124 research outputs found

    Emulating Human Play in a Leading Mobile Card Game

    Get PDF
    Monte Carlo Tree Search (MCTS) has become a popular solution for game AI, capable of creating strong game playing opponents. However, the emergent playstyle of agents using MCTS is not neces- sarily human-like, believable or enjoyable. AI Factory Spades, currently the top rated Spades game in the Google Play store, uses a variant of MCTS to control AI allies and opponents. In collaboration with the developers, we showed in a previous study that the playstyle of human players significantly differed from that of the AI players [1]. This article presents a method for player modelling using gameplay data and neural networks that does not require domain knowledge, and a method of biasing MCTS with such a player model to create Spades playing agents that emulate human play whilst maintaining strong, competitive performance. The methods of player modelling and biasing MCTS presented in this study are applied to the commercial codebase of AI Factory Spades, and are transferable to MCTS implementations for discrete-action games where relevant gameplay data is available

    A^2-Net: Molecular Structure Estimation from Cryo-EM Density Volumes

    Full text link
    Constructing of molecular structural models from Cryo-Electron Microscopy (Cryo-EM) density volumes is the critical last step of structure determination by Cryo-EM technologies. Methods have evolved from manual construction by structural biologists to perform 6D translation-rotation searching, which is extremely compute-intensive. In this paper, we propose a learning-based method and formulate this problem as a vision-inspired 3D detection and pose estimation task. We develop a deep learning framework for amino acid determination in a 3D Cryo-EM density volume. We also design a sequence-guided Monte Carlo Tree Search (MCTS) to thread over the candidate amino acids to form the molecular structure. This framework achieves 91% coverage on our newly proposed dataset and takes only a few minutes for a typical structure with a thousand amino acids. Our method is hundreds of times faster and several times more accurate than existing automated solutions without any human intervention.Comment: 8 pages, 5 figures, 4 table

    Survey of Artificial Intelligence for Card Games and Its Application to the Swiss Game Jass

    Full text link
    In the last decades we have witnessed the success of applications of Artificial Intelligence to playing games. In this work we address the challenging field of games with hidden information and card games in particular. Jass is a very popular card game in Switzerland and is closely connected with Swiss culture. To the best of our knowledge, performances of Artificial Intelligence agents in the game of Jass do not outperform top players yet. Our contribution to the community is two-fold. First, we provide an overview of the current state-of-the-art of Artificial Intelligence methods for card games in general. Second, we discuss their application to the use-case of the Swiss card game Jass. This paper aims to be an entry point for both seasoned researchers and new practitioners who want to join in the Jass challenge

    Analysis of gameplay strategies in hearthstone: a data science approach

    Get PDF
    In recent years, games have been a popular test bed for AI research, and the presence of Collectible Card Games (CCGs) in that space is still increasing. One such CCG for both competitive/casual play and AI research is Hearthstone, a two-player adversarial game where players seeks to implement one of several gameplay strategies to defeat their opponent and decrease all of their Health points to zero. Although some open source simulators exist, some of their methodologies for simulated agents create opponents with a relatively low skill level. Using evolutionary algorithms, this thesis seeks to evolve agents with a higher skill level than those implemented in one such simulator, SabberStone. New benchmarks are propsed using supervised learning techniques to predict gameplay strategies from game data, and using unsupervised learning techniques to discover and visualize patterns that may be used in player modeling to differentiate gameplay strategies

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Machine learning methods applied to the dots and boxes board game

    Get PDF
    Pontos e Quadrados (Dots and Boxes na versão anglo-saxónica) é um jogo clássico de tabuleiro no qual os jogadores unem quatro pontos próximos numa grelha para criar o maior número possível de quadrados. Este trabalho irá inverstigar técnicas de aprendizagem profunda e aprendizagem por reforço, que torna possível um programa de computador aprender como jogar o jogo, sem nenhuma interação humana, e aplicar o mesmo ao jogo Dots and Boxes; a abordagem usada no DeepMind AlphaZero será analisada. O AlphaZero combina uma rede neural convolucional e o algoritmo Monte Carlo Tree Search para alcançar um desempenho super humano, sem conhecimento prévio, em jogos como o Xadrez, Go, e Shogi. Os resultados obtidos permitem aferir sobre a adequação da abordagem ao jogo Pontos e Quadrados.Dots and Boxes is a classical board game in which players connect four nearest dots in a grid to create the maximum possible number of boxes. This work will investigate deep learning techniques with reinforcement learning to make possible a computer program to learn how to play the game, without human interaction, and apply it to the Dots and Boxes board game; the approach beyond DeepMind AlphaZero being taken as the approach to follow. AlphaZero makes a connection between a Convolutional Neural Network and the Monte Carlo Tree Search algorithm to achieve superhuman performance, starting from no a priori knowledge in games such as Chess, Go, and Shogi. The results obtained allow to measure the approach adequacy to the game Dots and Boxes
    • …
    corecore