45 research outputs found

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    An Algorithmic Framework for Locally Constrained Homomorphisms

    Get PDF
    A homomorphism φ from a guest graph G to a host graph H is locally bijective, injective or surjective if for every u ∈ V (G), the restriction of φ to the neighbourhood of u is bijective, injective or surjective, respectively. The corresponding decision problems, LBHom, LIHom and LSHom, are well studied both on general graphs and on special graph classes. We prove a number of new FPT, W[1]-hard and para-NP-complete results by considering a hierarchy of parameters of the guest graph G. For our FPT results, we do this through the development of a new algorithmic framework that involves a general ILP model. To illustrate the applicability of the new framework, we also use it to prove FPT results for the Role Assignment problem, which originates from social network theory and is closely related to locally surjective homomorphisms

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Mathematical Models and Decomposition Algorithms for Cutting and Packing Problems

    Get PDF
    In this thesis, we provide (or review) new and effective algorithms based on Mixed-Integer Linear Programming (MILP) models and/or decomposition approaches to solve exactly various cutting and packing problems. The first three contributions deal with the classical bin packing and cutting stock problems. First, we propose a survey on the problems, in which we review more than 150 references, implement and computationally test the most common methods used to solve the problems (including branch-and-price, constraint programming (CP) and MILP), and we successfully propose new instances that are difficult to solve in practice. Then, we introduce the BPPLIB, a collection of codes, benchmarks, and links for the two problems. Finally, we study in details the main MILP formulations that have been proposed for the problems, we provide a clear picture of the dominance and equivalence relations that exist among them, and we introduce reflect, a new pseudo-polynomial formulation that achieves state of the art results for both problems and some variants. The following three contributions deal with two-dimensional packing problems. First, we propose a method using Logic based Benders’ decomposition for the orthogonal stock cutting problem and some extensions. We solve the master problem through an MILP model while CP is used to solve the slave problem. Computational experiments on classical benchmarks from the literature show the effectiveness of the proposed approach. Then, we introduce TwoBinGame, a visual application we developed for students to interactively solve two-dimensional packing problems, and analyze the results obtained by 200 students. Finally, we study a complex optimization problem that originates from the packaging industry, which combines cutting and scheduling decisions. For its solution, we propose mathematical models and heuristic algorithms that involve a non-trivial decomposition method. In the last contribution, we study and strengthen various MILP and CP approaches for three project scheduling problems

    Subject index volumes 1–92

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore