performed, explaining the slow convergence of
the parallel structure. This analysis concludes that the parametric model T̂ assures reduction of interaction
between the individual repetitive controllers if used in the control configuration, i.e., cascaded RC.

Experimental validation of the developed sequential design approach for multi-period RC on a wide-format
roll-to-roll printing system.

Validation of the developed theory is presented in Chapter 5. The sequential design procedure is executed
step by step to illustrate how to sequentially design repetitive controllers. The sequential design approach
for the cascaded structure is compared with pre-existing results, showing that it is less conservative. The
cut-off frequencies for the robustness filters and learning gains can explicitly be designed for modeling
errors in the system description. This results in improved performance, i.e., lower asymptotic error. Pre-
existing design approaches for the parallel structure showed the requirement to detune learning gains,
resulting in slower convergence. However, sequentially designing the repetitive controllers in parallel with
a prior knowledge on the learning gains, showed improved performance with respect to pre-existing results.
Consequently, sequential design for both structures is less conservative and improves performance.

Experimental validation of a wide-format Roll-To-Roll (RTR) printing system is shown. Two cases stud-
ies are given to illustrate the potential of multi-period RC. It is demonstrated that single-period RC is not
suitable if the LCM is too high. Furthermore, it is shown that the parallel structure results in slow conver-
gence, despite the early learning behavior. To conclude, the cascaded structure showed superior results for
rejecting disturbances with multiple unrelated frequencies, with respect to convergence speed, asymptotic
performance, and early learning behavior. Other designs are not validated on the wide-format RTR printing
system, since higher cut-off frequencies with similar learning gains implies improved performance.

6.2 Recommendations
The presented research gives rise to relevant future research directions, as discussed below.

6.2.1 Future Research
In this research, the potential of multi-period RC in frequency-domain is shown. Multi-period RC is able
to reject disturbances with multiple unrelated periods, and all its higher harmonics. Alternatively, basis
function can be used to reject specific periods only, as shown in [4, 20, 28]. This potentially reduces
the interactions between repetitive controllers and results in faster convergence. However, some further
research is required to include basis functions in multi-period RC.

• Stability should be guaranteed when including basis functions in the various structures. A lifting
approach in frequency-domain is required, to prove stability. Some results are provided in [18], yet
focuses mainly on stability analysis. Design for stability remains challenging.

• A more detailed analysis for various projection methods is required, e.g., (recursive) least squares,
normalized least means squares, orthogonalized projection algorithm, ... , [9].

Furthermore, the interaction analysis for multi-period RC is shown in simulations. However, describing
multi-period RC in time-domain, might result in a better view on the interactions between the individual
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repetitive controllers. It is expected that these interactions are resulting from the transient behavior of each
repetitive controller. Hence, time-domain descriptions might contribute to the theoretical analysis of these
interactions.

All derivations and analyses are shown for Single-Input Single-Output (SISO). However, the developed the-
ory might be extended to Multiple-Input Multiple-Output (MIMO). This enables to design each repetitive
controller in multi-period RC for various degrees of freedom in many systems, as shown in [1].
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Appendix A

Derivation of Modifying Sensitivity for
Cascaded Structure

A.1 Approach for n

Consider a multi-period RC control configuration, depicted in Figure A.1 on the left hand side, with the
individual repetitive controllers as in (4.1) connected in the cascaded structure. For any number of n, this
control problem can be transformed in a standard plant representation on the right hand side of Figure A.1.

ev

e

v

yTR1

PSG

T̂

u1z1

zn

un
Rn

un zn

Rn

Sn−1 −Sn−1T

ŜSn−1
−ŜSn−1T

Pn−1

Figure A.1: Left: Control configuration for multi-period RC in cascaded structure, Right: Standard plant representa-
tion. Note that the subscript n− 1 holds for all variable S and Ŝ−1.

The dotted yellow block, depicted by Pn−1, is the transformation matrix between the defined in- and out-
puts of the standard plant. The defined inputs are, the disturbance v and output of the repetitive controllers
un. The outputs are, the error signal e and the input zn for the repetitive controller.

Let the error propagation e = v − y, and the input for the repetitive controller zn be given by,

e =

n−1∏
i

[(1 + T eq
i−1Ri)

−1]︸ ︷︷ ︸
Sn−1

v −
n−1∏
i

[(1 + T eq
i−1Ri)

−1]Tun, (A.1)

zn =

n−1∏
i

[(1 + T̂Ri)]

n−1∏
i

[(1 + T eq
i−1Ri)

−1]︸ ︷︷ ︸
Ŝ−1
n−1Sn−1

v −
n−1∏
i

[(1 + T̂Ri)]

n−1∏
i

[(1 + T eq
i−1Ri)

−1]Tun. (A.2)

Equation A.1 and A.2 are written in a general format. So that for any number n, the equations describe the
right in- and outputs of the standard plant Pn−1.
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The control objective of the standard plant, is to design the repetitive controller Rn for any n, such that
the closed-loop system is stable. The closed-loop transfer from v to e is obtained by the lower Linear
Fractional Transformation (LFT),

Fl(Pn−1, Rn) = Sn−1 − Sn−1TRn(1 + Ŝ−1n−1Sn−1TRn)−1Ŝ−1n−1Sn−1, (A.3)

= Sn−1(1 + Ŝ−1n−1Sn−1T︸ ︷︷ ︸
T eq
n−1

Rn)−1, (A.4)

which is the modifying sensitivity function with all loops closed. Two observations are made,

• first the resulting function (A.4) is the product of sensitivities for each repetitive controller.

• Second, it is clearly visible that each next connected repetitive controller Rn see a different ’plant to
be controlled’, called the equivalent plant.

This equivalent plant is basically the transfer function from un to zn, which is obtained as,

T eq
n−1 = Ŝ−1n−1Sn−1T. (A.5)

This equivalent plant can be written dependent on the previously equivalent plant, i.e., in a recursive form,

T eq
i = (1 + T eq

i−1Ri)
−1T eq

i−1(1 + T̂Ri), (A.6)

for i = 1, 2, ..., n− 1.

Remark A.1. If T̂ = T then T eq
n−1 = T ∀n, since Ŝ−1 and S cancel.
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