5 research outputs found

    μ-Dependent model reduction for uncertain discrete-time switched linear systems with average dwell time

    Get PDF
    In this article, the model reduction problem for a class of discrete-time polytopic uncertain switched linear systems with average dwell time switching is investigated. The stability criterion for general discrete-time switched systems is first explored, and a μ-dependent approach is then introduced for the considered systems to the model reduction solution. A reduced-order model is constructed and its corresponding existence conditions are derived via LMI formulation. The admissible switching signals and the desired reduced model matrices are accordingly obtained from such conditions such that the resulting model error system is robustly exponentially stable and has an exponential H∞ performance. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results

    Robust H∞ switching rule design for Boost converters with uncertain parameters and disturbances

    Get PDF
    Pubished version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2013/120543 Open accessThis paper is concerned with the design problem of robust H∞ switching rule for Boost converters with uncertain parameters and disturbances. Firstly, the Boost converter is modeled as a switched affine linear system with uncertain parameters and disturbances. Then, using common Lyapunov function approach and linear matrix inequality (LMI) technique, a novel switching rule is proposed such that the H∞ model reference tracking performance is satisfied. Finally, a simulation result is provided to show the validity of the proposed method

    Controle de sistemas chaveados e aplicações

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2013.Resumo: Esta tese apresenta uma metodologia para análise e desenvolvimento de estratégias de controle para sistemas chaveados. Inicialmente, são estabelecidas condições de projeto para uma lei de chaveamento baseada na função ?max? considerando o caso de sistemas chaveados afins. As condições garantem que o sistema chaveado, sob efeito da lei de chaveamento projetada, apresente estabilidade global e assintótica, mesmo com a ocorrência de modos deslizantes em qualquer superfície de chaveamento do sistema. A principal contribuição das condições de projeto propostas é que as mesmas não exigem a existência de uma combinação Hurwitz estável das matrizes de dinâmicas dos subsistemas que compõem o sistema chaveado afim. Com base nestas condições, uma metodologia de projeto é proposta empregando desigualdades matriciais lineares (Linear Matrix Inequalities - LMIs) como ferramenta de trabalho. A descrição das condições de projeto como um problema LMI faz com que seja necessária a existência de uma combinação Hurwitz estável das matrizes de dinâmicas dos subsistemas. Na sequência, são incluídos critérios de desempenho no projeto da lei de chaveamento. Dois requisitos de desempenho foram tratados: o custo garantido e a atenuação de distúrbio. Finalmente, a metodologia de projeto é estendida para uma classe de sistemas chaveados não lineares, tendo como estudos de caso aplicações de controle de motores de indução acionados por inversores e controle de aerogeradores de indução conectados à rede elétrica com conversores. Dentre as diferentes topologias de aerogeradores, a escolhida para o estudo foi a do Gerador de Indução de Dupla Alimentação (Doubly Fed Induction Generator - DFIG). Todos os resultados propostos foram ilustrados através de exemplos numéricos baseados em sistemas acadêmicos e em modelos que reproduzem as condições reais de aplicação de conversores de potência, motores de indução e aerogeradores. 2013-12-05T23:16:06

    Design of switching strategies with applications in photovoltaic energy generation

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2014.Abstract : This work presents control strategies and stability analysis for switched systemswith a proposed application to photovoltaic energy generation systems.The conditions are based on Linear Matrix Inequalities (LMIs).Initially, a general description of the photovoltaic systems is presented coveringthe following aspects: the modeling of a photovoltaic array, some commonconnection topologies, the main objectives, techniques for maximizingthe generated power, among other informations. This content is necessary forthe control design method proposed in this work.Next, a design technique for the stabilization of affine switched systems isshown. The methodology used is based on the Lyapunov?s theory for stabilityof systems, describing sufficient conditions for the proposed switchingrule design in the form of LMIs and solving them using existing softwarepackages. In the sequel, the switching strategy is extended for a class ofnonlinear systems of great interest, especially for the control of photovoltaicsystems. This class is composed of systems containing sector-bounded nonlinearities.Furthermore, a method for stability analysis of switched systemsis proposed, extending the class of switched systems analyzed by the currentliterature. Numerical examples illustrate all the approaches developed.At the end, the application of the nonlinear control techniques to photovoltaicgeneration systems is presented. The main objectives considered are thetracking of the maximum power generation, with robustness to variations ofthe input parameters of the photovoltaic array, and the delivery of only activepower to the grid. Finally, simulation results demonstrate the applicabilityof the methodology for the control of this type of system, evidencing thecompliance of the stated objectives.Resumo expandido : Durante a última década, a tecnologia de sistemas fotovoltaicos tem mostrado potencial para se tornar uma das principais fontes de energia para o mundo, com crescimento contínuo e robusto, mesmo em tempos de crise econômica e financeira. Visando ampliar o aproveitamento da energia gerada e até mesmo reduzir os custos do sistema, o projeto de técnicas de controle eficientes apresenta grande importância para este tipo de sistema. Em sistemas fotovoltaicos o controle é realizado através de conversores de potência, que são sistemas chaveados. Por este motivo, o foco principal deste trabalho é a apresentação de estratégias de controle e análise de estabilidade para sistemas chaveados com uma proposta de aplicação para sistemas de geração de energia fotovoltaica. As condições de projeto e análise são todas baseadas em desigualdades matriciais lineares (LMIs). Inicialmente, uma descrição geral dos sistemas fotovoltaicos é apresentada, contendo a modelagem de um arranjo fotovoltaico, algumas topologias comuns de conexão, os principais objetivos, técnicas para a maximização da potência gerada, dentre outras informações necessárias para o projeto da técnica de controle proposta para este sistema. Na sequência é mostrada uma técnica de projeto de estratégias de chaveamento, cujo objetivo principal é garantir estabilidade e desempenho de sistemas comutados. A metodologia usada é baseada na teoria de estabilidade de Lyapunov, de modo a descrever condições suficientes para o projeto da lei de chaveamento em forma de LMIs e resolvê-las usando pacotes computacionais existentes. O método se aplica à classe de sistemas chaveados onde cada subsistema tem um campo vetorial afim e considera-se uma lei de chaveamento baseada no máximo entre funções auxiliares. A estabilidade do sistema em malha fechada é garantida mesmo se modos deslizantes ocorram em qualquer superfície de chaveamento resultante do projeto. Os resultados são apresentados para os casos de realimentação completa e realimentação parcial dos estados do sistema. Em seguida, uma das principais contribuições da tese, a proposta de uma extensão da lei de chaveamento para uma classe de sistemas chaveados não lineares é apresentada. O sistema pode conter não linearidades dependentes do estado limitadas em setor, como é o caso da não linearidade existente no modelo de painéis fotovoltaicos. As funções não lineares podem conter também parâmetros incertos, contanto que a função permaneça dentro dos limites do setor dado para toda a faixa de valores de interesse do parâmetro. Além disso, condições de projeto de leis de chaveamento independentes do equilíbrio são fornecidas e, portanto, neste caso a técnica se torna robusta a mudanças no ponto de operação desejado. Por fim, considerações sobre limitar a frequência de chaveamento são discutidas. A aplicação das técnicas descritas anteriormente para topologias comuns de conexão de sistemas fotovoltaicos é apresentada em seguida. Alguns dos desafios superados são a presença de referências variáveis, não linearidades limitadas em setor e medição parcial de estados no mesmo sistema. A aplicabilidade da metodologia para controlar o sistema fotovoltaico é ilustrada através de simulações baseadas em um exemplo numérico usando parâmetros de um sistema real. Como resultado requisitos importantes são satisfeitos, como o rastreamento do ponto de máxima potência e robustez com relação aos parâmetros incertos do painel fotovoltaico. Para a obtenção da robustez foram derivadas equações para determinar um setor que contem a não linearidade para quaisquer valores dos parâmetros. As dificuldades e perspectivas para o caso mais complexo (conexão com a rede elétrica) também são apresentadas. Motivado pela falta de técnicas de análise de estabilidade de sistemas seccionalmente afins contendo modos deslizantes na literatura atual, condições LMI suficientes para resolver este problema são propostas, resultando em outra importante contribuição da tese. As condições são baseadas em uma função de Lyapunov composta pela combinação convexa de funções quadráticas diferentes para cada região do sistema. As condições propostas incluem o importante caso onde o ponto de equilíbrio está localizado na fronteira entre subsistemas afim. Adicionalmente, condições suficientes para análise independentemente da parametrização das superfícies de chaveamento são derivadas, isto é, a superfície de chaveamento pode ser desconhecida neste caso. A nova técnica leva a uma metodologia unificada para a análise de estabilidade de sistemas seccionalmente afins e de sistemas chaveados afins com uma superfície de chaveamento previamente projetada. Esta tese é organizada em sete capítulos, quatro apêndices e referências. O Capítulo 1 tem o objetivo de contextualizar e motivar de forma breve o assunto da tese. O conhecimento básico sobre sistemas fotovoltaicos necessário para a aplicação proposta no documento é concentrado no Capítulo 2. O Capítulo 3 apresenta uma técnica de projeto de uma lei de chaveamento para o controle de sistemas chaveados com campos vetoriais afim. Esta técnica serve de base para as principais contribuições teóricas desta tese, apresentadas nos Capítulos 4, 5 e 6. No Capítulo 4, é apresentado o projeto de leis de chaveamento para sistemas chaveados contendo não linearidades limitadas em um setor, enquanto o Capítulo 5 apresenta a aplicação desta técnica para o controle de sistemas fotovoltaicos. No Capítulo 6, um método para análise de estabilidade de sistemas seccionalmente afins é introduzida. Exemplos numéricos são utilizados para ilustrar todas as contribuições da tese em seus respectivos capítulos. Algumas conclusões são discutidas no Capítulo 7, incluindo uma lista de sugestões para trabalhos futuros. Por fim, três apêndices demonstram o equacionamento de ferramentas de circuitos elétricos trifásicos utilizadas na tese e um apêndice apresenta resumos das publicações geradas pelo autor durante o período de doutorado
    corecore